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Supplementary Material for:

Side-channel free quantum key distribution

by Samuel L. Braunstein and Stefano Pirandola

IN DEFENSE OF PRIVATE SPACES

In quantum cryptography unconditional security
proofs are derived under the assumption that Alice’s and
Bob’s apparata (private spaces) are completely inacces-
sible by an eavesdropper who, therefore, can only at-
tack the signal systems which are transmitted through
the quantum communication channel connecting the two
parties. Under this assumption, secret-key rates and se-
curity thresholds are derived in both discrete and contin-
uous variable quantum key distribution.

One potential loophole in the security proofs is related
to how a theoretical protocol is actually implemented ex-
perimentally. Any redundant information encoded in ex-
tra degree of freedom or extra Hilbert space dimensions
outside the theoretical prescription can allow for so-called
side-channel attacks. By their nature, such attacks may
be of classical or quantum degrees of freedom and are in-
sidious because even quantifying their threat appears to
involve understanding what have been called unknown
unknowns about the vulnerability of the experimental
set-up.

Progress has been made on eliminating side channel at-
tacks in the quantum communication channels between
private spaces, but this leaves open potential attacks on
the private spaces through their quantum communica-
tion ports. Let us therefore take a step back and consider
private spaces in more details: What goes on in Alice’s
and Bob’s private spaces involves a significant amount of
classical information processing; at the very least the key
itself will be generated and stored as classical informa-
tion. Now with virtually any technology we have today
classical information is stored, processed and transmitted
in a highly redundant fashion (many electrons are used
to charge a capacitor to represent a bit value, or many
electrons must pass through the base junction of a tran-
sistor to effect a logical switching operation, tapping on
a keyboard produces sound waves and electromagnetic
signals in addition to the ‘legitimate’ electrical signals in
the wires, etc). In principle any of this redundant infor-
mation may leak out of the private space through a “par-
asite” channel. An eavesdropper might therefore ignore
the quantum communication channel and directly attack
Alice’s and Bob’s apparata by exploiting the presence of
parasite channels: this is also a “side-channel attack”.

The implicit assumption in quantum cryptography is
that we could always improve technology in such a way
that Alice’s and Bob’s private spaces are not affected by
the presence of parasite channels, so that the legitimate
participants do indeed have access to absolutely private

spaces. (For instance, Alice and Bob could simulate the
classical information processing on a quantum computer.
A hacked operating system on such a machine could be
tested for by randomly running subroutines that confirm
that coherence is preserved and that no information is
copied out to where it can be stored or transmitted by a
trojan program — see also Ref. [1].)

However, even if you rely on a perfect isolation tech-
nology, there remains a potential chink in this armor,
which is the quantum communication port used either to
transmit a quantum state out of your private space or to
accept a quantum state for detection into it.

If you open a communication port for quantum states
to enter or leave you must explicitly deal with side chan-
nels which can be probing these links to your private
space. Eve can potentially send trojan systems through
Alice’s and Bob’s communication ports and detect their
reflection to infer both state preparation and measure-
ment settings. As an example, in the standard BB84
protocol, Eve can irradiate Alice’s apparatus by using
optical modes at slightly different frequencies. Then,
from reflection, Eve can infer the polarization chosen in
each round of the protocol. Thanks to this information,
Eve can measure each signal system in the correct basis.
Another example regards the so-called plug-and-play sys-
tems, where trojan systems can be reflected together with
signal systems, as discussed in Ref. [2].

Our paper shows how to overcome the problem of the
open quantum communication ports, therefore making
feasible the notion of absolutely private spaces. Note
that this problem is not addressed by current device-
independent quantum cryptography, where such attacks
on the private space ports are simply considered illegiti-
mate as they violate the strong private space assumption.
The key point of our scheme is that detectors are no
longer “in line” with the quantum communication port
of the private space. For this reason, it is not possible
for an external party to probe the port and obtain detec-
tor settings or readouts from the processing of parasite
systems. In order to explain this key feature in detail,
we analyze the problem of the quantum communication
ports by comparing standard protocols with our scheme.

In Fig. 1, we depict a general prepare-and-measure pro-
tocol, where Alice’s variable X is encoded in a quantum
state ρ(X) by modulation. Bob’s variable Y is the out-
put of a quantum measurement. Here, Eve can attack
the quantum communication ports by using two trojan
systems e and f . By means of e, Eve can retrieve in-
formation about the state preparation X → ρ(X). By
means of f , she can retrieve information about the mea-
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surement apparatus of Bob and, therefore, about Y .
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FIG. 1: Port attack in a prepare and measure protocol.

In Fig. 2, we depict a general entanglement-based pro-
tocol, where an untrusted party (Eve) distributes entan-
glement between two parties. This is done by distributing
an entangled state ρ = ρAB , where system A is sent to
Alice and system B is sent to Bob. Alice and Bob can
perform entanglement distillation and measure the out-
put distilled systems to derive two correlated classical
variables, X and Y , respectively. In this scenario, Eve
can decide not to attack the source ρ but directly the two
quantum communication ports of Alice and Bob. Eve can
probe these ports by using two trojan systems e and f ,
which can retrieve information about Alice’s and Bob’s
distilling and detecting apparata. As a result, Eve can
infer information about X and Y .
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FIG. 2: Port attack in an entanglement-based protocol.

In Fig. 3, we depict our protocol where an untrusted
party (Eve) represents an entanglement swapper between
Alice and Bob. This is generally done by measuring two
public systems, A′ and B′, received from Alice and Bob,
processing the outcome of the measurement, and clas-
sically communicating the processed data back to Alice
and Bob. As a result the two private systems, A and
B, become correlated, so that Alice and Bob can extract
two correlated classical variables, X and Y , by applying
suitable measurements. In particular, if Alice and Bob
can access quantum memories, then they can extract a
secret key at a rate which is at least equal to the coher-
ent information between A and B. Eve can attempt a
side-channel attack against the two ports by sending two
trojan systems e and f . In this case, however, the appa-
rata which detect the two private systems A and B are
inaccessible to Eve. By exploiting reflections from the
ports, Eve can only retrieve information regarding the
reduced states ρA′ and ρB′ of the two public systems A′

and B′. However, these reduced states contain no useful

information about the private system A or B or Alice’s
or Bob’s detector settings or outputs.
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FIG. 3: Port attack in our scheme.

To understand better how the full isolation of the pri-
vate systems might be achieved, we may consider the
procedure depicted in Fig. 4. It is explained for Alice’s
private space, but steps are identical for Bob.
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FIG. 4: Possible procedure for the full isolation of the private
systems.

In the first step (a), Alice’s port is closed and she pre-
pares an entangled state ρ = ρAA′ where system A is
directed towards a quantum memory (QM), while sys-
tem A′ is directed towards a delay line (DL). In step (b),
once system A is stored in the memory and while system
A′ is trapped in the delay line, a shutter is used to fully
separate the delay line from the rest of Alice’s appara-
tus. Note that a virtual channel between A and A′ has
been created. In step (c), Alice’s quantum communica-
tion port is opened and system A′ is transmitted to Eve.
During this stage, trojan systems may enter the port but
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no detector is in line with the port. In step (d), the port
is closed with the private system A kept in the mem-
ory. The previous steps (a)-(d) are repeated many times,
so that Alice collects many private systems in her quan-
tum memory. We therefore reach step (e) of the figure.
Finally, once Alice has received all the classical commu-
nications, she applies a collective quantum measurement
on her quantum memory to retrieve the classical variable
X. This measurement can include or be anticipated by
an entanglement distillation.

NOTATION AND BASIC FORMULAS

In part of the derivation we adopt the enlarged Hilbert
space (EHS) representation, where stochastic classical
variables are embedded in quantum systems. Consider a
stochastic variable X = {x, p(x)} which is encoded into
an ensemble of states of some quantum system A, i.e.,

EA = {p(x), ρA(x)}. (1)

This ensemble may be equivalently represented by the
classical-quantum (CQ) state

ρXA =
∑

x

p(x) |x〉 〈x|
X
⊗ ρA(x), (2)

where the stochastic variable X is embedded into the
dummy quantum system X, by using an orthonormal
basis {|x〉} in the Hilbert space HX of X. We denote
by ρA(x) the state of a system A which is conditioned
by the value x of a stochastic variable X. The notation
ρA|X refers to the conditional state ρA(x) where x is not
specified. Clearly, we have

ρA =
∑

x

p(x)ρA(x). (3)

Given a quantum system A in a state ρA, its von Neu-
mann entropy S(ρA) is also denoted by H(A). Given a
quantum system X, embedding the stochastic variable
X, its quantum entropy H(X) is just the Shannon en-
tropy H(X). Given two quantum systems, A and B, we
denote by I(A : B) their quantum mutual information.
This is defined by

I(A : B) = H(B)−H(B|A), (4)

where

H(B|A) = H(AB)−H(A), (5)

is the conditional quantum entropy. Note that H(B|A)
can be negative and it is related to the coherent informa-
tion by the relation

I(A〉B) = −H(B|A). (6)

For A = X, the quantum mutual information I(A : X),
which is computed over the CQ-state of Eq. (2), corre-
sponds to the Holevo information I(A : X), computed
over the ensemble of Eq. (1). For A = X and B = Y,
embedding two stochastic variables X and Y , I(X : Y)
is just the classical mutual information I(X : Y ). For
three quantum systems A, B, and C, we can consider
the conditional quantum mutual information

I(A : B|C) = H(AC)+H(BC)−H(ABC)−H(C), (7)

which is ≥ 0 as a consequence of the strong subadditivity
of the von Neumann entropy. For a classically correlated
system C = X, we have a probabilistic average over mu-
tual informations, i.e.,

I(A : B|X) = I(A : B|X) ≡
∑

x

p(x) I(A : B|X = x).

(8)
List of other useful elements:

• Given a tripartite quantum system ABC, we can
use the “chain rule”

I(A : BC) = I(A : B) + I(A : C|B). (9)

• Invariance of the Holevo information under addi-
tion of classical channels, i.e., for a classical chan-
nel

p(y|x) : X → Y, (10)

we have

I(A : X) = I(A : XY ). (11)

• Given a Markov chain X → Y → Z, the classi-
cal mutual information decreases under condition-
ing [3], i.e.,

I(X : Y |Z) ≤ I(X : Y ). (12)

Notice that, for three general stochastic variables,
we have I(X : Y |Z) R I(X : Y ), so that the so-
called “interaction information”

I(X : Y : Z) ≡ I(X : Y |Z)− I(X : Y ), (13)

can be positive, negative or zero.

• Data processing inequality. For a Markov chain
X → Y → Z, we have

H(X) ≥ I(X : Y ) ≥ I(X : Z). (14)
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FIG. 5: Purification. Conditional state Φ
ABEẼ|L′ projected

onto Φ
BEẼ|XL′ .

PROOF OF THE THEOREM

Let us purify the mixed state ρABE|L′ into the pure
state ΦABEẼ|L′ = |Φ〉 〈Φ|ABEẼ|L′ by introducing an an-

cillary system Ẽ which is assumed to be in Eve’s hands
(so that Eve’s global system consists of EẼ). This sce-
nario is depicted in Fig. 5.
Thus, for the total state ρABE|L′ , we have

ρABE(l
′) = TrẼ [ΦABEẼ(l

′)] . (15)

For the conditional state ρBE|XL′ , generated by the mea-
surement, we can write

ρBE(x, l
′) =

1

p(x|l′)
TrA

[

Â(x)ρABE(l
′)Â(x)†

]

=
1

p(x|l′)
TrAẼ

[

Â(x)ΦABEẼ(l
′)Â(x)†

]

= TrẼ [ΦBEẼ(x, l
′)] , (16)

where

ΦBEẼ(x, l
′) ≡

1

p(x|l′)
TrA

[

Â(x)ΦABEẼ(l
′)Â(x)†

]

,

(17)
represents the conditional state ΦBEẼ|XL′ which is gener-
ated by the measurement in the purified scenario. Clearly
if we discard X, we get the reduced state

ΦBEẼ|L′ ≡
〈

ΦBEẼ|XL′

〉

X
= TrA

[

ΦABEẼ|L′

]

. (18)

Because of Eq. (16), the conditional state ΦBEẼ|XL′ can

be used to compute R′ via

R′ ≡ I(X : B|L′)ρ − I(X : E|L′)ρ

= I(X : B|L′)Φ − I(X : E|L′)Φ, (19)

where ρ = ρBE|XL′ and Φ = ΦBEẼ|XL′ (the computation

is exactly the same up to a trace over Ẽ). In the EHS
representation, the conditional state ΦBEẼ|XL′ becomes

Ψ
XL′BEẼ =

∑

x,l′

p(x, l′) |x〉 〈x|
X
⊗|l′〉 〈l′|

L′ ⊗ΦBEẼ(x, l
′).

(20)
Thus, we can also set

R′ = I(X : B|L′)Ψ − I(X : E|L′)Ψ, (21)

where Ψ = Ψ
XL′BEẼ . From the chain rule we have

I(X : EẼ|L′)Ψ = I(X : E|L′)Ψ + I(X : Ẽ|EL
′)Ψ

= I(X : E|L′)Ψ + γ, (22)

where γ ≡ I(X : Ẽ|EL
′)Ψ ≥ 0 is the information con-

tribution due to the purification [4]. In other words, the
(conditional) Holevo information can only increase with
the purification, i.e.,

I(X : EẼ|L′) = I(X : E|L′) + γ ≥ I(X : E|L′). (23)

As a consequence, we have R′ = R′′ + γ, where

R′′ ≡ I(X : B|L′)Φ − I(X : EẼ|L′)Φ. (24)

In terms of conditional entropies, we have

R′′ =H(B|L′)Φ −H(B|XL′)Φ

− [H(EẼ|L′)Φ −H(EẼ|XL′)Φ]. (25)

Here H(EẼ|L′) is computed over Φ = ΦBEẼ|XL′ dis-
carding X and B, i.e., over the reduced state

ΦEE|L′ = TrAB

[

ΦABEẼ|L′

]

. (26)

Now since ΦABEẼ|L′ is pure, we have H(EẼ|L′) =

H(AB|L′), where H(AB|L′) can be computed over
ρAB|L′ = TrEẼ [ΦABEẼ|L′ ]. Clearly, also H(B|L′)Φ can
be computed over ρAB|L′ . As a consequence we can rec-
ognize in Eq. (25) the conditional coherent information

I(A〉B|L′) = H(B|L′)−H(AB|L′),

associated with Alice and Bob’s conditional state ρAB|L′ .
Thus, we can set

R′′ = I(A〉B|L′) + [H(EẼ|XL′)Φ −H(B|XL′)Φ]. (27)

Here, we can assume that Alice’s measurement is a rank
one POVM. As a result, Φ = ΦBEẼ|XL′ is also a pure

state, and we can set H(EẼ|XL′)Φ = H(B|XL′)Φ, so
that R′′ = I(A〉B|L′). Finally, we can write

R∗ = R′′ + γ +∆

= I(A〉B|L′) + γ +∆

≥ I(A〉B|L′) + ∆, (28)

where we have used γ ≥ 0 from its definition.
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