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In the framework of the paradigmatic prisoner’s dilemma game, we investigate the evolutionary dynamics of
social dilemmas in the presence of “cooperation facilitators.” In our model, cooperators and defectors interact
as in the classical prisoner’s dilemma, where selection favors defection. However, here the presence of a small
number of cooperation facilitators enhances the fitness (reproductive potential) of cooperators, while it does not
alter that of defectors. In a finite population of size N , the dynamics of the prisoner’s dilemma with facilitators
is characterized by the probability that cooperation takes over (fixation probability) by the mean times to
reach the absorbing states. These quantities are computed exactly using Fokker-Planck equations. Our findings,
corroborated by stochastic simulations, demonstrate that the influence of facilitators crucially depends on the
difference between their density z and the game’s cost-to-benefit ratio r . When z > r , the fixation of cooperators
is likely in a large population and, under weak selection pressure, invasion and replacement of defection by
cooperation is favored by selection if b(z − r)(1 − z) > N−1, where 0 < b � 1 is the cooperation payoff benefit.
When z < r , the fixation probability of cooperators is exponentially enhanced by the presence of facilitators but
defection is the dominating strategy.
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I. INTRODUCTION

Understanding the origin of cooperative behavior is a
central issue in the life and behavioral sciences and has
recently been listed among the major scientific puzzles to be
elucidated [1]. Evolutionary game theory (EGT) provides the
ideal framework to study the competition between species
and there is a long tradition of modeling the evolution of
cooperation using evolutionary games [2,3]. In recent years,
these processes have increasingly been investigated using
the methods of statistical physics; see, for example, [2] and
references therein. In EGT, successful species spread at the
expense of the others, and each individual’s reproductive
potential (fitness) varies with the population’s composition
that continuously changes in time. The interaction between
the species is thus accounted for by a fitness-dependent (or
“frequency-dependent”) selection pressure [2], as observed in
various experiments [4]. Quite intriguingly, in such a setting
the optimization of the fitness at an individual level can result
in the reduction of the population overall fitness [2,3]. An
influential example of such a paradoxical behavior is provided
by the celebrated prisoner’s dilemma (PD) game that serves
as a metaphor for social dilemmas. In fact, in the classical
PD individual interest leads to defection, even though mutual
cooperation would be socially more beneficial [2,3]. While the
PD is the paradigmatic model for the evolution of cooperation,
its main prediction is at odds with the cooperative behavior
that is commonly observed in experimental realizations [4,5].
This has motivated an upsurge of research aiming to identify
the possible mechanisms capable of promoting cooperation
in biological and social systems [6]. Notably it has been
proposed that cooperation can be promoted by kin and group
selection [7], as well as by conditional behavioral rules leading
to direct or indirect reciprocity [8,9]. It has also been found
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that local interactions may promote cooperation in some
social dilemmas [10]. Furthermore, it has been shown that
cooperation is supported in games with voluntary participation
or with punishment for noncooperation [11].

In this work, we investigate an alternative scenario for the
spread of cooperation in social dilemmas: we consider the
evolution of the prisoner’s dilemma in a finite population
including a small number of “cooperation facilitators.” The
facilitators participate in the dynamics only by enhancing the
reproductive potential of cooperators, while they do not affect
the fitness of defectors (see Sec. II). To study the influence of
cooperation facilitators on the prisoner’s dilemma dynamics,
the evolution is modeled in terms of a birth-death process and
the fixation properties are studied analytically. In fact, it is well
established that the evolutionary dynamics in finite populations
is efficiently characterized by the probabilities of reaching the
absorbing states, where the extinction of one or more species
and the fixation of another occur [2,12–15]. Here, we are
particularly interested in the probability that, from a given
initial composition, the population eventually comprises only
cooperators and a small fraction of facilitators, but no defectors
(“cooperation fixation probability”). The mean times for these
events (mean fixation times) are also studied, and our results
are checked against stochastic simulations. This approach
allows us to (i) discuss how demographic fluctuations alter the
mean field predictions of the classic replicator equations [2]
and (ii) thoroughly analyze the circumstances under which
facilitators and selection favor single cooperators invading and
replacing a population of defectors.

This paper is organized as follows: The PD with cooperation
facilitators is introduced in the next section, where some of
its properties are discussed. In Sec. III the dynamics with
the Fermi process is characterized by the fixation probability
(Sec. III A) and the mean fixation times (Sec. III B). The
dynamics with the Moran process is studied in Sec. IV, while
we summarize our findings and present our conclusions in
Sec. V.
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II. PRISONER’S DILEMMA WITH COOPERATION
FACILITATORS: MODEL AND DYNAMICS

In evolutionary game theory, two-player games can be
interpreted as dilemmas of cooperation. In fact, the two
possible strategies can be interpreted as “cooperation” (C) and
“defection” (D). The paradigm of social dilemma is provided
by the classical prisoner’s dilemma, whose main features are
captured by the following payoff matrix giving the pairwise
interaction between cooperators and defectors [2,3,10,16]:

C D

C

D

(
b − c −c

b 0

)
, (1)

where b and c respectively represent the benefit and the
cost of cooperation, with b > c > 0. Here, without loss of
generality, we assume that 0 < b � 1. According to (1),
mutual cooperation leads to payoff b − c > 0 and mutual
defection gives payoff 0, whereas when one player defects and
the other cooperates, the defector receives a payoff b and the
cooperators gets −c. In the (classical) PD, the dilemma arises
from the fact that each individual is better off not cooperating,
even though mutual cooperation enhances the population
overall payoff. Hence, while cooperation is socially beneficial,
defection is the only (strict) Nash equilibrium in the PD [2,3].

In this work, we consider a finite population comprising
N individuals on a complete graph (no spatial structure).
The number of cooperators and defectors is respectively
denoted by j and k. In addition to cooperators and defectors,
we consider that the population also comprises a fixed
(small) number � of “cooperation facilitators” (� � N ). These
facilitators cooperate with C players and therefore enhance the
reproductive potential (fitness) of cooperators, while they leave
the fitness of defectors unaltered (see below). Hence, while the
number of cooperators and defectors in the population changes
in time (j and k vary), the total number of cooperators and
defectors j + k = N − � is conserved. According to the tenets
of EGT, the variation in time of the number of cooperators
and defectors depends on their average payoffs, πC and πD
respectively, obtained from the payoff matrix (1). Here, since
facilitators enhance πC by cooperating with C individuals and
have no (direct) influence on πD, one has

πC = (b − c)
j + � − 1

N − 1
− c

k

N − 1
, πD = b

j

N − 1
, (2)

where we have excluded self-interactions from the definition
of the payoffs [2]. The population average payoff is given by
π̄ = (jπC + kπD)/N . It is worth noticing that the expression
of πC now comprises a term (b − c)�/(N − 1) > 0 reflecting
the positive contribution of facilitators to the cooperators’
payoff. In evolutionary dynamics, it is customary to add a
baseline constant, here set to 1, to the payoffs πC/D of the
spreading species [2,13], yielding the fitness of species C and
D, respectively given by

fC = 1 + πC = 1 + b

[
j + � − r(N − 1) − 1

N − 1

]
,

(3)

fD = 1 + πD = 1 + b
j

N − 1
,

where we have introduced the cost-to-benefit ratio r ≡ c/b

(with 0 < r < 1) and have used k = N − j − �. Similarly,
the average fitness of the entire population reads f̄ = (jfC +
kfD)/N = 1 + [b(1 − r)j − �]/N and grows linearly with the
density x ≡ j/N of cooperators.

The size of the population being finite, the evolutionary
dynamics is modeled as a continuous-time birth-death process
[2,17,18]. In this model, only pairs of cooperators and
defectors interact [according to Eq. (1)] and the stochastic
dynamics is implemented as follows: (i) at each time step a pair
of individuals is randomly chosen from the entire population;
(ii) unless a pair of cooperator-defector is drawn, nothing
happens; and (iii) if one picks a cooperator-defector pair,
one of these individuals is randomly chosen for reproduction
(proportionally to its fitness) and the other is replaced by
newborn offspring. Hence, at each interaction the number of
cooperators increases or decreases by one. The time evolution
of this birth-death process can therefore be described by the
random variable j giving the number of cooperators and
by the rates T ±

j associated with the transitions j → j ± 1,
respectively. Here, we consider

T ±
j = j (N − � − j )

N (N − 1)
�±(fC,fD), (4)

where j (N − � − j )/N(N − 1) accounts for the probability
of picking a cooperator-defector pair, while �± are functions
of the fitnesses (3) that encode the interactions (selection)
according to the chosen “microscopic” update rule [2]. We here
discuss the cases where �± correspond to (i) the Fermi process
(FP) [19,20] and (ii) the Moran process (MP) [2,12,14,20,21]
that are commonly used in EGT [2].

Stochastic evolutionary dynamics and the influence of
selection are generally characterized by the fixation properties,
namely the probability that a given species fixates (takes over)
the whole population by the mean time for such an event
to occur [2,12,13]. In the absence of facilitators, fixation
happens when only one species survives and the population
composition is uniform. Here, as the number of facilitators
remains constant, fixation will be achieved when one of the
absorbing states is reached and either all cooperators are re-
placed by defectors, or vice versa, resulting in a (nonuniform)
population comprising � facilitators and N − � cooperators or
defectors. In this work, we are particularly interested in the
probability φC

j that, starting with j cooperators, all defectors
are eventually removed from the population and replaced by
cooperators. As discussed in Sec. III A, the fixation probability
φC

j is necessary to establish when selection favors cooperation
replacing defection [13]. In the framework of the above
birth-death process (4), this probability obeys the backward
master equation [2,14,18]

φC
j = T −

j φC
j−1 + T +

j φC
j+1 + [1 − T −

j − T +
j ]φC

j , (5)

with absorbing boundaries φC
0 = 0 and φC

N−� = 1. The formal
solution of Eq. (5) reads [2,14,18]

φC
j = 1 + ∑j−1

n=1

∏n
m=1 (T −

j /T +
j )

1 + ∑N−�−1
n=1

∏n
m=1 (T −

j /T +
j )

. (6)

Since the above birth-death process is a one-dimensional
Markov chain, other quantities like the mean fixation times
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(MFTs) can, in principle, be obtained exactly, but yield
unwieldy expressions [14,18]. When the population size N is
large, it is often much more useful to describe the fixation prop-
erties in terms of the diffusion approximation obtained in the
continuum limit (N � 1) by a second-order size expansion
of the master equation, resulting in a Fokker-Planck equation
[12,15,17,18]. By denoting x ≡ j/N and y ≡ k/N the initial
density of cooperators and defectors, respectively; and with
z ≡ �/N being the fraction of facilitators in the population,
the (backward) Fokker-Planck equation (FPE) associated with
Eq. (5) reads [17,18]

Gback(x)φC(x) = 0, (7)

where φC(x) ≡ φC
j/N and

Gback(x) ≡ [T +(x) − T −(x)]
d

dx

+ 1

2N
[T +(x) + T −(x)]

d2

dx2
, (8)

with T ±(x) ≡ T ±
j/N and, as usual, the density x changes by

±δ = ±N−1 at each cooperator-defector interaction. In the
realm of the Fokker-Planck equation, the time scale is such
that the time step is δ = N−1. The formulation in terms of the
FPE allows a neat connection with the mean field treatment
of the dynamics. In fact, when N → ∞ and all demographic
fluctuations are negligible, the time variation of the density of
cooperators is given by the drift term of Eq. (8) [17], that is,

dx(t)

dt
= T +(x) − T −(x)

= x(1 − z − x)[�+(fC,fD) − �−(fC,fD)]. (9)

As for the classic PD, this rate equation admits two
absorbing fixed points, x = 0 (no cooperators) and x =
1 − z (no defectors), but possesses no interior fixed point
since �+[fC(x),fD(x)] �= �−[fC(x),fD(x)] for the Fermi and
Moran processes. As discussed in what follows, the stability
of these fixed points depends on the difference between the
cost-to-benefit ratio r and the fraction z of facilitators.

III. DYNAMICS WITH THE FERMI PROCESS

The stochastic dynamics of evolutionary games is often
conveniently modeled in terms of the so-called Fermi process
(FP); see, for example, [19]. In the FP, at each time step two
individuals are randomly drawn from the entire population
and one of them reproduces at the expense of the other, that
is replaced by the newborn offspring. This happens with a
probability proportional to the difference between the fitness
of the interacting individuals and given by the Fermi function
from statistical physics. Since only the CD pairs interact,
the dynamics with the FP is described by the birth-death
process defined by Eq. (4) and �± = [1 + e∓(fC−fD)]−1 =
[1 + e∓(πC−πD)]−1 [19]. With these expressions of �±, one
checks that �+(fC,fD) �= �−(fC,fD) [since fC �= fD; see
Eqs. (3) and (24)], which confirms the absence of an interior
fixed point in the mean field (continuum) limit.

A. Fixation probability

With Eq. (3), the transition rates (4) for the Fermi process
read

T ±
j = j (N − � − j )

N (N − 1)

1

1 + exp(±vN )
, (10)

with

vN ≡ fD − fC = b

[
r −

(
z − 1

N

) (
1 + 1

N − 1

)]
. (11)

This quantity measures the selection pressure [22]. Clearly,
−bz < vN < b(1 − z) and |vN | � 1. In the continuum limit
N � 1, the densities x = j/N,z = �/N , and vN → v ≡
b(r − z) are treated as continuous quantities and the absence
of self-interaction is ignored, yielding the transition rates (10)

T ±(x) = x(1 − z − x)

1 + e±v
. (12)

The rate equation corresponding to the mean field dynamics
with the Fermi process is obtained by using Eq. (12) in Eq. (9)
and is characterized by a single stable (absorbing) fixed point
corresponding to a stationary density

x∗ =
{
xC = 1 − z (no defectors) if v < 0

xD = 0 (no cooperators) if v > 0
(13)

of cooperators. This means that cooperation prevails (x∗ = xC,
no defectors) in an infinitely large population comprising a
fraction z of facilitators higher than the cost-to-benefit ratio
r , that is, when v < 0. However, as in the traditional PD,
defection wins (x∗ = xD, no cooperators) if z is less than r

(v > 0). In other words, for cooperation to prevail (x∗ = xC) at
mean field level, it is necessary that the density of facilitators
compensates the cost of cooperation relative to its benefit.

When the population size is finite, demographic fluctuations
are important and the evolution is thus no longer aptly
described by the mean field dynamics (9). In particular,
the mean field results (13) do not account for the nonzero
probability that a single cooperator can invade and replace
a (finite) population of defectors. Here, to investigate how
the above mean field picture Eqs. (9) and (13) is altered by
fluctuations arising in a finite population, we compute the
probability φC

j that defection is eventually replaced by coop-
eration in a population comprising initially j cooperators and
N − � − j defectors. Since T +

j /T −
j = evN , this probability

can be obtained explicitly using Eq. (6) and, when vN �= 0 [22],
one finds

φC
j = ejvN − 1

eN(1−z)vN − 1
, (14)

while fixation probability of defectors is simply given by φD
j ≡

1 − φC
j = (eN(1−z)vN − ejvN )/(eN(1−z)vN − 1). As shown in

Fig. 1, where results of stochastic simulations obtained using
the Gillespie algorithm [23] are reported, the predictions of
Eq. (14) are in excellent agreement with numerical simula-
tions. The expression (14) implies that

φC
j 


{
1 − e−j |vN | if vN < 0
(ejvN − 1)e−N(1−z)vN if vN > 0,

(15)
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FIG. 1. (Color online) Probabilities φC
j and φD

j for various
z = �/N as function of j/(N − �) = x/(1 − z), and evolution with
the Fermi process. Results of stochastic simulations (symbols) for
φC

j are compared with the predictions (curves) of Eq. (14) for
z = 0 (×, dot-dashed), 0.08 (�, solid), and 0.12 (∇, dashed). Sim-
ilarly for φD

j with z = 0 (�, thin dashed), 0.08 (◦, solid gray), and
0.12 (�, thin solid). The other parameters are N = 200,b = 1.0,

c = 0.1 (i.e. r = 0.1). Stochastic simulations for the birth-death
process are defined by Eq. (10) and have been averaged over 2 × 105

samples.

when N |vN | � 1. In particular, the cooperation fixation
probability starting with a single cooperator reads

φC
1 = evN − 1

eN(1−z)vN − 1



{
1 − e−|vN | if vN < 0
(evN − 1)e−N(1−z)vN if vN > 0.

(16)

The findings (14)–(16), summarized in Fig. 1, illustrate how
a small fraction z of cooperation facilitators affects the
fixation probabilities in a large, yet finite, population with
an initial density of cooperators comparable to, or larger
than, the density of defectors: When vN < 0 (z > r), the
fixation probability of cooperators is much higher than that
of defectors, φC

j � φD
j , and the spread of cooperation is thus

efficiently promoted by facilitators. Yet, it is worth noticing
that defectors still have finite probability to fixate even when
z > r (and x � 1 − z), contrary to the mean field prediction
(13). The opposite situation arises when vN > 0 (z < r), as
shown in Fig. 1.

The results (15) and (16) can also be used to assess
the influence of selection on the evolutionary dynamics [2]:
Following the seminal work of Ref. [13], we can establish
when selection favors cooperation (C) invading and replacing
defection (D). Selection is said to favor the replacement of
D by C if the fixation probability φC

1 of a single cooperator
in a population of N − � − 1 defectors is greater than in the
absence of selection pressure (vN = 0) when φC

1,vN =0 = (N −
�)−1 [22]. With Eq. (16), this yields the condition 1 − e−|vN | >

[N (1 − z)]−1 that is generally satisfied in large populations
under nonvanishing selection pressure. An interesting result
arises when the selection intensity is weak and the population
size is large, that is, |vN | → |v| � 1 and N � 1. In such a
limit, φC

1 
 |v| when z > r (see Fig. 2 where |v| = 0.02),

0.005 0.020
0

0.05

0.10

0.15

j/N

φ
C j

FIG. 2. (Color online) Probability φC
j as function of j/N when

the initial number of cooperators is j = 1 − 10 with N = 500, and
j = 1 − 5 with N = 200. The dynamics is implemented according
to the Fermi process with Eq. (10). The results of stochastic
simulations (symbols, averaged over 2 × 105 samples) are com-
pared with Eq. (14) (curves/lines). Parameters are b = 1.0,c =
0.1 (i.e., r = 0.1), and (N,z) = (500,0.12) (◦), (200,0.08) (�).
Here, φC

1 
 0.0182 (◦) and φC
1 
 2.88 × 10−4 (�); see text. The

dashed/dotted/thin lines correspond to φC
j 
 jvN/(eN(1−z)vN − 1)

with (N,z) = (500,0.12) (dashed) and φC
j,vN =0 = j/(N − �) for

(N,�) = (200,16) (thin) and (N,�) = (500,60) (dashed-dotted).

and selection favors cooperation replacing defection provided
that b(z − r) > [N (1 − z)]−1. Moreover, selection favors C
invading D when fC > fD [13]. With Eq. (3), this yields the
condition z − r > (1 − r)/N . Therefore, under weak selection
(|v| � 1 and N � 1), selection favors the invasion and
replacement of D by C if z − r > 1

N
max(1 − r, 1

b(1−z) ). Since

0 < b � 1, one has 1 − r � [b(1 − z)]−1 and cooperation
invading and replacing defection is favored by selection
provided that

b(z − r)(1 − z) > N−1. (17)

One can also use the results (16) to determine the circum-
stances under which defection is evolutionary stable. In fact
according to [13], and as natural extension of the concept
of evolutionary stability for infinitely large populations and
deterministic evolutionary dynamics [2], D is evolutionary
stable in a finite population if (i) selection opposes C invading
D, implying fC < fD [i.e., z − r < (1 − r)/N], and if (ii)
selection opposes C replacing D [i.e., φC

1 < (N − �)−1]. The
condition (ii) is clearly always satisfied when |vN | is finite,
and in this case defection is evolutionary stable if z − r <

(1 − r)/N . In the weak selection limit where |v| � 1 (with
N � 1), the condition (ii) yields z − r < [bN (1 − z)]−1.
Hence, defection is evolutionary stable under weak selec-
tion in a large population if z − r < 1

N
min(1 − r, 1

b(1 − z) ) =
(1 − r)/N . Since r < 1, this clearly means that defection is
evolutionary stable and is the dominating strategy when z < r .
It is worth noticing that in the limit of an infinite population,
N → ∞, one recovers the mean field results (13): Cooperation
prevails only if z > r , according to Eq. (17), and defection
dominates otherwise.
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The meaning of the results (15)–(17) is illustrated in Fig. 2
where φC

j has been computed in populations comprising
a small initial number of cooperators (j = 1, . . . ,10) and
excellent agreement with Eqs. (15) and (16) has been found.
In Fig. 2, |vN | � 1 and we notice that φC

j increases linearly
in x = j/N � 1, with a slope steeper than (1 − z)−1 when
z > r and selection favors cooperation replacing defection.
The slope is less than (1 − z)−1 when z < r and the fixation
of cooperation is opposed by selection. To further appreciate
the implications of Eqs. (14)–(17), it is useful to compare
these results with those obtained in the absence of facilitators.
Putting z = 0 in Eqs. (14)–(17), one recovers the results for
the classic PD when cooperation fixation probability vanishes
exponentially with the population size N : φC

j,z=0 ∼ e−(N−j )c

and φC
1,z=0 ∼ e−Nc [2,14] (see Fig. 1).

Our findings therefore demonstrate that facilitators greatly
influence the probability that cooperation prevails and are
summarized in Fig. 1. As illustrated in that figure, the influence
of facilitators crucially depends on the difference between their
density z and the cost-to-benefit ratio r:

(i) When vN < 0, the fixation of cooperators is likely (but
not certain) even when they are initially in minority, that is,
even when initially x = j/N < 1/2.

(ii) When vN < 0 and N |vN | � 1, the fixation probability
of a single cooperator is generally higher than in the absence of
selection pressure (vN = 0). In this case, with z > r , selection
favors cooperation invading and replacing defection; see
Eq. (16) and Figs. 1 and 2. Furthermore, under weak selection
pressure and in a large population (|v| � 1 and N � 1), the
fixation probability of a single cooperator is independent of N ,
φC

1 
 z − r . In this case invasion and replacement of defection
by cooperation is favored by selection if Eq. (17) is satisfied.

(iii) When vN > 0, selection always opposes cooperation
replacing defection. In this case, while defection is evolu-
tionary stable and is the dominating strategy when z < r , the
cooperation fixation probability is exponentially enhanced by a
small fraction of facilitators. Yet, cooperation is likely to fixate
only if defectors are initially outnumbered by cooperators, that
is, if j � k, as illustrated in Fig. 1.

B. Mean fixation times

Another quantity of great interest to unveil the influence
of facilitators in the evolutionary dynamics of the PD is
the (unconditional) mean fixation time. This quantity gives
the average time necessary to reach one of the absorbing
boundaries, that is, a population composition with either 0
or N − � cooperators. The unconditional mean fixation time
(MFT), τj , for a system comprising initially j cooperators
obeys the following backward master equation [2,14,18]
(where the time step is δ = N−1):

τj = δ + T −
j τj−1 + T +

j τj+1 + [1 − T −
j − T +

j ]τj , (18)

with boundary conditions τ0 = τN−� = 0. In principle, this
equation can be solved exactly but the final result is cum-
bersome and not enlightening. Here, in the continuum limit
N � 1, we work with the continuous quantities x = j/N,

z = �/N and v = b(r − z), and adopt the approach of diffusion
theory [12,17]. The diffusion approximation is known to
be particularly suited to analyze the dynamics under weak

selection, which here corresponds to the regime where
|v| � 1 [2,13,15]. Exact methods (when available) or other
approximations [14], for example, the WKB approach [20],
are particularly useful to deal with the case of strong selection
intensity and/or with phenomena like metastability. In the
realm of the diffusion theory, the transition rates of the FP are
given by Eq. (12) and the fixation probability of cooperation
is obtained by solving Eq. (8), which yields

φC(x) = eNvx − 1

eN(1−z)v − 1
,

while for defection the probability is φD(x) = 1 − φC(x).
Similarly, the unconditional MFT is obtained by solving

the backward FPE Gback(x)τ (x) = −1 [15,17], that is,

x(1 − z − x)

[
tanh

(
v

2

)
d

dx
− 1

2N

d2

dx2

]
τ (x) = 1, (19)

with the absorbing boundary conditions τ (0) = τ (1 − z) = 0.
When the drift and diffusive terms are of the same order (i.e.,
when |v| ∼ N−1 � 1), it follows from Eq. (19) that the MFT
scales linearly with N :

τ (x) = NFv(x). (20)

The scaling function can be obtained explicitly by solving
Eq. (19) using standard methods; see, for example, [17]. For
instance, when the initial density of cooperators and defectors
is the same, x = y = (1 − z)/2 and |v| ∼ N−1 � 1, one finds

Fv

(
1 − z

2

)
= e−(2+z)q

q(1 − z)(1 + e−q(1−z))

× [e(2+z)q{γE − ln 2 − Ei[−(1 − z)q]}
+ e(1+2z)q{Ei[(1 − z)q] − γE − ln (2q)}
+ e3zq{Ei[(1 − z)q] − Ei[2(1 − z)q]}
+ e3q{Ei[−2(1 − z)q] − Ei[−(1 − z)q]}
+ e(1+z)q (eq − ezq) ln (1 − z)], (21)

where q ≡ N | tanh (v/2)| 
 N |v|/2, Ei(x) ≡ ∫ x

−∞
eu

u
du de-

notes the usual exponential integral, and γE = 0.5772 . . . is
the Euler-Mascheroni constant. While the expression of Fv is
usually cumbersome, some useful properties can be directly
inferred from Eq. (19). In fact, as Eq. (19) is invariant under the
transformation (x,r) → (1 − z − x,2z − r), one has Fv(x) =
F−v(1 − z − x) when z is kept fixed. The unconditional MFT
in the Fermi process is therefore characterized by the symmetry

τ (x)|r = τ (1 − z − x)|r→r ′=2z−r , (22)

where on the right-hand side r is replaced by r ′ = 2z − r

and v is transformed into −v, with z kept fixed. Further-
more, when r = c/b is kept fixed but z varies, Eq. (19)
is invariant under the transformation z → z′ = 2r − z and
x → 1 − z′ − x, while the boundary conditions become τ (1 −
z′) = 0 and τ (z − z′) = τ (−2v/b) = 0. In the weak selection
regime |v|/b = |z − r| � 1, the second boundary condition
can be approximated by τ (z − z′) 
 τ (0) = 0, which allows a
mapping onto (19) that yields

τ (x)|z 
 τ (1 − z′ − x)|z→z′=2r−z, (23)

with r = c/b fixed. The comparison between the solution of
Eq. (19) and the results of stochastic simulations [for the FP

011134-5



MAURO MOBILIA PHYSICAL REVIEW E 86, 011134 (2012)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1.0

1.2

j/(N- )

M
F
T

s/
N

FIG. 3. (Color online) Mean fixation times as function of j/

(N − �) = x/(1 − z) for the evolution with the Fermi process. Results
of stochastic simulations (symbols) for τ are compared with the
solution (curves) of Eq. (19) for z = 0 (�),0.08 (◦, solid black),
and 0.12 (×, solid gray). We also report the numerical results for
the conditional MFTs τC for z = 0.12 (�) and τD with z = �/N =
0(∇),0.08(�). The other parameters are N = 500,b = 1.0,c = 0.1
(i.e. r = 0.1). Stochastic simulations are for the FP with rates (10)
and have been averaged over 2 × 105 samples.

with rates (10)] reported in Fig. 3 shows that the diffusion
approximation aptly captures the functional dependence of τ ,
even though some deviations (of about 10%) can be noticed.
These deviations stem from the self-interaction terms that are
excluded from Eq. (10) but not in the continuum limit (12)
[e.g., in Fig. 3 one has vN 
 −0.0182 and v = −0.02 when
z = 0.12, and vN 
 0.0218 and v = 0.02 for z = 0.08]. More
importantly, the scaling (20) and the relationship (23) are
confirmed by the numerical simulations of Fig. 3. In fact,
in Fig. 3 we notice that τ (x) is a humped function with
a maximum well separated from the absorbing boundaries
and located at x/(1 − z) < 1/2 when z > r and, while τ

scales linearly with N , the presence of facilitators increases
the unconditional MFT and its maximum value at the
hump.

In addition to the unconditional MFT, it is also relevant to
consider the mean time to specifically reach one of the absorb-
ing boundaries. Hence, the conditional mean fixation times
τC(x) and τD(x) respectively give the average time to reach
the absorbing boundaries x = 1 − z and x = 0 [14,20]. As for
the unconditional MFT, these quantities can be obtained from a
backward FPE in the realm of the diffusion approximation. In
fact, τC(x) obeys Gback(x)[φC(x)τC(x)] = −φC(x), with the
absorbing boundaries φC(1 − z)τC(1 − z) = φC(0)τC(0) = 0
[12]. Since φD(x) = 1 − φC(x) and, from Eq. (14), φD(x) =
φC[1 − (2r − z) − x], the conditional MFTs in the regime
|v|/b � 1 (weak selection) are related by the relationship
τC(1 + z − 2r − x)|z 
 τD(x)|z→z′=2r−z where r is kept fixed,
as illustrated in Fig. 3. Furthermore, one has φD(x) 
 1 when
x → 0 and v > 0 (z < r), while φC(x) 
 1 when x → 1 and
v < 0 (z > r). This implies that

τ (x) 

{

τD(x) when v > 0 and x → 0
τC(x) when v < 0 and x → 1.

As shown in Fig. 3, τC(x) decreases while τD(x) increases
monotonically with x/(1 − z).

The influence of facilitators on the unconditional and
conditional MFTs is summarized in Fig. 3. We have found
that in the PD with cooperation facilitators, all conditional
and unconditional MFTs scale linearly with the population
size N when |v| ∼ N−1 (weak selection). While a similar
scaling is also obtained in the absence of facilitators, the
MFTs at a fixed value x/(1 − z) are found to be signifi-
cantly increased by the presence of facilitators. Hence, the
presence of cooperation facilitators has the quantitative effect
to prolong the coexistence and the competition between
cooperators and defectors before an absorbing state is reached;
see Fig. 3.

IV. DYNAMICS WITH THE FITNESS-DEPENDENT
MORAN PROCESS

The stochastic dynamics of evolutionary games is often
implemented in terms of the Moran process (see, e.g., [2,13])
that was originally introduced in population genetics [12,21].
In its essence, the Moran model is a birth-death process
where one randomly picked individual produces an offspring
proportionally to its fitness relative to the population average
fitness. The resulting offspring then replaces another individual
that is randomly picked to be removed from the population,
whose size is therefore conserved. Here, as the interactions
are between cooperators and defectors, the Moran process is
implemented with �+ = fC/f̄ and �− = fD/f̄ in Eq. (4).
Since fC �= fD when v �= 0 [see Eq. (24) and [22]], one
verifies that �+(fC,fD) �= �−(fC,fD), implying the absence
of an interior fixed point in the mean field (continuum)
limit. The Moran process is usually investigated when the
selection intensity is weak, both for technical convenience
(the mathematical treatment simplifies greatly) and for the
biological relevance of such a limit [2,12,13]. In this section,
the stochastic dynamics with the Moran process is investigated
in the weak selection limit, where |v| = b|r − z| � 1, using
the diffusion approximation.

A. Fixation probability

In the continuum limit, the fitnesses (3) become

fC(x) = 1 − v + bx and fD(x) = 1 + bx, (24)

with f̄ (x) = 1 − z + b(1 − r)x. The transition rates for the
Moran process thus read

T +/−(x) = x(1 − z − x)
fC/D(x)

f̄ (x)
. (25)

With Eqs. (24) and (25), the mean field dynamics is described
by the rate equation (9), whose properties are similar to
those discussed for the Fermi process. In particular, the rate
equation (9) for the Moran process is also characterized by a
single stable (absorbing) fixed point x∗ = xC (no defectors) if
v < 0 and x∗ = xD (no cooperators) if v > 0 [see (13)].

To understand how the combined effects of nonlinear selec-
tion and demographic noise alter the mean field description, we
now compute the cooperation fixation probability in the realm
of the diffusion approximation. In such a setting, the fixation
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probability φC(x) is given by the FPE [Eqs. (7) and (8)] with
the boundary conditions φC(0) = 0 and φC(1 − z) = 1. The
solution of Eq. (7) is given by [17]

φC(x) =
∫ x

0 du χ (u)∫ 1−z

0 du χ (u)
, (26)

where, with Eqs. (24) and (25),

χ (u) = exp

(
−2N

∫ u

0
ds

{
T +(s) − T −(s)

T +(s) + T −(s)

})

= exp

(
2Nv

∫ u

0

ds

2bs + 2 − v

)
. (27)

By introducing Eq. (27) into Eq. (26) and performing the
integrals, one obtains

φC(x) =
(
1 + 2b

2−v
x
)1+Nv/b − 1[

1 + 2b
2−v

(1 − z)
]1+Nv/b − 1

. (28)

As shown in Fig. 4, this result is in excellent agreement
with numerical simulations and exhibits the same qualitative
features obtained for the Fermi process (compare with Fig. 1).
The finding (28) implies that in the weak selection limit where
|v| � 1 and N |v| � 1, one has

φC(x) 

{

1 − (1 + bx)−N(z−r) if z > r(
1+b(x− z−r

2 )
1+b(1− z+r

2 )

)N(r−z)
if r > z.

(29)

In particular, the probability that cooperation fixates start-
ing with a single cooperator, when z > r is given by
limNx→1 φC(x) = 1 − e−|v| 
 |v|. We therefore recover the
result derived from Eq. (16) for the Fermi process. Clearly,
this implies that under weak selection the fixation of a single
cooperator is favored by selection if the nontrivial condition
(17) is satisfied. Again, it is instructive to compare Eqs. (28)
and (29) with the result obtained in the absence of facilitators,
when φC(x)|z=0 
 ( 1+b(x−r/2)

1+b(1−r/2) )Nr decays to zero exponentially
with N . The influence of the facilitators on the fixation
probabilities for the Moran process is summarized in Fig. 4,
where the same features as in Fig. 1 are recognized and
summarized as follows:

(i) The fixation of cooperators is likely (but not certain)
when the density of facilitators is higher than the cost-to-
benefit ratio (z > r).

(ii) When |v| � 1 and N |v| � 1, selection favors cooper-
ation invading and replacing defection if Eq. (17) is satisfied.
In particular, the fixation probability of a single cooperator is
limNx→1 φC(x) 
 |v|.

(iii) When z < r , selection opposes cooperation replacing
defection but the fixation probability of cooperators is expo-
nentially enhanced by the presence of facilitators.

B. Mean fixation times

In the realm of the diffusion approximation, the un-
conditional mean fixation time τ obeys the backward FPE
Gback(x)τ (x) = −1, with the absorbing boundary conditions
τ (0) = τ (1 − z) = 0. In the weak selection regime c < b � 1
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FIG. 4. (Color online) Probabilities φC(x) and φD(x) for various
z as functions of x/(1 − z), and the dynamics with the Moran
process (25). Results of stochastic simulations (averaged over 2 × 105

samples) are compared with Eq. (28) for z = 0 (×, dot-dashed),
0.08 (�, solid), and 0.12 (∇, dashed). Similarly for φD(x) with
z = 0 (�, thin dashed), 0.08 (◦, solid gray), and 0.12 (�, thin solid).
The other parameters are N = 200,b = 1.0, and c = 0.1 (|v| = 0.02).

and continuum limit, with Eq. (25), one has

T +(x) − T −(x) 
 − v

1 − z
x(1 − z − x),

T +(x) + T −(x) 
 2

1 − z
x(1 − z − x).

With these expression, the backward FPE for the unconditional
MFT reads

x(1 − z − x)

1 − z

[
−v

d

dx
+ 1

N

d2

dx2

]
τ (x) = −1, (30)

with τ (0) = τ (1 − z) = 0. When |v|,b � 1, Eq. (30) coin-
cides with the FPE (19) for the Fermi process with an effective
population size N (1 − z)/2. The solution to Eq. (30) can
therefore readily be obtained from Eqs. (19) and (20). In
particular, we infer from Eq. (20) that the MFT scales linearly
with N (1 − z)/2 when |v| ∼ N−1, yielding

τ (x) = N (1 − z)

2
Fv(x), (31)

where Fv(x) is the scaling function (20) obtained for
the Fermi process. This function still satisfies the sym-
metry Fv(x) = F−v(1 − z − x), yielding τ (x)|r = τ (1 − z −
x)|r→r ′=2z−r when z is kept fixed, as in the Fermi process.

In the same manner, from Eqs. (31) and (23), we infer

τ (x) 

(

1 − z

1 + z − 2r

)
τ (1 − z′ − x)|z→z′=2r−z (32)

when r = c/b is kept fixed and z is transformed into z′ =
2r − z. The solution of Eq. (30), as well as the relationships
Eqs. (31) and (32), are in excellent agreement with the results
of stochastic simulations reported in Fig. 5. As for the FP, we
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FIG. 5. (Color online) Rescaled mean fixation times as func-
tion of x/(1 − z) for the evolution with the Moran process (12).
Results of stochastic simulations for τ are compared with (30)
for z = 0 (�, dashed), 0.16 (◦, solid black curve), and 0.24 (×,

solid gray). Numerical results for the conditional MFTs τC

with z = 0 (∗), 0.16 (�), and 0.24 (+) and for τD with z = 0 (∇),
0.16 (�), and 0.24 (•). The parameters are N = 200, b = 0.25, and
c = 0.05 (r = 0.2 and |v| = 0.04). Stochastic simulations have been
averaged over 2 × 105 samples.

can also consider the conditional mean fixation times and it
follows from Eqs. (31) and (23) that for the Moran process
the conditional MFTs are related by ( 1+z−2r

1−z
)τC(1 + z − 2r −

x)|z 
 τD(x)|z→z′=2r−z where r is kept fixed, in agreement
with the results of Fig. 5.

The influence of facilitators on the MFTs with the Moran
process is summarized in Fig. 5, where the MFTs rescaled by a
factor [N (1 − z)/2]−1 reproduce the same qualitative behavior
obtained for the Fermi process (compare with Fig. 3) and τ (x)
is a humped function with a pronounced maximum. Again,
all MFTs scale linearly with N (in the weak selection limit).
Yet, the comparison with the results for z = 0 reveals that at a
fixed value of x/(1 − z), the presence of facilitators increases
the MFTs; see Fig. 5. Also, we notice that the monotonic
dependence of τC and τD on x is essentially independent of
the sign of v �= 0 (in Fig. 5, v = ±0.04 and v = 0).

V. SUMMARY AND CONCLUSION

In this work, we have proposed and investigated an alterna-
tive scenario leading to the spread of cooperation in social
dilemmas. We have considered the evolutionary dynamics

of the prisoner’s dilemma (PD) game in the presence of a
small number of cooperation facilitators. These individuals
participate in the dynamics only by enhancing the fitness of
cooperators. The influence of facilitators on the evolutionary
dynamics has been characterized by computing the model’s
fixation properties in a finite population of size N . Here,
fixation occurs either in the state with only defectors (as in
the classic PD) or in the state where the entire population is
composed of cooperators and facilitators. The dynamics has
been implemented with the Fermi and Moran processes and the
same qualitative results have been found, which demonstrates
the robustness of our findings. Our analytical approach,
corroborated by stochastic simulations, is based on an exact
treatment and on the diffusion approximation (Fokker-Planck
equation) of the underlying birth-death process.

Our main results concern the fixation probabilities, whose
properties crucially depend on whether the fraction of fa-
cilitators z is more or less than the game’s cost-to-benefit
ratio r . When z > r , we have shown that facilitators are very
efficient in promoting the spread of cooperators whose fixation
is likely (but not certain, contrary to the mean field predictions)
in a large population with comparable initial densities of
defectors and cooperators. Furthermore, when the selection
intensity is weak and N � 1, we have demonstrated that the
invasion and replacement of defectors by a single cooperator is
favored by facilitators and selection if b(z − r)(1 − z) > N−1

(where 0 < b � 1 is the cooperation payoff benefit). When
z < r , defection is evolutionary stable and the dominating
strategy. In this case, while cooperation is unlikely to fixate, the
cooperators fixation probability is still exponentially enhanced
by the presence of facilitators. We have also studied the
(unconditional and conditional) mean fixation times in the
weak selection limit and found that these quantities grow
linearly with the population size. While a similar scaling is also
obtained in the absence of facilitators, their presence has the
effect of significantly increasing all the mean fixation times and
hence prolonging the coexistence of cooperators and defectors.

In conclusion, this work demonstrates that the presence
of a small number of cooperation facilitators can effectively
enhance the spread of cooperation in a simple model of social
dilemmas and prolong the coexistence of competing species.
The influence of facilitators is particularly drastic when their
abundance exceeds the game’s cost-to-benefit ratio, in which
case cooperation is generally the strategy favored by selection
in large populations. These findings pave the way to further
investigations of the influence of facilitators in other social
dilemmas, for example, with mixed strategies and/or in spatial
settings.
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Rep. 446, 97 (2007); A. Traulsen and C. Hauert, in Reviews of
Nonlinear Dynamics and Complexity, edited by H.-G. Shuster,
Vol. 2 (Wiley-VCH, New York, 2010).

[3] R. Axelrod and W. D. Hamilton, Science 211, 1390 (1981);
R. Axelrod, The Evolution of Cooperation (Basic Books,
New York, 1984).

011134-8

http://dx.doi.org/10.1126/science.309.5731.90
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1126/science.7466396


STOCHASTIC DYNAMICS OF THE PRISONER’S DILEMMA . . . PHYSICAL REVIEW E 86, 011134 (2012)

[4] P. E. Turner and L. Chao, Nature (London) 398, 441 (1999);
J. Gore, H. Youk, and A. van Oudenaarden, ibid. 459, 253 (2009).

[5] D. Semmann, H. J. Krambeck, and M. Milinski, Nature (London)
425, 390 (2003); A. Traulsen, D. Semmann, R. D. Sommerfeld,
H. J. Krambeck, and M. Milinski, Proc. Natl. Acad. Sci. USA
107, 2962 (2010).

[6] M. Doebeli and C. Hauert, Ecol. Lett. 8, 748 (2005); M. A.
Nowak, Science 314, 1560 (2006).

[7] J. A. Fletcher and M. Zwick, J. Theor. Biol. 228, 303
(2004); W. D. Hamilton, ibid. 7, 1 (1964); 7, 17 (1964);
D. S. Wilson, Proc. Natl. Acad. Sci. USA 72, 143 (1975);
A. Traulsen and M. A. Nowak, ibid. 103, 10952 (2006).

[8] R. L. Trivers, Quart. Rev. Biol. 46, 35 (1971); M. A. Nowak
and K. Sigmund, Nature (London) 364, 56 (1993); L. A. Imhof,
D. Fudenberg, and M. A. Nowak, Proc. Natl. Acad. Sci. USA
102, 10797 (2005); M. A. Nowak and K. Sigmund, Nature
(London) 437, 1291 (2005); L. A. Imhof, D. Fudenberg, and
M. A. Nowak, J. Theor. Biol. 247, 574 (2007); J. M. Pacheco,
A. Traulsen, H. Ohtsuki, and M. A. Nowak, ibid. 250, 723
(2008); A. J. Bladon, T. Galla, and A. J. McKane, Phys. Rev. E
81, 066122 (2010).

[9] M. A. Nowak and K. Sigmund, Nature (London) 393, 573
(1998); R. Ferrière, ibid. 393, 517 (1998); O. Leimar and
P. Hammerstein, Proc. R. Soc. London B 268, 745 (2001);
K. Panchanathan and R. Boyd, J. Theor. Biol. 224, 115 (2003);
H. Ohtsuki and Y. Iwasa, ibid. 231, 107 (2004).

[10] M. A. Nowak and R. M. May, Nature (London) 359, 826 (1992);
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