This is a repository copy of Molecular genetic differentiation in earthworms inhabiting a heterogeneous Pb-polluted landscape.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/75005/

Version: Published Version

Article:

https://doi.org/10.1016/j.envpol.2009.09.021

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Molecular genetic differentiation in earthworms inhabiting a heterogeneous Pb-polluted landscape

J. Andre¹, R.A. King¹, S.R. Stürzenbaum¹, P. Kille¹, M.E. Hodson², A.J. Morgan¹

¹Cardiff School of Biosciences, Cardiff University, BIOSI 1, Museum Avenue, Cardiff CF10 3TL, UK
²Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6DW, UK

Landslapes punctuated by Pb-polluted islands have engendered local genetic differentiation in resident earthworms.

1. Introduction

Sites contaminated to different degrees with metals and metalloids are globally widespread, from geogenic deposits such as serpentinite soils to anthropogenically modified soils associated with mining, various industries, and agricultural practices. Abandoned mine sites typically display conspicuous spatial heterogeneities, with geological features combining with diverse anthropogenic inputs to produce a mosaic of physicochemically contrasting ecological 'islands' to which constituents of the local biota have evidently, and perhaps variously, adapted. For example, the Cwmystwyth Valley, Wales (UK), is a region of base-poor upland grassland containing a disused Pb-mine whose shallow acidic soil is punctuated by more-or-less discrete calcareous micro-habitats around derelict buildings. Galena Pb-mine whose shallow acidic soil is punctuated by more-or-less discrete calcareous micro-habitats around derelict buildings was used to study the spatial pattern of genetic diversity in Lumbricus rubellus. Two distinct genetic lineages ('A' and 'B'), differentiated at both the mitochondrial (mtDNA COI) and nuclear level (AFLPs) were revealed with a mean inter-lineage mtDNA sequence divergence of approximately 13%, indicative of a cryptic species complex. AFLP analysis indicates that lineage A individuals within one central 'ecological island' site are uniquely clustered, with little genetic overlap with lineage A individuals at the two peripheral sites. FTIR microspectroscopy of Pb-sequestering chloragocytes revealed different phosphate profiles in residents of adjacent acidic and calcareous islands. Bioinformatic analysis reveals over-representation of Ca pathway genes in EST libraries. Subsequent sequencing of a Ca-transport gene, SERCA, revealed mutations in the protein's cytosolic domain. We recommend the mandatory genotyping of all individuals prior to field-based ecotoxicological assays, particularly those using discriminating genomic technologies.

© 2009 Elsevier Ltd. All rights reserved.
significant differences in the responses to certain inorganic and organic environmental toxicants of cryptic (sibling) species belonging to a number of aquatic taxa (Sturmbauer et al., 1999; Rocha-Olivares et al., 2004; Bach et al., 2005; Palmqvist and Forbes, 2008). L. rubellus has recently been exploited as a sentinel organism in a number of ecotoxicogenomic studies (Bundy et al., 2008; Owen et al., 2008; LaCourse et al., 2009; Sturzenbaum et al., 2009), but each of these studies was performed before the extent and possible functional implications of the high genetic diversity within the ‘species’ (King et al., 2008) was fully appreciated. The first aim of the present study, therefore, was to use mitochondrial (mt-DNA) and Amplified Fragment Length Polymorphism (AFLP) markers to genotype L. rubellus at four discrete and geographically contrasting sub-sites along a transect across the Cwmystwyth Mine following prior in-situ spatial mapping of surface soil Pb concentrations with a combination of portable X-ray fluorescence spectroscopy (XRF) and GPS localization. The objectives were to determine: (i) whether both L. rubellus genetic lineages identified by King et al. (2008) are present in the locality; (ii) whether the distribution patterns of the two lineages, if present, could be related to the soil composition of ecological islands across the site; and (iii) whether or not within-lineage genetic diversity has been locally eroded (van Straalen and Timmermans, 2002) by chemical stressors. Although a recent publication (Langdon et al., 2009) based on the acute toxicity testing of laboratory-reared offspring indicated that a population of L. rubellus inhabiting a field soil heavily contaminated with As has evolved metalloid resistance, it is important to emphasise that the present phylogeographic study was motivated by the need to establish the extent and distribution of genetic diversity in a highly heterogeneous landscape. An earlier attempt to use laboratory-bred offspring from the Cwmystwyth Mine to reveal evidence of heritable Pb resistance proved inconclusive (Aziz et al., 1999) but this is not to say that L. rubellus at the site is not spatially differentiated into more-or-less distinct genotype clusters. Whilst evolution is considered to be an almost inevitable consequence of stress, the means by which adaptation is achieved may, in general, be deemed to be either facultative or constitutive (Bradshaw and Hardwick, 1989). For instance, the phenotypic plasticity that is usually favoured in heterogeneous or variable environments is itself genetically determined (Windig et al., 2004). On the other hand, when selection pressure is heavy and relatively constant over several generations, it is probable that an organism will evolve a fixed resistance mechanism (Bradshaw and Hardwick, 1989). In this study we did not explicitly seek to resolve whether Cwmystwyth Mine worms are facultatively or constitutively adapted to local stress challenges; rather, we were engaged in determining the range of genetic variability or amplitude upon which stressors have impinged.

The detrimental effects of Pb exposure arise from its ability to mimic the trafficking and metabolism of essential cations, notably Ca (Clarkson, 1993; Warren et al., 1998). Intracellular interactions between Pb and Ca are well documented, with non-sequestered Pb metal ions shown to interact and associate with proteins active in the calcium signalling pathway. This shared chemical affinity between Pb and Ca lead us to hypothesise that the network of mechanisms evolved by all living cells to regulate potentially lethal free Ca²⁺ levels are somehow implicated in the handling of its non-essential cationic analogue. The main molecular mechanisms underlying metal tolerance in invertebrates entails either metal efflux pumps (Callaghan and Denny, 2002) or sequestration by one of three classes of thiol-rich peptides, namely glutathione, phytochelatin and metallothionein (Vatamaniuk et al., 2005; Janssens et al., 2007). However, neither of these generic mechanisms has been found to underpin Pb adaptations in earthworms. Indeed, Pb is sequestered by earthworms within the calcium phosphate-rich matrix of chloragosomes, unique organelles with certain lysosome-like properties that are located in the chloragogenous tissue (Morgan and Morgan, 1989). It is plausible that specific transport molecules reside in the limiting membranes of earthworm chloragosomes that promote both the uptake of O₂-seeking metals such as Pb and Ca and also provide the negatively-charged counter-ion (i.e. phosphate) required for mineralization. Consequently, the second major aim of the present study was to explore provisionally certain candidate molecular mechanisms of Pb management and adaptation in chronically exposed earthworm populations. This was achieved through global transcriptomic analyses, in-situ biochemical fingerprinting by FTIR microspectroscopy of cryo-sectioned chloragogenous tissue from earthworms quench frozen in the field to maintain compositional fidelity, and targeted single locus experiments focused on an important intracellular transmembrane Ca-transporter, SERCA (Bolotina and Csorta, 2005). Thus, the study employed an unprecedented combination of geochemical and molecular-genetic tools to obtain information about population-level genetic differentiation in an ecosystem engineering sentinel organism, and about predicted functionally important structural modifications in a potentially key molecular component underlying Pb/Ca tolerance traits.

2. Materials and methods

2.1. Portable X-ray fluorescence (XRF), pH mapping of the Cwmystwyth site and ICP-OES determination of total soil and body metal concentrations

A portable XRF (NITON Xl2s, Thermo-Scientific Inc, Germany) and GPS system (Garmin, Etrex Venture, UK) were used in order to create a Pb profile of the Cwmystwyth valley, with a total of 97 random measurements taken across the site. At 70 of these sites a soil sample (~50 g, taken from the soil litter and upper layers of the soil) was also collected and the pH recorded. The mapping software SURFER® was used to convert both the metal and pH data sets into a series of 3D rendered surface maps, stacked alongside a base-map of the valley. The Pb concentration of earthworms and soil from each site, C1 (OS grid reference, SN 809749), C2 (SN 801746), C3 (SN 804746), C4 (SN 797743) and R1 (ST 149723), was determined. Several soil samples were randomly collected from each site and pooled. Soil was dried, sieved to ~2 mm through a stainless steel mesh, digested in boiling aqua regia and analysed for Pb by ICP-OES (Arnold et al., 2008). Earthworms (n = 3) were transported back to the laboratory in their native soil and depurated as described in Arnold et al., 2007. Following this depuration period the earthworms were placed individually into Sterilin tubes, stored at ~18°C until digestion, and analysed for Pb by ICP-OES (Landown et al., 2005).

2.2. Mitochondrial (cytochrome oxidase II) and amplified fragment length polymorphism (AFLP) genotyping

L. rubellus earthworms were collected by digging and hand-sorting. The animals were transported back to the laboratory in their native soil and depurated as described in Arnold and Hodson (1997). Four populations, C1(0.54), C2(0.54), C3(0.32) and C4(0.32), were sampled from four locations across the study site. C1 and C4 were located at the periphery of the site, thereby representing on-site references. C2 and C3 are highly contaminated sites with contrasting pH and soil chemistry; C2 is acidic whereas C3 is circumneutral in pH and calcareous in nature. The interaction of soil metal load and pH is important when considering bioavailability, and is reflected in accumulated metal body loads. The number of asterisks denotes the level of contamination as classified by the Kelly index (IRCL 59/83) (Kellyindices, 1980): * contaminated (1000–2000 mg kg⁻¹), ** heavily contaminated (2000–10 000 mg kg⁻¹) and *** unusually heavily contami- nated (>10 000 mg kg⁻¹). Genomic DNA was extracted from all four populations using Azol reagent (Invitrogen Ltd., Paisley, UK). DNA was also isolated from Lumbricus castaneus and Lumbricus eiseni. Forw ard (5′-TACCTCCTACTTATTGCCA) and reverse (5′-GATACCGGTATTIACTTTG) L. rubellus specific cytochrome oxidase II (COII) primers were designed from mitochondrial sequences deposited in Lum- bricBASE (www.earthworms.org). For each PCR reaction ~100 ng DNA template was amplified using 10 pmol/µl forward and reverse primer, 10 mM dNTP mix and 2.5µl Taq DNA polymerase buffer 5 X Mg free Taq PCR amplification buffer and supplemented with MgCl₂ (1.5 mM). The reaction was denatured at 95°C for 10 min and then cycled 35 times at 95°C for 30 s, 30 s at the required primer annealing temperature and 72°C for 1 min. This was followed by a 10 min final extension at 70°C. The ampliplex (469 bp) was resolved by electrophoresis in 1 X TAE buffer at 120 V for approximately 30 min in a Pharmacia GNA-100 tank. Nucleotide acid bands were then visualised on a UV gel documentation system. Prior to sequencing PCR clean-ups were performed using Eco-SAP-IT (Amersham Pharmacia, UK) reagents. Exonuclease I (0.25 µl) and Shrimp Alkaline Phosphatase (0.5 µl) were mixed with
the PCR product (10 µl) and incubated at 37°C for 45 min followed by 80°C for 15 min. DNA was sequenced using ABI PRISM® BigDye v3.1 Terminator Sequencing technology (Applied Biosystems, USA) on the ABI PRISM® 3100 DNA Sequencer run by the Cardiff University Molecular Biology Support Unit. Raw sequence traces were confirmed using Finch TV before being imported into Mega v3.1 (Kumar et al., 2004) for alignment and tree construction. The distance-based neighbour joining (NJ) algorithm (Saitou and Nei, 1987), using p-distances, was used to estimate tree topology and calculate branch lengths. Relationships between phylogenetic haplotypes were determined by maximum parsimony (MP), maximum likelihood (ML) and Bayesian methods using PAUP v3.1 and MRBAYES respectively (Huelsenbeck and Crandall, 1997; Huelsenbeck and Ronquist, 2001). MRMODELTEST v2.2 (Nylander, 2004) and the Akaike Information Criterion (AIC) were used to select the optimum model (HKY + G of sequence evolution that best fitted the data (base frequencies, 0.2595, 0.3286, 0.3065, 0.0054; transition:transversion ratio 0.35050 and Gamma distribution parameter 0.20050). Node support for MP and ML analyses was determined using a non-parametric bootstrap, with 500 and 1000 replicates respectively (Hollmes, 2003). For the analysis 3 × 106 generations were run, with one tree retained every 300th generation and the first 2500 trees discarded as burn-in. Genetic distances were calculated in Mega and median-joining networks were drawn using NETWORK and dnasp4.

AFLP analysis was adapted from Ajmone-Marsan et al. (1997) with approximately 200 ng of genomic DNA extracted from C. purpurea (n = 24), C. australis (n = 30), C. flava (n = 23) and C. polytricha (n = 18) individuals. Pre-selective EcoRI (GAATTCGCT-CGAA by 500 bases for data collection), the modal choice criterion, is calculated in Structure and the true number of populations (K) can be deferred from its maximal value.

The chloragogenous tissue was of different sizes to enable simple identification on an agarose gel following resolution by electrophoresis.

2.4. Fourier-transform infrared spectroscopy

Soil and adult (fully ciliated) L. rubellus earthworms were collected from C. purpurea and C. flava, and the posterior segments immediately excised and quenched-frozen in liquid nitrogen. The frozen tissue was transported to the laboratory under liquid nitrogen and stored at −20°C until required. Tissues were mounted in CryoEmbed and sectioned longitudinally at a nominal thickness of 50 µm in a bright cryostat. Sections were mounted on Kevley slides and air-dried overnight in the cold chamber of the cryostat. Infra-red spectra were collected in transmission mode from station 11.1 at the CLRC Daresbury Synchrotron Radiation Source. The chloragogenous tissue was visually identified and each section imaged and analysed, with five spectra from five different regions of the tissue (i.e. x25 spectra per individual earthworm) collected for each site. Following FTIR, genomic DNA was extracted directly from tissue sections using the QIAGen DNA Micro Kit according to the manufacturer’s instructions (Qiagen Ltd., UK). Buffer ATL (180 µl) was pipetted directly onto the Kevley slide to remove the section, prior to lysis in a microcentrifuge tube at 56°C overnight.

2.5. SERCA

Plasmid preparations of individual LumbriBASE clones (Genbank accession numbers CF416761 and CO048347) were prepared using a Wizard® Plus SV Miniprep kit (Promega Ltd., UK). Preparations were sequenced in their entirety by “walking” along the gene, after each step re-designing a specific reverse primer to complement the other end. The 13 forward primers were designed using the software Primer3 (Rozen and Skaltsky, 2000) and Oligo® (MBI Inc, USA) and sequencing performed as described above. These full-length library sequences were used to design L. rubellus specific SERCA primers in order to amplify the gene transcribed in individuals of each geographical lineage. Reaction were denatured at 95°C for 10 min and then cycled 35 times at 95°C for 30 s, 30 s at the required primer annealing temperature and 72°C for 1 min. This was followed by a 10 min final extension at 72°C. DNA was sequenced as described above by the Cardiff University Molecular Biology Support Unit.

Total RNA was extracted from tail-clips of an adult individual sampled from C. purpurea and C. flava using the Tri-reagent method (Sigma-Aldrich, UK). Complementary DNA (cDNA) was synthesised using the 1st-strand cDNA synthesis kit, reverse transcriptase. Total RNA (7–20 µg) was heated at 65°C for 3 min and combined with anchored oligo d(T)1 (1 µl, 100 nm) and random hexamers (2 µl, 100 nm) and incubated at 70°C for 10 min. A reaction mix of 5X RT buffer (6 µl), 1X DTT (3 µl, 0.1 M) and dNTP mix (1.2 µl, 10 nm) was prepared and added to the RNA mix and incubated at 25°C for 2 min. Supernatant (1 µl, Invitrogen Ltd., Paisley, UK) was added and the reaction incubated at 42°C for 3 h. A series of three PCR reactions were performed and in order to obtain the full-length SERCA sequence of each individual; between sequenced sections of the gene there was a large overlap to ensure the same SERCA isoform was being amplified in each instance. PCRs were performed as described above. Reactions that yielded products <2000 bp were discarded. For these reactions the DNA (~100 ng) template was amplified using 10 µM forward and reverse primer, 25 mm dNTP mix and 1 µl Herculase II Fusion DNA Polymerase buffered with 5X Herculase II PCR reaction buffer (Stratagene Europe, The Netherlands). Each reaction was supplemented with an optimised quantity of MgCl2 (25 mM). The reaction was denatured at 95°C for 10 min and then cycled 35 times at 95°C for 30 s, 30 s at the required primer annealing temperature and 72°C for 1 min. This was followed by a 4 min final extension at 68°C. Protein sequences were aligned using bioinformatic software tool Mega v3.1 (Kumar et al., 2004) and modelled using SWISS-MODEL (http://swissmodel.expasy.org/SWISSMODEL.html), Swiss-PdbViewer and Pymol. A SWISS-MODEL ID number CF416761 was assigned to each sequence. This was followed by DNase I digestion and the migration of DNA in a 1% agarose gel following electrophoresis.

3. Results and discussion

3.1. The ‘field laboratory’: the metalliferous site and its resident earthworms

In the decades since its abandonment, the spatially chequered and highly bio-diverse Cwmystwyth Pb-mine site has developed micro-habitats...
colonised by a limited variety of naturally occurring plants and invertebrates. Thus, it serves as an ideal evolutionary field laboratory. *L. rubellus* was sampled from four sites, effectively ‘ecological islands’, across the mine: *C1*_{pH<5}, *C2*_{pH<4}, *C3*_{pH<7}, and *C4*_{pH<6} (Fig. 1). In addition to measuring soil Pb concentrations at these locations, whole-earthworm Pb contents were also measured in order to account for the integrated effects of local edaphic factors on Pb availability to earthworms (Peijnenburg, 2002). The relationship between pH and bioavailability is evident; earthworms inhabiting the soil with low ambient pH (*C2*_{pH<4}) have accumulated a significantly higher Pb burden than their counterparts inhabiting a circumneutral soil containing a much higher ‘total’ Pb content (*C3*_{pH<7}) (Table 1), where the Pb concentration factors (worm: soil Pb ratio) are 4.99 and 0.32, respectively.

Population divergence was measured using amplified fragment length polymorphism (AFLP) analysis and mitochondrial cytochrome oxidase II (mtDNA COII) gene sequence data of individuals sampled from the four sites. Two distinct genetic lineages, differentiated at both the mitochondrial and nuclear level, were revealed with a mean inter-lineage mtDNA sequence divergence of approximately 13%, indicative of a cryptic species complex (Fig. 2A and B). Such cryptic complexes are typical in taxa that thrive in specialised environments and have been noted for other earthworm species (King et al., 2008; Shepeleva et al., 2008; Pérez-Losada et al., 2009).

![Fig. 1 Earthworm population structure superimposed on a geochemical map of the Cwmystwyth Pb mine. Surface maps depicting the pH (B) and Pb (C) levels are overlaid on a topographical map of the Cwmystwyth valley (D), derived from 71 to 97 independent measurements respectively, and generated using SURFER®. The four earthworm sampling sites are indicated by vertical black guide lines together with the correspondig mismatch distributions (Fig. 2C and D), and estimated time since population expansion. Lineage A comprises nine haplotypes that contain two or more individuals. This, combined with a ragged multimodal mismatch distribution, is suggestive of a stationary population that has undergone multiple introductions and bottleneck episodes (Harpending, 1994). Additionally, from the parameters Tau and date of growth in mutational units, expansion is estimated to have occurred approximately 250 000 years BP (assuming one generation per year) and may have corresponded to the genotype. Mitochondrial lineage A individuals are shown as open circles whilst lineage B are filled circles.

<table>
<thead>
<tr>
<th>Site</th>
<th>pH</th>
<th>Soil Pb (mgkg<sup>-1</sup>)</th>
<th>Earthworm Pb (mgkg<sup>-1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3.9</td>
<td>2851 ± 66</td>
<td>415 ± 71</td>
</tr>
<tr>
<td>C2</td>
<td>4.4</td>
<td>1217 ± 51</td>
<td>6077 ± 1706</td>
</tr>
<tr>
<td>C3</td>
<td>6.5</td>
<td>11928 ± 659</td>
<td>3850 ± 390</td>
</tr>
<tr>
<td>C4</td>
<td>5.1</td>
<td>615 ± 8</td>
<td>153 ± 67</td>
</tr>
<tr>
<td>R1</td>
<td>6.9</td>
<td>103</td>
<td>50 ± 14</td>
</tr>
</tbody>
</table>

It is interesting that Lineage A predominates at the intensely Pb-polluted calcareous site (C3_{pH<7}) but Lineage B predominates and the almost adjacent moderately Pb-polluted site (C4_{pH<6}), whereas the less contaminated flanking sites (C1_{pH<5}, C2_{pH<4}) have representatives of both lineages (Fig. 2A and B). If the two lineages can be assigned the status of cryptic species, then the two central but geochemically contrasting micro-habitats appear to have experienced differential losses of earthworm biodiversity, analogous to events described by Rocha-Olivares et al. (2004) in species complexes of aquatic copepods. On the other hand, if the lineages are manifestations of extremely high intra-species genetic diversity, then the *L. rubellus* populations inhabiting *C2*_{pH<4} and *C3*_{pH<7} are almost certainly the evolved products of differential genetic erosion (van Straalen and Timmermans, 2002). It is noteworthy that AFLP analysis indicates that lineage A individuals at site C3_{pH<7} are uniquely clustered, with little genetic overlap with lineage A individuals at the two peripheral sites (Fig. 2B), implying strong within-lineage selection at this location. In comparison, AFLP analysis indicates that there is considerable overlap in the genetic constituions of lineage B individuals at site C2_{pH<4} with those of lineage B individuals at both peripheral sites C1_{pH<5} and C4_{pH<6} (Fig. 2B). These observations indicate that there is a high degree of spatially localised genetic differentiation, and possibly genetic erosion, in earthworm populations inhabiting contrasting microhabitat islands across this complex mine site. Since the phenotypic characteristics of site-specific genotypes has not yet been established, it is premature to conclude whether the two deeply differentiated *L. rubellus* genetic lineages display fitness advantages under different edaphic conditions even though the genotype spatial patterns at the Cwmystwyth mine are not inconsistent with the notion.

As phylogenetic population structure is shaped by ongoing processes of genetic drift and gene flow, combined with past historical events, unravelling the *L. rubellus* species complex requires inferences on both the structure of the phylogeny and demographic tendencies. The timeline of divergence leading to sustained differentiation is neither rapid nor definable and, due to the combined effects of gene flow and selection of adaptively important genes, the genomes of incompletely isolated populations will contain an assortment of variable and undifferentiated regions (Supporting data). Fluctuations in the global climate have led to major ice ages during the Quaternary period, with the Pleistocene epoch (1 808 000–11 500 B.P. before present (BP)) covering the most recent period of repeated glaciations. Glaciation evidence can be related to the profile of mtDNA haplotypes in both lineage A and B, the shape of the corresponding mismatch distributions (Fig. 2C and D), and estimated time since population expansion. Lineage A comprises nine haplotypes that contain two or more individuals. This, combined with a ragged multimodal mismatch distribution, is suggestive of a stationary population that has undergone multiple introductions and bottleneck episodes (Harpending, 1994). Additionally, from the parameters Tau and date of growth in mutational units, expansion is estimated to have occurred approximately 250 000 years BP (assuming one generation per year) and may have corresponded
3.2. ‘In-situ’ FTIR microspectroscopical biochemical fingerprinting

These field earthworm populations prodigiously accumulate up to 1.5% of total body dry mass Pb (Morgan et al., 2001), with Ca/P04-rich earthworm chloragocyte cells constituting the main metal sequestering organ (Cotter-Howells et al., 2005). Fourier transform infra-red (FT-IR) microspectroscopy on a high energy synchrotron source was used to determine the chemical composition of cryo-sectioned chloragocytes in earthworms belonging to each lineage at the two heavily polluted, albeit one acidic (C3 pH4) and one calcareous (C2 pH7) sites, together with C3 pH4 at the boundary of mine, and C2 pH7 at the mine site, R1, acutely exposed to lead in the form of Pb(NO3)2. The transcriptomic profile of an organism provides a snapshot of gene expression in response to the environment and its developmental stage, life-history or responses in relation to particular environmental stressors. EST libraries are also the substrate for comparative genomic studies, through investigating differential expression between cDNA populations. Two libraries were constructed from earthworm populations with contrasting histories of Pb exposure; C3PbH4 earthworms as representatives of a chronically Pb-exposed field population, and earthworms sampled from a clean reference site, R1, acutely exposed to Pb at several junctures (Jamieson and Molyneux, 1981). As such, Pb trafficking into and across earthworm chloragocytes must be tightly regulated in these animals that are continuously exposed to high concentrations of Pb in their native environments and whose strategy for dealing with it involves intracellular accumulative immobilization. Indeed, inferences on the mechanisms of adaptive evolution to environmental heterogeneity require not only abstract genotype-to-phenotype associations but more meaningful molecular genetic interpretations regarding the nature of induced phenotypic variation.

3.3. EST libraries from Pb-mine and laboratory exposed naive worms

The transcriptomic profile of an organism provides a snapshot of gene expression in response to the environment and its developmental stage, life-history or responses in relation to particular environmental stressors. EST libraries are also the substrate for comparative genomic studies, through investigating differential expression between cDNA populations. Two libraries were constructed from earthworm populations with contrasting histories of Pb exposure; C3PbH4 earthworms as representatives of a chronically Pb-exposed field population, and earthworms sampled from a clean reference site, R1, acutely exposed to Pb in the form of Pb(NO3)2 under laboratory conditions. In combination with the plethora of EST cluster information available in LumbriBASE (www.earthworms.org), a metal tolerant genotype may be related to phenotype and
the functional systems that underlie lead handling within these earthworm populations defined. Both libraries comprised high quality sequences with an average length of between 500 and 600 base pairs. This ensured the maximum numbers of sequences were annotated to enable accurate downstream analysis and interpretation using the software LumbriBASE, Blast2GO and associated KEGG resource, which generates pathway maps that highlight gene ontology relationships between annotated sequences. Of interest was the significant number of C3 \(\text{pH7 Pb}^{***} \) gene products (when compared to R1) associated with intracellular Ca\(^{2+}\) sensing and buffering. These included Calmodulin, with ten (per thousand library sequences and with an alignment score of \(< 10^{-5}\) C3 \(\text{pH7 Pb}^{***} \) hits compared to two R1 matches and Troponin C and Sarcoplasmic calcium binding protein (SCP) that had six and seven C3 \(\text{pH7 Pb}^{***} \) matches respectively with zero in R1. All these proteins belong to the EF-hand super-family of proteins implicated in calcium binding and central to the Ca-signal-pathway (Gao et al., 2006; Ishida and Vogel, 2006). These observations may indicate that components of the Ca-signalling pathway are central to Pb sequestration within chloragocytes which, in turn, may be associated with adjustments in the metabolism of their common complexing PO\(_4\) anion (Fig. 3B). This yields a number of candidate loci that may contribute to a Pb-tolerance phenotype by modifying molecules involved in the cellular physiology of an essential cation (Ca\(^{2+}\)) to accommodate its non-essential cationic mimic (Pb\(^{2+}\)).

Fig. 3. Metabolomic fingerprinting of earthworm chloragogenous tissue using Fourier Transform Infrared spectroscopy. (A) The fingerprint region of averaged infra-red spectra of earthworm chloragogenous tissue collected from C3 \(\text{pH7 Pb}^{***} \) (grey) and C2 \(\text{pH4 Pb}^{*} \) (black). Individual spectra were processed by the software package OPUS\(^{\circ}\). (B) The main difference in C3 \(\text{pH7 Pb}^{***} \) and C2 \(\text{pH4 Pb}^{*} \) Averaged spectra (\(\sim 1080 \text{ cm}^{-1}\)), corresponded to phosphorous-containing functional groups (Coates, 2000). (C) XLSTAT simulated dendrogram illustrating the clustering of C3 \(\text{pH7 Pb}^{***} \) and C2 \(\text{pH4 Pb}^{*} \) earthworms according to their infra-red spectral patterns (1096–1123 cm\(^{-1}\)).

Fig. 4. Analysis of earthworm SERCA variants. (A) Phylogenetic analysis of genotyped individuals, based upon the cytochrome oxidase II gene, from C4 \(\text{pH6 Pb}^{*} \) (light grey triangles) and C1 \(\text{pH5 Pb}^{*} \) (grey diamonds) at the boundary of the mine, together with C3 \(\text{pH7 Pb}^{***} \) (dark grey circles) and C2 \(\text{pH4 Pb}^{*} \) (black squares) and a L. castaneus and L. eiseni individual (white triangles). (B) Discriminatory PCR illustrating the lineage-specific expression of the SERCA variants and (C) PyMol simulated model of SERCA. The conserved calcium binding sites are indicated in yellow and amino acid differences in the two L. rubellus isoforms in red. The phosphorylation (P) and nucleotide binding (N) domains are also shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3.4. Sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA)

Sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) is a central transport carrier protein of the Ca-signalling pathway that resides in membranes of intracellular storage sites for the uptake of excess Ca and, conceivably, Pb (Tsien et al., 1987). As a consequence this protein was targeted for further analysis. Three isoforms have been described in vertebrates (MacLennan et al., 1985; Campbell et al., 1991; Vilsen and Andersen, 1992) and one in invertebrates (Palmero and Sastre, 1989; Escalante and Sastre, 1994; Shi et al., 1998) fungi (Ghislain et al., 1990) and plants (Wimmers et al., 1992). All isoforms are similar in structure and have a 75–85% identical amino acid sequence (Toyofuku et al., 1992). Despite the identification of several vertebrate isoforms, L. rubellus is the first invertebrate found to harbour multiple SERCA variants (GenBank accession numbers GQ911151 and GQ911152). Two structurally different forms were identified in the two populations inhabiting the central geochemically contrasting ecological islands, C2Pb4 and C2Pb17, and expression was found to be co-incident with the mitochondrial lineage marker (COI), even where nuclear hybridisation was observed (Fig. 4A and B). Their structure differed in amino acids (highlighted in red, Fig. 4C) (for interpretation of the references to color, the reader is referred to the web version of this article,) located in the cytosolic nucleotide-binding domain, or flap, of the protein, a region thought to have a critical role in determining calcium affinity and turnover. This observation may indicate that not only are the intracellular trans-membrane Ca and Pb pathways confluent at the molecular (SERCA) level and are associated with adjustments in the metabolism of their common complexing PO4 anion, but the entire machinery is demonstrably genotype-specific. It is important to point out, however, that whist the SERCA molecule is an important connector of excess Ca and, conceivably, Pb, other components of the Ca pathway warrant study to determine whether they are structurally or functionally modified.

4. Conclusion

Our observations on field populations of L. rubellus with multi-generational histories of exposure to soils with elevated levels of Pb contamination and/or Pb bioavailability lead us to infer that Pb-adaptation traits may be inextricably linked to regulators of Ca physiology. The hypothesis illustrates the contingent face of evolution in that it often innovates by modifying existing structures or pathways. Whilst adaptive changes in enzyme structure are, for good reason, less probable than changes in the promoters that regulate enzyme expression (Crawford et al., 1999), they are clearly not molecular modifications that can be ignored. The ionic radii of Ca2+ (1.00 Å) and Pb2+ (1.19 Å) (Bridges and Zalups, 2005) appear to be sufficiently similar to allow adaptive structural modifications in the Ca-transporter SERCA to occur in order to accommodate the transport of the non-essential Ca analogue, Pb.

The firm conclusion of the present study is that L. rubellus displays a very high degree of genetic diversity, and that the distribution of the various genotypes is not uniform across a heterogeneous metalliferous landscape. This finding raises serious conceptual and practical questions of general importance regarding the use of this (and other) sentinel organisms for field-based ecotoxicology. It cannot yet be assumed that the different genotypes display differential responses or susceptibilities to environmental contaminants, but it is as well to be alert to the possibility. Kautenburger (2006) found a very limited degree of genetic variation in the earthworm Lumbricus terrestris sampled from a series of sites in western Germany, and concluded that the genetic uniformity in this species over a limited geographical range meets an essential prerequisite for biomonitoring environmental quality. By direct inference, a lack of genetic uniformity within a species confounds if not invalidates biomonitoring. This, in fact, is one of the key objections promulgated by Forbes et al. (2006) against the use of biomarkers in ecotoxicology. Kautenburg-er’s (2006) recommendation was that the use of earthworms for biomonitoring over wide geographical ranges should be supported by genetic characterisation of the sampled populations. We concur with this principle but, certainly in the case of L. rubellus, recommend that exceptionally high genetic differentiation is more of a function of highly localised edaphic properties than of geographical distance. This realisation has important implications for how this and other earthworm species are in future exploited as a sentinel, particularly in highly discriminating genomic assays, and argues in favour of the mandatory genotyping of all individuals prior to testing.

Acknowledgments

This work was performed during the tenure of a Natural Environ-mental Research Council studentship (JA) registered at Reading University (NER/S/A/2004/12418). The FTIR was performed at the Daresbury Synchrotron, Station 11.1, managed by Dr F. Bahrami (CCILRC beamtime award 45211). We would like to thank Dr Peter Brabham (School of Earth, Ocean and Planetary Sciences, Cardiff University) for his geomapping support.

Appendix. Supplementary material

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.envpol.2009.09.021.

References

