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Molecular genetic differentiation in earthworms inhabiting
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J. Andre a,b,*, R.A. King a, S.R. Stürzenbaum c, P. Kille a, M.E. Hodson b, A.J. Morgan a

aCardiff School of Biosciences, Cardiff University, BIOSI 1, Museum Avenue, Cardiff CF10 3TL, UK
bDepartment of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6DW, UK
cKing’s College London, School of Biomedical & Health Sciences, Pharmaceutical Sciences Division, London SE1 9NH, UK

Landscapes punctuated by Pb-polluted islands have engendered local genetic differentiation in resident earthworms.
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a b s t r a c t

APb-mine site situated on acidic soil, but comprisingof Ca-enriched islands aroundderelict buildingswas used
to study the spatial pattern of genetic diversity in Lumbricus rubellus. Two distinct genetic lineages (‘A’ and ‘B’),
differentiated at both the mitochondrial (mtDNA COII) and nuclear level (AFLPs) were revealed with a mean
inter-lineage mtDNA sequence divergence of approximately 13%, indicative of a cryptic species complex. AFLP
analysis indicates that lineage A individuals within one central ‘ecological island’ site are uniquely clustered,
with little genetic overlap with lineage A individuals at the two peripheral sites. FTIR microspectroscopy of
Pb-sequestering chloragocytes revealed different phosphate profiles in residents of adjacent acidic and
calcareous islands. Bioinformatics found over-representation of Ca pathway genes in ESTPb libraries. Subse-
quent sequencing of a Ca-transport gene, SERCA, revealed mutations in the protein’s cytosolic domain. We
recommend the mandatory genotyping of all individuals prior to field-based ecotoxicological assays, partic-
ularly those using discriminating genomic technologies.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Sites contaminated to different degrees with metals and metal-
loids are globally widespread, from geogenic deposits such as
serpentine soils to anthropogenically modified soils associated with
mining, various industries, and agricultural practices. Abandoned
mine sites typically display conspicuous spatial heterogeneities, with
geological features combining with diverse anthropogenic inputs to
produce amosaic of physicochemically contrasting ecological ‘islands’
to which constituents of the local biota have evidently, and perhaps
variously, adapted. For example, the Cwmystwyth Valley,Wales (UK),
is a region of base-poor upland grassland containing a disused
Pb-mine whose shallow acidic soil is punctuated by more-or-less
discrete calcareous micro-habitats around derelict buildings. Galena
(PbS) extraction from the Cwmystwyth Mine stopped in about 1921,
and in the intervening period the site has been colonised by two
epigeic earthworm species, the subject of the present study, Lum-

bricus rubellus, and Dendrodrilus rubidus (Morgan and Morgan, 1991).
The ancestors of these resident soil dwellers at Cwmystwyth would
have survived the major glaciations and climatic instability of the

Devensian period in one or more of the sheltered southern European
refugia. With the onset of each stadial period and reformation of ice-
sheets, retreating bottlenecked populations would have experienced
shrinkage, dissection and extinction, whereas upon post-glacial
expansion they would have undergone adaptation and selection to
new environments (Hewitt, 2000). Repeated climatic oscillations and
changes in habitat range have therefore yielded increased species
diversity through several genome reorganisations, manifested on the
one hand by the recently described splitting of L. rubellus into two
deep genetic lineages (King et al., 2008)whichmaywarrant the status
of cryptic species, and on the other hand by the capacity of this
peregrine taxon (Blakemore, 2002) to successfully colonize diverse
soil types and conditions across wide geographical ranges. The
physiological versatility of the species is exemplified by the fact that
field populations inhabit soils ranging from pH 3.8 to 8.4 (Sims and
Gerard, 1985), and soils contaminated with Pb to a degree exceeding
by an order of magnitude the exposure level that severely compro-
mises reproduction in spiked laboratory soils (Spurgeon et al., 1994).

Ecotoxicology seeks easily interpretable exposure (‘environ-
ment’) versus response (‘phenotype’) relationships, analogous to
those that underpin classical toxicology. This relationship can
however be confounded in field populations by local stress-medi-
ated genetic differentiation (Evenden and Depledge, 1997; Morgan
et al., 2007). A body of evidence has accumulated indicating
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significant differences in the responses to certain inorganic
and organic environmental toxicants of cryptic (sibling) species
belonging to a number of aquatic taxa (Sturmbauer et al., 1999;
Rocha-Olivares et al., 2004; Bach et al., 2005; Palmqvist and Forbes,
2008). L. rubellus has recently been exploited as a sentinel organism
in a number of ecotoxicogenomic studies (Bundy et al., 2008; Owen
et al., 2008; LaCourse et al., 2009; Stürzenbaum et al., 2009), but
each of these studies was performed before the extent and possible
functional implications of the high genetic diversity within the
‘species’ (King et al., 2008) was fully appreciated. The first aim of the
present study, therefore, was to use mitochondrial (mt-DNACOII)
and Amplified Fragment Length Polymorphism (AFLP) markers to
genotype L. rubellus at four discrete and geochemically contrasting
sub-sites along a transect across the Cwmystwyth Mine following
prior in-situ spatial mapping of surface soil Pb concentrations with
a combination of portable X-ray fluorescence spectroscopy (XRF)
and GPS localization. The objectives were to determine: (i) whether
both L. rubellus genetic lineages identified by King et al. (2008) are
present in the locality; (ii) whether the distribution patterns of the
two lineages, if present, could be related to the soil composition of
ecological islands across the site; and (iii) whether or not within-
lineage genetic diversity has been locally eroded (van Straalen
and Timmermans, 2002) by chemical stressors. Although a recent
publication (Langdon et al., 2009) based on the acute toxicity testing
of laboratory-reared offspring indicated that a population of L.

rubellus inhabiting a field soil heavily contaminated with As has
evolved metalloid resistance, it is important to emphasise that the
present phylogenetic study was motivated by the need to establish
the extent and distribution of genetic diversity in a highly hetero-
geneous landscape. An earlier attempt to use laboratory-bred
offspring from the CwmystwythMine to reveal evidence of heritable
Pb resistance proved inconclusive (Aziz et al., 1999) but this is not to
say that L. rubellus at the site is not spatially differentiated intomore-
or-less distinct genotype clusters. Whilst evolution is considered to
be an almost inevitable consequence of stress, the means by which
adaptation is achieved may, in general, be deemed to be either
facultative or constitutive (Bradshaw and Hardwick, 1989). For
instance, the phenotypic plasticity that is usually favoured in
heterogeneous or variable environments is itself genetically deter-
mined (Windig et al., 2004). On the other hand, when selection
pressure is heavy and relatively constant over several generations, it
is probable that an organism will evolve a fixed resistance mecha-
nism (Bradshaw and Hardwick, 1989). In this study we did not
explicitly seek to resolve whether Cwmystwyth Mine worms are
facultatively or constitutively adapted to local stress challenges;
rather, we were engaged in determining the range of genetic
variability or amplitude upon which stressors have impinged.

The detrimental effects of Pb exposure arise from its ability to
mimic the trafficking and metabolism of essential cations, notably
Ca (Clarkson, 1993; Warren et al., 1998). Intracellular interactions
between Pb and Ca are well documented, with non-sequestered Pb
metal ions shown to interact and associatewith proteins active in the
calcium signalling pathway. This shared chemical affinity betweenPb
and Ca lead us to hypothesise that the network of mechanisms
evolved byall living cells to regulate potentially lethal free Ca2þ levels
are somehow implicated in the handling of its non-essential cationic
analogue. The main molecular mechanisms underlying metal toler-
ance in invertebrates entails either metal efflux pumps (Callaghan
and Denny, 2002) or sequestration by one of three classes of thiol-
rich peptides, namely glutathione, phytochelatin and metal-
lothionein (Vatamaniuk et al., 2005; Janssens et al., 2007). However,
neither of these generic mechanisms has been found to underpin Pb
adaptations in earthworms. Indeed, Pb is sequestered by earthworms
within the calcium phosphate-rich matrix of chloragosomes, unique
organelles with certain lysosome-like properties that are located in

the chloragogenous tissue (Morgan andMorgan,1989). It is plausible
that specific transport molecules reside in the limiting membranes
of earthworm chloragosomes that promote both the uptake of
O2-seekingmetals such as Pb and Ca and also provide the negatively-
charged counter-ion (i.e. phosphate) required for mineralization.
Consequently, the second major aim of the present study was to
explore provisionally certain candidate molecular mechanisms of
Pb management and adaptation in chronically exposed earthworm
populations. This was achieved through global transcriptomic anal-
yses, in-situ biochemical fingerprinting by FTIRmicrospectroscopy of
cryo-sectioned chloragogenous tissue from earthworms quench
frozen in the field to maintain compositional fidelity, and targeted
single locus experiments focused on an important intracellular trans-
membrane Ca-transporter, SERCA (Bolotina and Csutora, 2005). Thus,
the study employed an unprecedented combination of geochemical
andmolecular-genetic tools to obtain information about population-
level genetic differentiation in an ecosystem engineering sentinel
organism, and about predicted functionally important structural
modifications in a potentially key molecular component underlying
Pb/Ca tolerance traits.

2. Materials and methods

2.1. Portable X-ray fluorescence (XRF), pH mapping of the Cwmystwyth site

and ICP-OES determination of total soil and body metal concentrations

A portable XRF (NITON XLiand, Thermo Scientific Inc, Germany) and GPS system
(Garmin, Etrex Venture, UK) were used in order to create a Pb profile of the
Cwmystwyth valley, with a total of 97 random measurements taken across the site.
At 70 of these sites a soil sample (w50 g, taken from the soil litter and upper layers of
the soil) was also collected and the pH recorded. The mapping software SURFER�

was used to convert both the metal and pH data sets into a series of 3D rendered
surface maps, stacked alongside a base-map of the valley. The Pb concentration
of earthworms and soil from each site, C1 (OS grid reference, SN 809749), C2
(SN 801746), C3 (SN 804746), C4 (SN 797743) and R1 (ST 149723), was determined.
Several soil samples were randomly collected from each site and pooled. Soil was
dried, sieved to<2mm through a stainless steel mesh, digested in boiling aqua regia
and analysed for Pb by ICP-OES (Arnold et al., 2008). Earthworms (n ¼ 3) were
transported back to the laboratory in their native soil and depurated as described in
(Arnold et al., 2007). Following this depuration period the earthworms were placed
individually into Sterilin tubes, stored at�18� 1 �C until digestion, and analysed for
Pb by ICP-OES (Langdon et al., 2005).

2.2. Mitochondrial (cytochrome oxidase II) and amplified fragment

length polymorphism (AFLP) genotyping

L. rubellus earthworms were collected by digging and hand-sorting. The animals
were transported back to the laboratory in their native soil and depurated as
described in Arnold and Hodson (2007). Four populations, C1pH5Pb* (n ¼ 27),C2pH4Pb*
(n ¼ 33),C3pH7Pb��* (n ¼ 32) and C4pH6Pb* (n ¼ 30), were sampled from four locations
across the study site. C1 and C4 were located at the periphery of the site, thereby
representing on-site references. C2 and C3 are highly contaminated sites with
contrasting pH and soil chemistry; C2 is acidic whereas C3 is circumneutral in pH
and calcareous in nature. The interaction of soil metal load and pH is important
when considering bioavailability, and is reflected in accumulated metal body loads.
The number of asterisks denotes the level of contamination as classified by the Kelly
index (ICRCL 59/83) (KellyIndices, 1980): * contaminated (1000–2000 mg kg�1), **
heavily contaminated (2000–10 000 mg kg�1) and *** unusually heavily contami-
nated (>10 000 mg kg�1). Genomic DNA was extracted from all four populations
using DNAzol reagent (Invitrogen Ltd., Paisley, UK.). DNA was also isolated from
Lumbricus castaneus and Lumbricus eiseni. Forward (50-TAGCTCACTTAGATGCCA) and
reverse (50-GTATGCGGATTTCTAATTGT) L. rubellus specific cytochrome oxidase II
(COII) primers were designed from mitochondrial sequences deposited in Lum-
briBASE (www.earthworms.org). For each PCR reactionw100 ng DNA template was
amplified using 10 pmol/ml forward and reverse primer, 10 mM dNTP mix and 5U/ml
Taq DNA polymerase buffered with 5 X Mg-free Taq PCR amplification buffer and
supplemented with MgCl2 (1.5 mM). The reactionwas denatured at 95 �C for 10 min
and then cycled 35 times at 95 �C for 30 s, 30 s at the required primer annealing
temperature and 72� for 1 min. This was followed by a 10 min final extension at
70 �C. The amplicon (469 bp) was resolved by electrophoresis in 1 X TAE buffer at
120 V for approximately 30 min in a Pharmacia GNA-100 tank. Nucleic acid bands
were then visualised on a UV gel documentation system. Prior to sequencing PCR
clean-ups were performed using Exo-SAP-IT (Amersham Pharmacia, UK) reagents.
Exonuclease 1 (0.25 ml) and Shrimp Alkaline Phosphatase (0.5 ml) were mixed with
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the PCR product (10 ml) and incubated at 37 �C for 45 min followed by 80 �C for
15 min. DNA was sequenced using ABI PRISM� BigDye v3.1 Terminator Sequencing
technology (Applied Biosystems, USA) on the ABI PRISM� 3100 DNA Sequencer run
by the Cardiff University Molecular Biology Support Unit. Raw sequence traces were
confirmed using Finch TV before being imported into Mega v3.1 (Kumar et al., 2004)
for alignment and tree construction. The distance-based neighbour joining
(NJ) algorithm (Saitou and Nei, 1987), using p-distances, was used to estimate tree
topology and calculate branch lengths. Relationships between phylogenetic haplo-
types were determined by maximum parsimony (MP), maximum likelihood (ML)
and Bayesian methods using PAUP v3.1 and MRBAYES respectively (Huelsenbeck
and Crandall, 1997; Huelsenbeck and Ronquist, 2001), MRMODELTEST v2.2
(Nylander, 2004) and the Akaike Information Criterion (AIC) were used to select
the optimum model (HKY þ G) of sequence evolution that best fitted the data
(base frequencies of A ¼ 0.3638, C ¼ 0.2244, G ¼ 0.1277, T ¼ 0.2842 and
T-ratio¼ 3.5050 and Gamma distribution parameter¼ 0.2005). Node support forMP
and ML analyses was determined using a non-parametric bootstrap, with 500 and
1000 replicates respectively (Holmes, 2003). For the analysis 3 � 106 generations
were run, with one tree retained every 300th generation and the first 2500 trees
discarded as burn-in. Genetic distances were calculated using p-distance in Mega
and median-joining networks were drawn using NETWORK and dnasp4.

AFLP analysis was adapted from Ajmone-Marsan et al. (1997) with approxi-
mately 200 ng of genomic DNA extracted from C1pH5Pb* (n¼ 24),C2pH4Pb* (n ¼ 30),C3pH7Pb***
(n ¼ 23) and C4pH6Pb* (n ¼ 18) individuals. Pre-selective EcoR1 (GACTGCGTAC-
CAATTCA) and Taq1 (GACTGCGTACCAATTCC) primers were used and for the selec-
tive amplifications two primer combinations E32 (50-GACTGCGTACCAATTCAAC-30)/
T32 (50-GATGAGTCCTGACCGAAAC-30) and E32/T38 (50-GATGAGTCCTGAC CGAACT-
30) were employed. Reactions were run by the Cardiff University Molecular Biology
Support Unit and analysed on an Applied Biosystems 3130 � 1 fragment analyser.
Bands between 70 and 325 base pairs (bp) and with a minimum peak height of
70 units were scored using GeneMapper analysis software. Microsoft Access, Excel
and the Excel macro GenAlEx6 were used to create a cumulative table of all loci from
each individual and transform the data into a binary form. Principal coordinates
(PCO) analysis and phylogenetic tree construction, supported by bootstrap analysis
(1000 replicates), was performed using the neighbour joining algorithm (based
upon the Nei’s distance) to in PAUP v4.0b10 to estimate tree topology and calculate
branch length. The software Structure v2.2 was used to delineate clusters of indi-
viduals on a multi-locus, genotype basis using a Bayesian algorithm. The number of
inferred populations ran from 1 to 5, with 8 replicate runs, a burn-in of 75 000 cycles
followed by 300 000 for data collection. L(K), the modal choice criterion, is calcu-
lated in Structure and the true number of populations (K) can be deferred from its
maximal value. DK, the rate of change in the log probability of data between
successive K-values, provides a visual means to easily identify the number of clusters
in a sample of individuals (Evanno et al., 2005).

2.3. EST libraries and informatics

Upon sampling C3pH7Pb*** (n ¼ 5) earthworms were immediately immersed and
maintained in liquid nitrogen and stored at �80 �C until required. Earthworms were
also collected from a South Wales reference site, R1 (n ¼ 5), and transported back to
the laboratory in their native soil. These individuals were exposed to 500, 750, 1250,
1750 and 2250mgkg�1 Pb respectively, in the formof Pb(NO3)2 spikedKettering loam
(Barrycroft Stores Limited, Kettering, UK) soil (Davies et al., 2003) and maintained at
a WHC of 75% for three weeks at 15 �C. Spiked soil was left to equilibrate for 3 days
prior to earthworm addition. Following exposure, earthworms were snap-frozen in
liquid nitrogen and stored at�80 �C. Earthworm total RNA (w1.25mg) was extracted
using the TRI-reagent method (Sigma–Aldrich, UK) and mRNA isolated using an
mRNA Purification Kit (Amersham, UK). C3pH7Pb*** and R1 cDNA-libraries were con-
structed using the pBluescript� II XR cDNA Library Construction Kit (Stratagene
Europe, The Netherlands). PCR was used to screen the libraries and quantify insert
size. Each PCR contained 5 ml neat culture, 10 X Triton free PCR Buffer (10 ml), MgCl2
(0.25 ml, 1 mM), universal M13F and M13R primers (0.2 ml, 10 mM), dATP, dCTP, dTTP,
dGTP (0.2 ml, 100 mM) and Taq polymerase (0.16 ml, 50U/ml) in a 95 ml reaction. The
reactionwas denatured at 95 �C for 10 min and then cycled 35 times at 95 �C for 30 s,
30 s at the primer annealing temperature of 56 �C and 72 �C for 1 min. This was
followed by a 10 min final extension at 70 �C. Products were resolved by electro-
phoresis using E-Gel� technology (Invitrogen Ltd., UK) and associated editing soft-
ware. High quality clones were cherry-picked using the MultiPROBE� II HT EX liquid
handling system (PerkinElmer, Bucks., UK) and associated WinPrep� software. The
composite plate productswere purified usingMontage�Multiscreen PCRm96 cleanup
plates by vacuum filtration and the DNA was resuspended in sterile water (30 ml).
Sequencing reactions were completed by the SBSSS facility at Edinburgh University
and sequences named according to the NERC Environmental Genomics scheme to
allow for bioinformatics analysis. The raw trace chromatograms from the sequencing
reactionwere processed using trace2dbEST (Sturzenbaumet al., 2003)which contains
a base calling component (phred) and a sequence trimming component (cross_-
match). This software produces good quality EST sequences, formatted for submitting
to NCBI dbEST (http://www.ncbi.nlm.nih.gov/dbEST). The EST sequences were clus-
tered using CLOBB (Sturzenbaum et al., 2003) to derive a consensus putative gene
sequence contig and thenprocessed by the software package PartiGene (Sturzenbaum

et al., 2003) (http://www.nematodes.org/PartiGene). Cluster information can be
retrieved by LumbriBASE (http://www.earthworms.org) through simple text queries,
identification of sequence similarity and library specific searches. The biological
process and molecular function of gene sequences were described by defining their
Gene Ontology (GO) classification using blast2go (http://www.blast2GO.de).

2.4. Fourier-transform infrared spectroscopy

Soil and adult (fully clitellate) L. rubellus earthworms were collected from C2pH4Pb*
and C3pH7Pb*** and the posterior segments immediately excised and quench-frozen in
liquid nitrogen. The frozen tissue was transported to the laboratory under liquid
nitrogen and stored at �20 �C until required. Tissues were mounted in CryoEmbed
and sectioned longitudinally at a nominal thickness of 50 mm in a Bright cryostat.
Sections were mounted on Kevley slides and air-dried overnight in the cold chamber
of the cryostat. Infra-red spectra were collected in transmission mode from station
11.1 at the CLRC Daresbury Synchrotron Radiation Source. The chloragogenous tissue
was visually identified and each section imaged and analysed, with five spectra from
five different regions of the tissue (i.e. x25 spectra per individual earthworm)
collected. Following FTIR, genomic DNA was extracted directly from tissue sections
using the QIAamp DNA Micro Kit according to the manufacturer’s instructions
(Qiagen Ltd., UK). Buffer ATL (180 ml) was pipetted directly onto the Kevely slide to
remove the section, prior to lysis in a microcentrifuge tube at 56 �C overnight.

2.5. SERCA

Plasmid preparations of individual LumbriBASE clones (Genbank accession
numbers CF416761 and CO048347) were prepared using a Wizard� Plus SVMiniprep
kit (Promega Ltd., UK). Preparations were sequenced in their entirety by ‘‘walking’’
along the gene, after each step re-designing a specific reverse primer to complement
the universal M13 forward. Primers were designed using the software Primer3
(Rozen and Skaletsky, 2000) and Oligo� (MBI Inc, USA) and sequencing performed as
described above. These full-length library sequences were used to design L. rubellus

specific SERCA primers in order to amplify the gene transcribed in individuals of each
genealogical lineage. Reactionswere denatured at 95 �C for 10min and then cycled 35
times at 95 �C for 30 s, 30 s at the required primer annealing temperature and 72� for
1 min. This was followed by a 10 min final extension at 72 �C. DNAwas sequenced as
described above by the Cardiff University Molecular Biology Support Unit.

Total RNA was extracted from tail-clips of an adult individual sampled from
C3pH7Pb*** and C2pH4Pb* using the Tri-reagent method (Sigma–Aldrich, UK). Comple-
mentary DNA (cDNA) was synthesised from messenger RNA (mRNA) using reverse
transcriptase. Total RNA (7–20 mg) was heated at 65 �C for 3 min and combined with
anchored oligo d(T) (1 ml, 100 mM) and random hexamers (2 ml, 100 mM) and
incubated at 70 �C for 10 min. A reaction mix of 5 X RT buffer (6 ml), DTT (3 ml, 0.1 M)
and dNTPmix (1.2 ml, 10mM)was prepared and added to the RNAmix and incubated
at 25 �C for 2 min. Superscript (1 ml, Invitrogen Ltd., Paisley, UK.) was added and the
reaction incubated at 42 �C for 3 h. A series of three PCR reactions were optimised
and performed in order to obtain the full-length SERCA sequence of each individual;
between sequenced sections of the gene there was a large overlap to ensure the
same SERCA isoform was being amplified in each instance. PCRs were performed as
described above. Reactions that yielded products >2000 bp were modified. For
these reactions the DNA (w100 ng) template was amplified using 10 mM forward
and reverse primer, 25 mM dNTP mix and 1 ml Herculase� II Fusion DNA Polymerase
buffered with 5 X Herculase� II PCR reaction buffer (Stratagene Europe, The
Netherlands). Each reactionwas supplemented with an optimised quantity of MgCl2
(25mM). The reactionwas denatured at 95 �C for 10min and then cycled 35 times at
95 �C for 20 s, 20 s at the required primer annealing temperature and 68 �C for 4min.
This was followed by a 4 min final extension at 68 �C. Protein sequences were
aligned using bioinformatic software tool Mega v3.1 (Kumar et al., 2004) and
modelled using SWISS-MODEL (http://swissmodel.expasy.org//SWISSMODEL.html),
Swiss-PdbViewer and Pymol.

Total RNA was extracted from nine, previously genotyped (mtDNA) adult indi-
viduals sampled from, C2pH4Pb* and C3pH7Pb*** , four from C4pH6Pb* and three from C1pH5Pb* . This
was followed by cDNA synthesis, as described above. A PCR was designed to enable
easy identification by gel electrophoresis of the expressed isoform, with a combi-
nation of three primers used in each reaction (F1 50-CTGGCCGGAATTCGTGTTATC-30 ,
F2 50-ATACTCTTCGCTGTCTTGCGT-30 , R1 50-CCGCTGGCTCTTCTTCCG-30). The two
forward primers were designed so that each one isolated one of the two isoforms.
The resulting products were of different sizes to enable simple identification on an
agarose gel following resolution by electrophoresis.

3. Results and discussion

3.1. The ‘field laboratory’: the metalliferous site and

its resident earthworms

In the decades since its abandonment, the spatially chequered
and hostile Cwmystwyth Pb-mine site has developedmicro-habitats
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colonised by a limited variety of naturally occurring plants and
invertebrates. Thus, it serves as an ideal evolutionary field labora-
tory. L. rubellus was sampled from four sites, effectively ‘ecological
islands’, across themine:C1pH5Pb* ; C2

pH4
Pb* ; C3

pH7
Pb***, and C4pH6Pb* (Fig.1). In

addition to measuring soil Pb concentrations at these locations,
whole-earthworm Pb contents were also measured in order to
account for the integrated effects of local edaphic factors on Pb
availability to earthworms (Peijnenburg, 2002). The relationship
between pH and bioavailability is evident; earthworms inhabiting
the soil with low ambient pH ðC2pH4Pb* Þ have accumulated a signifi-
cantly higher Pb burden than their counterparts inhabiting a cir-
cumneutral soil containing amuch higher ‘total’ Pb content ðC3pH7Pb***Þ

(Table 1), where the Pb concentration factors (worm: soil Pb ratio)
are 4.99 and 0.32, respectively.

Population divergence was measured using amplified fragment
length polymorphism (AFLP) analysis and mitochondrial cyto-
chrome oxidase II (mtDNA COII) gene sequence data of individuals
sampled from the four sites. Two distinct genetic lineages, differ-
entiated at both the mitochondrial and nuclear level, were revealed
with a mean inter-lineage mtDNA sequence divergence of approxi-
mately 13%, indicative of a cryptic species complex (Fig. 2A and B).
Such cryptic complexes are typical in taxa that thrive in specialised
environments and have been noted for other earthworm species
(King et al., 2008; Shepeleva et al., 2008; Pérez-Losada et al., 2009).

It is interesting that Lineage A predominates at the intensely Pb-
polluted calcareous site ðC3pH7Pb***Þ but Lineage B predominates and
the almost adjacent moderately Pb-polluted site ðC2pH4Pb* Þ, whereas
the less contaminated flanking sites ðC1pH5Pb* ; C4

pH6
Pb* Þ have represen-

tatives of both lineages (Fig. 2A and B). If the two lineages can
be assigned the status of cryptic species, then the two central
but geochemically contrasting micro-habitats appear to have expe-
rienced differential losses of earthworm biodiversity, analogous
to events described by Rocha-Olivares et al. (2004) in species
complexes of aquatic copepods. On the other hand, if the lineages are
manifestations of extremely high intra-species genetic diversity,
then the L. rubellus populations inhabiting C2pH4Pb* and C3pH7Pb*** are
almost certainly the evolved products of differential genetic erosion
(van Straalen and Timmermans, 2002). It is noteworthy that
AFLP analysis indicates that lineage A individuals at site C3pH7Pb*** are
uniquely clustered, with little genetic overlap with lineage A indi-
viduals at the two peripheral sites (Fig. 2B), implying strong within-
lineage selection at this location. In comparison, AFLP analysis
indicates that there is considerable overlap in the genetic constitu-
tions of lineage B individuals at site C2pH4Pb* with those of lineage B
individuals at both peripheral sites C1pH5Pb* and C4pH6Pb* (Fig. 2B). These
observations indicate that there is a high degree of spatially localised
genetic differentiation, and possibly genetic erosion, in earthworm
populations inhabiting contrasting microhabitat islands across
this complex mine site. Since the phenotypic characteristics of site-
specific genotypes has not yet been established, it is premature to
conclude whether the two deeply differentiated L. rubellus genetic
lineages display fitness advantages under different edaphic condi-
tions even though the genotype spatial patterns at the Cwmystwyth
mine are not inconsistent with the notion.

As phylogenetic population structure is shaped by ongoing
processes of genetic drift and gene flow, combined with past
historical events, unravelling the L. rubellus species complex requires
inferences on both the structure of the phylogeny and demographic
tendencies. The timeline of divergence leading to sustained differ-
entiation is neither rapid nor definable and, due to the combined
effects of gene flow and selection of adaptively important genes,
the genomes of incompletely isolated populations will contain an
assortment of variable and undifferentiated regions (Supporting
data). Fluctuations in the global climate have led to major ice ages
during the Quaternary period, with the Pleistocene epoch (1 808
000–11 500 before present (BP)) covering the most recent period of
repeated glaciations. Glaciation evidence can be related to the profile
of mtDNA haplotypes in both lineage A and B, the shape of the
correspondingmismatchdistributions (Fig. 2C andD), andestimated
time since population expansion. Lineage A comprises nine haplo-
types that contain two or more individuals. This, combined
with a ragged multimodal mismatch distribution, is suggestive of
a stationary population that has undergone multiple introductions
and bottleneck episodes (Harpending, 1994). Additionally, from the
parameters Tau and date of growth inmutational units, expansion is
estimated to have occurred approximately 250 000 years BP
(assuming one generation per year) and may have corresponded

Fig. 1. Earthworm population structure superimposed on a geochemical map of the
Cwmystwyth Pb mine. Surface maps depicting the pH (B) and Pb (C) levels are overlaid
on a topographical map of the Cwmystwyth valley (D), derived from 71 to 97 inde-
pendent measurements respectively, and generated using SURFER�. The four earth-
worm sampling sites are indicated by vertical black guide lines together with the
median-joining networks depicting the phylogenetic structure, based upon cytochrome
oxidase II sequence data, of each population studied (A). The size of each haplotype
group within the network is proportional to the total number of individuals attributed
to the genotype. Mitochondrial lineage A individuals are shown as open circles whilst
lineage B are filled circles.

Table 1

The total Pb body burden of earthworms collected from each Cwmystwyth valley
site, ðC1pH5Pb* ; C2

pH4
Pb* ; C3

pH7
Pb***; C4

pH6
Pb* Þ and reference site (R1) alongside the total Pb

concentration of all the soils and their pH. Values are expressed as the mean � the
standard error.

Site pH Soil Pb (mgkg�1) Earthworm Pb (mgkg�1)

C1 5.9 2851 � 68 415 � 71
C2 4.4 1217 � 51 6077 � 1706
C3 6.5 11928 � 659 3850 � 390
C4 5.1 615 � 8 153 � 67
R1 6.9 103 50 � 14

J. Andre et al. / Environmental Pollution 158 (2010) 883–890886



with a non-glacial environment such as the Hoxnian interstadial
(w250 000 BP) (Brown,1979) (Fig. 2E). In contrast, lineage B consists
of three haplotypes that contain two or more individuals, and
displays an unimodal mismatch distribution, and a post-glacial
population expansion time of approximately 17 000 years BP was
calculated. This combined evidence suggests that the population
experienced a single burst of growth and expanded after the height
of the last glaciation period (w25 000 BP) with adaptation or
selection occurring in response to the warmer climate experienced
towards the end of the Devensian glaciation and onset of the
Windermere interstadial (Brown, 1979; Harpending, 1994).

3.2. ‘In-situ’ FTIR microspectroscopical biochemical fingerprinting

Thesefield earthwormpopulations prodigiously accumulate up to
1.5% of total bodydrymass Pb (Morgan et al., 2001),with Ca/PO4-rich
earthworm chloragocyte cells constituting the main metal seques-
tering organ (Cotter-Howells et al., 2005). Fourier transform infra-red
(FT-IR) microspectroscopy on a high energy synchrotron source
was used to determine the chemical composition of cryo-sectioned
chloragocytes in earthworms belonging to each lineage at the two
heavily polluted, albeit one acidic ðC2pH4Pb* Þ and one calcareous
ðC3pH7Pb***Þ, mine sites. The chlorogogenous tissue was found to have
a distinctive FTIR spectrum (Supporting data) and site-specific
disparities in the composition of chlorogogenous tissue (a second
peak is observed in the 1100cm�1 region of the C2pH4Pb* spectrum)
were apparent, which correlated with phosphorous-containing
functional groups (Fig. 3A and B) (Coates, 2000). The earthworm

chloragocyte is thought to be involved in haem biosynthesis,
a conserved pathway that is inhibited by Pb at several junctures
(Jamieson and Molyneux, 1981). As such, Pb trafficking into and
across earthworm chloragocytes must be tightly regulated in these
animals that are continuously exposed to high concentrations of
metal in their native environments and whose strategy for dealing
with it involves intracellular accumulative immobilization. Indeed,
inferences on the mechanisms of adaptive evolution to environ-
mental heterogeneity require not only abstract genotype- to
phenotype associations but more meaningful molecular genetic
interpretations regarding the nature of inducedphenotypic variation.

3.3. EST libraries from Pb-mine and laboratory

exposed naı̈ve worms

The transcriptomic profile of an organism provides a snapshot of
gene expression to provide information regarding developmental
stage, life-history or responses in relation to particular environ-
mental stressors. EST libraries are also the substrate for comparative
genomic studies, through investigating differential expression
between cDNA populations. Two libraries were constructed from
earthworm populations with contrasting histories of Pb exposure;
C3pH7Pb*** earthworms as representatives of a chronically Pb-exposed
field population, and earthworms sampled from a clean reference
site, R1, acutely exposed to lead in the form of Pb(NO3)2 under
laboratory conditions. In combinationwith the plethora of ESTcluster
information already available in LumbriBASE (www.earthworms.
org), a metal tolerant genotype may be related to phenotype and
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Fig. 2. Mitochondrial and nuclear analysis of the earthworm, L. rubellus, population structure and correspondingmitochondrial mismatch distributions. Earthworms collected at four
equally specially distributed sites with contrasting geochemical properties were analysed for their mitochondrial (panel A) and nuclear (panel B) genotype. Sites included C4pH6Pb* (light
grey triangles) and C1pH5Pb* (grey diamonds), at the boundary of mine, together with C3pH7Pb*** (dark grey circles) and C2pH4Pb* (black squares). (A) Median-joining network analysis based
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the functional systems that underlie lead handling within these
earthworm populations defined. Both libraries comprised high
quality sequences with an average length of between 500 and 600
base pairs. This ensured the maximum numbers of sequences were
annotated to enable accurate downstream analysis and interpreta-
tion using the software LumbriBASE, Blast2GO and associated
KEGG resource, which generates pathway maps that highlight gene
ontology relationships between annotated sequences. Of interestwas
the significant number of C3pH7Pb*** gene products (when compared to
R1) associated with intracellular Ca2þ sensing and buffering. These
included Calmodulin, with ten (per thousand library sequences and
with an alignment score of <10�5) C3pH7Pb*** hits compared to two R1
matches and Troponin C and Sarcoplasmic calcium binding protein
(SCP) that had six and seven C3pH7Pb*** matches respectively with zero
in R1. All these proteins belong to the EF-hand super-family of
proteins implicated in calcium binding and central to the Ca-signal-
ling pathway (Gao et al., 2006; Ishida and Vogel, 2006). These
observations may indicate that components of the Ca-signalling
pathway are central to Pb sequestrationwithin chloragocytes which,
in turn, may be associated with adjustments in the metabolism of
their common complexing PO4

� anion (Fig. 3B). This yields a number
of candidate loci that may contribute to a Pb-tolerance phenotype by
modifying molecules involved in the cellular physiology of an
essential cation (Ca2þ) to accommodate its non-essential cationic
mimic (Pb2þ).
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Fig. 3. Metabolomic fingerprinting of earthworm chloragogenous tissue using Fourier
Transform Infrared spectroscopy. (A) The fingerprint region of averaged infra-red spectra of
earthworm chloragogenous tissue collected from C3pH7Pb*** (grey) and C2pH4Pb* (black). Indi-
vidual spectra were processed by the software package OPUS�. (B) The main difference in
C3pH7Pb*** and C2pH4Pb* averaged spectra (w1080 cm�1), corresponded to phosphorus-contain-
ing functional groups (Coates, 2000). (C) XLSTAT simulated dendrogram illustrating the
clustering of C3pH7Pb*** and C2pH4Pb* earthworms according to their infra-red spectral patterns
(1096–1123 cm�1).

Fig. 4. Analysis of earthworm SERCA variants. (A) Phylogenetic analysis of genotyped
individuals, based upon the cytochrome oxidase II gene, from C4pH6Pb* (light grey trian-
gles) and C1pH5Pb* (grey diamonds) at the boundary of the mine, together with C3pH7Pb***
(dark grey circles) and C2pH4Pb* (black squares) and a L. castaneus and L. eiseni individual
(white triangles). (B) Discriminatory PCR illustrating the lineage-specific expression of
the SERCA variants and (C) PyMol simulated model of SERCA. The conserved calcium
binding sites are indicated in yellow and amino acid differences in the two L. rubellus

isoforms in red. The phosphorylation (P) and nucleotide binding (N) domains are also
shown. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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3.4. Sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA)

Sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) is
a central transport carrier protein of the Ca-signalling pathway that
resides in membranes of intracellular storage sites for the uptake
of excess Ca and, conceivably, Pb (Tsien et al.,1987). As a consequence
this protein was targeted for further analysis. Three isoforms have
been described in vertebrates (MacLennan et al., 1985; Campbell
et al., 1991; Vilsen and Andersen, 1992) and one in invertebrates
(Palmero and Sastre,1989; Escalante and Sastre,1994; Shi et al.,1998)
fungi (Ghislain et al., 1990) and plants (Wimmers et al., 1992). All
isoforms are similar in structure and have a 75–85% identical amino
acid sequence (Toyofuku et al., 1992). Despite the identification of
several vertebrate isoforms, L. rubellus is the first invertebrate found
to harbour multiple SERCA variants (GenBank accession numbers
GQ911151 and GQ911152). Two structurally different forms were
identified in the two populations inhabiting the central geochemi-
cally contrasting ecological islands, C2pH4Pb* and C3pH7Pb***, and expres-
sion was found to be co-incident with the mitochondrial lineage
marker (COII), even where nuclear hybridisation was observed
(Fig. 4A and B). Their structure differed in amino acids (highlighted in
red, Fig. 4C) (For interpretation of the references to color, the reader is
referred to the web version of this article.) located in the cytosolic
nucleotide-binding domain, or flap, of the protein, a region thought
to have a critical role in determining calcium affinity and turnover.
This observation may indicate that not only are the intracellular
trans-membrane Ca and Pb pathways confluent at the molecular
(SERCA) level and are associatedwith adjustments in themetabolism
of their common complexing PO4

� anion, but the entire machinery
is demonstrably genotype-specific. It is important to point out,
however, that whist the SERCA molecule is an important connector
between the vulnerable cytosol and the intra-vesicular depository of
immobilized Pb, other components of the Ca pathway warrant study
to determine whether they are structurally or functionally modified.

4. Conclusion

Our observations on field populations of L. rubellus with multi-
generational histories of exposure to soils with elevated levels of
Pb contamination and/or Pb bioavailability lead us to infer that
Pb-adaptation traits may be inextricably linked to regulators of
Ca physiology. The hypothesis illustrates the contingent face of
evolution in that it often innovates bymodifying existing structures
or pathways. Whilst adaptive changes in enzyme structure are,
for good reason, less probable than changes in the promoters that
regulate enzyme expression (Crawford et al., 1999), they are clearly
not molecular modifications that can be ignored. The ionic radii of
Ca2þ (1.00 Å) and Pb2þ (1.19 Å) (Bridges and Zalups, 2005) appear to
be sufficiently similar to allow adaptive structural modifications in
the Ca-transporter SERCA to occur in order to accommodate the
transport of the non-essential Ca analogue, Pb.

The firm conclusion of the present study is that L. rubellus displays
averyhigh degree of genetic diversity, and that the distribution of the
various genotypes is not uniform across a heterogeneous metallif-
erous landscape. This finding raises serious conceptual and practical
questions of general importance regarding the use of this (and other)
sentinel organisms for field-based ecotoxicology. It cannot yet be
assumed that the different genotypes display differential responses
or susceptibilities to environmental contaminants, but it is as well to
be alert to the possibility. Kautenburger (2006) found a very limited
degree of genetic variation in the earthworm Lumbricus terrestris

sampled from a series of sites in western Germany, and concluded
that the genetic uniformity in this species over a limited geographical
range meets an essential prerequisite for biomonitoring environ-
mental quality. By direct inference, a lack of genetic uniformity

within a species confounds if not invalidates biomonitoring. This, in
fact, is one of the key objections promulgated by Forbes et al.
(2006) against the use of biomarkers in ecotoxicology. Kautenberg-
er’s (2006) recommendation was that the use of earthworms for
biomonitoring over wide geographical ranges should be supported
by genetic characterisation of the sampled populations. We concur
with this principle but, certainly in the case of L. rubellus, recommend
that exceptionally high genetic differentiation is more a function of
highly localised edaphic properties than of geographical distance.
This realisation has important implications for how this and other
earthworm species are in future exploited as a sentinel, particularly
in highly discriminating genomic assays, and argues in favour of the
mandatory genotyping of all individuals prior to testing.
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