
This is a repository copy of Evaluating the Dependability of Dynamic Binding in Web
Services.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/74970/

Proceedings Paper:
Sargeant, AJ, Townend, PM, Xu, J et al. (1 more author) (2012) Evaluating the
Dependability of Dynamic Binding in Web Services. In: High-Assurance Systems
Engineering (HASE), 2012 IEEE 14th International Symposium on. 14th IEEE International
Symposium on High Assurance Systems Engineering (HASE), 25-27 Oct 2012, Omaha,
NE, USA. IEEE , 139 - 146 . ISBN 978-1-4673-4742-6

https://doi.org/10.1109/HASE.2012.28

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Evaluating the Dependability of Dynamic Binding in Web Services

Anthony Sargeant, Paul Townend, Jie Xu, Karim Djemame

School of Computing

University of Leeds

Leeds, LS2 9JT, United Kingdom

scs5ajs@leeds.ac.uk, p.m.townend@leeds.ac.uk, j.xu@leeds.ac.uk, k.djemame@leeds.ac.uk

Abstract— Service-Oriented Computing (SOC) provides a

flexible framework in which applications are built up from

services, often distributed across a network. One of the

promises of SOC is that of Dynamic Binding where abstract

consumer requests are bound to concrete service instances at

runtime. What is clear from existing research is that there exist

several components that help to provide the necessary behavior

for dynamic binding. However, the focus of these works is on

the evaluation of the implementation of dynamic binding and

does not consider an evaluation of dynamic binding systems

themselves. To remedy this, we propose new system and fault

models for Dynamic Binding in SOC that incorporate the types

of components required for a Dynamic Binding System (DBS)

and the types of fault that can affect these components. In

addition to these models, we introduce a novel evaluation

framework for the testing of a DBS. This distributed and

extensible framework treats the DBS as a black box and hence

is not restricted to the implementing technologies of the DBS.

Finally we present the results of a series of experiments, which

focus on the interactions between a client and the DBS. We

discuss what these results reveal about the DBS under test and

how they illustrate the value of our evaluation framework.

Keywords-Service-oriented computing, Service-oriented

architectures, Web Services, testing, dependability, evaluation

tool.

I. INTRODUCTION

Service-Oriented Computing (SOC) provides a flexible
framework in which applications are built up from services,
often distributed across a network [1]. By loosely coupling
service consumers to well-defined interfaces, and by using
standardized intercommunication methods, we are able to
create complex applications through the aggregation of one
or more services. Service-Oriented Architectures (SOA)
provides a logical architecture for the creation of these
service-based applications [2]. Furthermore, SOC and SOA
provides a framework in which the choice of service is agile
to the needs of the service consumer, such that services can
be swapped out for functionally equivalent services [3].

One of the promises of SOC is that of Dynamic Binding
of services where abstract consumer requests are bound to
concrete service instances at runtime. Existing work
involving dynamic binding consider certain aspects such as
dynamic service composition [4, 5], how to best match
requests to services [6, 7], dynamic service discovery [8], or
dynamic reconfiguring of services [9]. Other works propose
frameworks for the implementation of context-aware

dynamic binding such as in ubiquitous computing
environments [1]. What is clear from these works is that
there exist several components that help to provide the
necessary behavior for dynamic binding.

With existing work, the focus is on the evaluation of the
methodology employed to enable dynamic binding, such as
in the case of [4]. However, a dependability evaluation of
their respective Dynamic Binding Systems (DBS) is not
considered. This represents a gap in the literature as the
binding algorithm itself and/or its subsequent
implementation could be subject to faults, and the behavior
of the dynamic binding algorithms could be non-
deterministic [10]. In addition to this, and to the best of our
knowledge, the existing fault model for SOC as proposed by
[11, 12] does not cover the kinds of failure modes that can
affect a dynamic binding system.

The contributions of this paper are as follows: we collate
the contributions of existing work to identify and unify the
components that enable dynamic binding, into a single
reference model for dynamic binding for SOC. Next, we
consider the impact of dynamic binding on existing fault
models for SOC and extend them so that they incorporate
dynamic binding behavior. Using these models, we generate
a series of test cases that is combined with a modular DBS
testing framework to create a test suite to test the interaction
between a client and a DBS. Finally, through a large number
of experiments, we demonstrate the effectiveness of our
evaluation framework with a large number of empirical
results.

The rest of this paper is organized as follows: Section 2
discusses Dynamic Binding in SOC and frames it within the
context of existing research in dependability and SOC.
Section 3 discusses the system and fault models of dynamic
binding in SOC, including all the necessary components and
the process by which messages are bound. Section 4
describes the Evaluation Framework and its implementation.
We also detail the test cases employed to evaluate a DBS
under test. Section 5 introduces a proof of concept Dynamic
Binding System that is then put under test using an
implementation of the Evaluation Framework. Subsequent
analysis and discussion of the results is also included.
Section 6 evaluates this work through comparison with
existing works in dynamic binding, service-oriented testing
and dependability of SOC. Finally; Section 7 summarizes the
paper and gives conclusions and a pointer to future work.

II. DYNAMIC BINDING IN SOC

SOA and SOC offers loose coupling of services, and a
flexible infrastructure in which services need not be bound to
service instances at design time [6]. In fact, it is desirable to
leverage these characteristics by searching out services that
are functionally equivalent and selecting from them, the
‘best’ service at runtime. Services that are found to match the
consumer’s request are considered as candidate services [4,
5, 7].

In order to ascertain what the ‘best’ service is, we must
look to nonfunctional requirements [12]. This is often done
using a separate framework for describing nonfunctional
requirements – often referred to as Quality of Service (QoS)
requirements [4, 5] – as interface definitions, such as the
Web Services Description Language (WSDL), do not
describe nonfunctional properties [12].

The final aspect to ascertaining the ‘best’ service is that
of context. In [1], the authors discuss dynamic behavior in
ubiquitous computing environments. They note that one
additional factor is context-awareness. To illustrate this, they
consider a person who wants directions to a local restaurant.
If they are planning to walk, then their request to a
navigation service can displayed on a smartphone. However,
if they decide to drive to the restaurant, then an additional
text-to-speech service is required. This change in context
requires a change in service composition and represents a
change from the original request.

As we can see, dynamic binding gives us flexibility in the
way clients can consume services. Provided that a
consumer’s request is correctly formatted to a given inter-
face, then it is not necessary to bind to a specific concrete
instance at design time. However, this is not without its
challenges.

When we make the comparison with static, or design-
time binding, we note that there is a one-to-one relationship
between a consumer and provider. The consumer will
generate a client based on the provider’s service interface at
design time that will ensure that any compatibility issues can
be dealt with in advance. However, should the provider’s
service be unavailable at runtime, then it is necessary for the
consumer to find a new service, generate a new client for the
service interface and then invoke that service. It is clear that
what we gain in terms ease of integration, we lose in terms of
flexibility.

By contrast, with dynamic binding we can select from a
number of services that are functionally equivalent. In the
event of a service being unavailable, then it is possible to
invoke a replacement service that has similar functionality.
Here we have improved the dependability of our system as
the probability of getting a response is increased through
redundancy [13].

If we assume that all functionally equivalent services
employ a standard interface [13], then such a system will be
easy to implement. However, Cavallaro et al in [7] state that
is not a realistic assumption as service providers will develop
services independently. Consequently, whilst two services
may offer the same functionality, their interfaces may differ
in some way. What we can see is that dynamic binding gives

us added flexibility, but at the expense of added complexity
of dealing with interface mismatches.

It is clear that there are several steps that need to be
addressed in order to realize dynamic binding and it is
important that the DBS must deal with faults at each of these
steps. As such, we will now identify the components needed
that help to realize the system model for Dynamic Binding in
SOA.

III. SYSTEM AND FAULT MODELS

Existing literature discuses dynamic binding in SOC by
suggesting different components that would be needed in
order to achieve the required dynamic behavior. To the best
our knowledge, a common theme is the algorithm by which
dynamic binding takes place. This algorithm is described
alongside the system model below. In order to compile a
reference system model, we bring together these components
from existing research into a unified system model for
dynamic binding in SOC.

A. System Model for Dynamic Binding in SOC

The system model for Dynamic Binding in SOC consists
of the following components and is illustrated in figure 1:

 Request Processing: This component receives abstract

requests from a consumer and processes it to ascertain

the functional and nonfunctional requirements of the

consumer. This information is used to determine the

best service to meet a consumer s request [8].

 Service Discovery: The aim of this component is to

find candidate services that will meet the consumer’s
functional requirements. As discussed, services will

publish their interfaces online and might be stored in a

registry. Discovering a service then is a simple case of

searching the registry.

 Service Selection: In order to select the best service, it

is necessary to ascertain which of the candidate services

meets, or exceeds the minimum nonfunctional

requirements [14]. This might be selecting the cheapest

service, or the quickest service by ranking them in order

of price or response time.

 Service Integration: Where static binding of services

is employed, ensuring the client conforms to the service

interface is a trivial exercise as this can be done at

design time. However, when the exact service interface

is not know a priori, then it is important that some form

of mediation is employed to ensure that the client

request meets that what is expected by the service [7].

Similarly, it is necessary to employ interface mediation

if the format of the service response does not match the

response as expected by the client.

 Context Monitoring: When a request is initially sent, it

will be sent with a given context. However, if the

context in which the original request was sent changes,

then this might affect the decision of which service to

bind to. Therefore, it is necessary to monitor for any

changes in context to allow the selection of the most

appropriate service to meet the request, given the

context change [14].

Figure 1. System Model of Dynamic Binding in SOC.

Figure 1 depicts the system model for a Dynamic
Binding System (DBS) where the following algorithm is
employed:
1. The client sends an abstract request to the DBS, which

acts as a broker between the consumer and provider(s).

2. The request is received and processed to ascertain the

aims of the consumer’s request.
3. Once processed, the request is passed to the service

discovery mechanism to discover functionally-

equivalent candidate service or services that will meet

the client’s request.

4. Once the candidate services have been obtained, the

service selection mechanism will use the consumer’s
nonfunctional requirements to rank the services in order

to find the best service. Either the top ranked candidate

service is chosen to be the concrete service instance or a

service is chosen from a pool of services that meet or

exceed the requests minimum nonfunctional

requirements [4, 14].

5. The integration mechanism ensures that the consumer’s
abstract request is interoperable with concrete service

interface.

6. After integration phase, the request is then passed to the

concrete service instance.

7. The response from the provider is then passed back to

the integration mechanism so that the response can be

formatted in such a way that is understood by the

consumer.

8. A context monitor is included so that the current

context of the consumer’s request is maintained. If
there is a change, then the monitor can ensure the

system adapts as necessary.

B. Fault Model for Dynamic Binding in SOC

Now that we have described the system model, in order
to evaluate a DBS from a functional perspective the next step
is describing the types of fault that can affect the DBS.

The fault model is based on the work of Avizienis et al.
in [15] and Chan et al. in [16]. In their seminal work,
Avizienis et al. present a comprehensive taxonomy that seeks

to capture the classes and categories of faults that can affect
software systems. Similarly, Chan et al. take this approach
and apply it to Web Services to present a fault taxonomy for
web services. In this paper, we further extend these works to
include the dynamic binding of services. The fault model is
listed below:

 Request Processing Faults: Processing a client's

request is important as it ascertains the needs of the

consumer. However, if the request has been poorly

formatted, or if the request falls outside of the system

scope, then this component may fail. In this case, the

request would be considered to be not complete [17].

Alternatively a Network Time-out could occur between

the client and the DBS.

 Discovery Faults: Although how service discovery is

implemented is out of scope for this paper, it is still

important to understand the faults that could occur.

Correct service discovery is key to the successful use of

dynamic binding as if no service exists, or the wrong

search parameters are used, then the system will fail

[12]. Typical faults include 'Service does not exist' and

'Network Time-out'.

 Selection Faults: Selection faults occur when the

dynamic binding system selects the wrong service, or

there is no suitable candidate service available. Typical

faults include 'Invalid Selection Criteria' [8], and 'No

Suitable Service' where there is no service that meets

the minimum nonfunctional criteria [4].

 Integration Faults: Integration faults occur as a result

of one or more services not being interoperable and

where the mediation between the interfaces and/or

protocols is not possible. This might include 'Interface

Mismatch', 'Incorrect Response' and 'Dependency'

faults [7].

 Context Faults: Context faults occur when either the

current context is not reported correctly, or that the

timing of selecting the 'best' service is incorrect. Faults

that occur here would include 'Timing' [4] and

'Monitoring' faults [14]

IV. EVALUATION FRAMEWORK (DBS-EF)

In order to evaluate a dynamic binding system, we have
developed a framework for the testing of a DBS
implementation. Our framework allows a DBS to be placed
within a controlled environment that is able to manage all
messages into, and out from the DBS. We then use the
system and fault models to guide the selection and placement
of faults. By inducing failures at one or more of the
components in the system model, we can observe the
behavior of the DBS by monitoring the outputs of the
system. This black-box approach means that we are not
dependent on the implementation details of the DBS, in
order to introduce faults and we are able to concentrate more
on the behavior of the DBS in the presence of faults.

A. DBS-EF Implementation

The first component of this framework is the
instrumented service. As we are focused on the testing of a
DBS, and in order to provide the DBS with input that is
faulty, we utilize handlers in each service to inject
appropriate faults based on the test cases. These handlers
connect to a Fault Coordination Service (FCS) that controls
the time and location of faults into the DBS. This Fault
Coordination Service uses a test campaign that is supplied
via the user prior to the running of the Evaluation
Framework. This allows for a flexible framework that can
be tailored by the user to include user-defined failure modes
as the application demands.

The client is the entry point for the system and can also
supply faults to the system by sending invalid requests to the
DBS. The client is also responsible for collating the output
from the FIS, and the handlers to supply a summary of the
results to the user.

DBS Evaluation Framework

JAX-WS

Dynamic Binding System

Client

S1

S2

S3

S4

S
n

Monitor

Discovery

Selection

Integration

Request
Processing

S2
S3
S4
S1
Sn

...

DBS-Fault
Coordination Service

JAX-WS
handler

JAX-WS
handler

JAX-WS
handler

JAX-WS
handler

JAX-WS
handler

Figure 2. Evaluation Framework for SOC that utilizes Dynamic Binding

We have developed the implementation of our
framework using Web Services and SOAP. The
implementing technologies used are Java and Glassfish v3.1,
which uses JAX-WS for sending and receiving SOAP
messages. JAX-WS also allows the incorporation of
handlers that enable access to the SOAP messages being
passed between the DBS and service/client of the DBS.

The key benefit of our approach is that we are not
dependent on how the DBS is implemented. SOA relies on
standardized communication methods via defined interfaces
to allow a distributed computing environment. By taking
these key tenets of SOA, and by modularizing the evaluation
framework, we have ensured that the system can be applied
to any DBS system irrespective of its implementation.
Furthermore, our approach is a 'black-box' such that it is not
necessary to know the exact implementation of the DBS in
order to evaluate it.

B. Test Cases

One of the key features of the Evaluation Framework is
to design and implement user-specified test cases. Here the

user can state the type of test, the expected output and the
number of times the test is to be run. This allows for an
extensible framework whereby the user is not limited to
predetermined outcomes, but can state what the DBS should
return to the user in the presence of a particular fault.

In our work, test cases for the evaluation framework was
based on the fault model, and targeted the individual
components of the system model. The purpose of these test
cases was to see how faults in each of these components
affected the behavior of a DBS under test. By selecting the
types of test and through comparison of the expected output
with the actual output, we would be able to ascertain whether
or not a DBS can tolerate faults.

For this paper, as an illustration of how this technique
will aid the evaluation of a DBS we have concentrated on the
interactions between the client and the DBS only. Here, we
focus on faults relating to invalid requests. A request to the
DBS consists of two parts; the request itself and a QoS
attribute and value. As such, we have split the test cases into
two different sub-cases – Invalid Request, and QoS faults.

C. Invalid Request Fault

An invalid request fault has the following test cases:
Missing Token(s), Incorrect Parameter Types, Parameter
Mismatch, Empty Request, Zero Parameters, and Empty
Parameters. Relating to this are the expected outputs from
the DBS when faced with the above faults. Those outputs
are: Invalid Request Exception (specific error handler
response), and No Service Available. In addition to this,
there are also outputs relating to unexpected outputs, i.e.
indicators that the DBS cannot tolerate the fault being
introduced. In this case, the outputs are:

 Service Response: the DBS binds to a service and

returns a response when an exception should have been

raised.

 Binding Fault: as the name suggests refers to a service

has been bound to the request erroneously.

 Unexpected Exception: an exception is raised that

does not correspond to the expected output.

 No Response: the DBS does not return anything

indicating either a failure in the network, or a crash of

the hardware, the hosting environment or the DBS

itself.
Table I gives the range of test cases that were employed.

D. QoS Faults

QoS faults has the following test cases: Unrecognized
QoS Attribute, Missing Attribute, Missing Value, Negative
Value, Max Boundary Value + 1, Min Boundary Value - 1,
Invalid Value Type. The expected outputs from these faults
are QoS Exception (specific error handler response), Binding
Exception, Unexpected Error, and No Response.

In table I, we specify that test cases for an Invalid
Request should return the following:

 No Service Available: here the DBS cannot find a

service that can meet the client request

 Invalid Request Exception: here the DBS returns a

meaningful error back to the client that states that the

request cannot be fulfilled due to an invalid request

being passed to the DBS.

 Service Response: here the DBS returns a response

from the concrete service chosen by the DBS.
The remaining test cases relate to the behavior of services

to the DBS. As we are focused on the interaction between
the client and the DBS, these test cases are out of scope.

TABLE I. INVALID REQUEST TEST CASES

Test	Cases Input Expected	Output

Missing	Tokens add(,	3) Invalid	Request	Exception

Missing	Tokens add(1,) Invalid	Request	Exception

Missing	Tokens add(1,	3 Invalid	Request	Exception

Missing	Tokens dd(1,	3) No	Service	Available

Incorrect	Parameter	Types add("one",	3) Invalid	Request	Exception

Incorrect	Parameter	Types add(1,	"three") Invalid	Request	Exception

Parameter	Mismatch add(1) No	Service	Available

Parameter	Mismatch add(1,	3,	+) No	Service	Available

Parameter	Mismatch add(3,	1) Service	Response

Empty	Method	call "" Invalid	Request	Exception

Zero	Parameters add() No	Service	Available

Empty	Parameters add(null,	null) Invalid	Request	Exception

Misbehaving	Service(s) - -

Slow	Service - -

Unresponsive	Service - -

Incorrect	Results - -

Binding	Failure - -

Unavailable	Service - -

No	Service	Available - -

E. Output from the DBS-EF

As mentioned previously, the DBS-EF will output a
summary of the results of the test cases. In order to marry up
the test case results, we record details in log files of the
input, output and any faults that have been introduced. The
log files also indicate which of the DBS-EF services were
called, and the response they supplied back to the DBS. The
client also records the response as received from the DBS.

A sample of the output is supplied below:

08-02092: QoS Exception; 5;

2092,2012-07-18 19:58:20.088, No Fault,

http://addws.scs5ajs.leeds.ac.uk/

The above entry shows the following: Test Case ID and

test run ID, expected output from the DBS, actual output
from the DBS and finally an entry from the DBS-FCS log.
The DBS-FCS log states the following: test run ID,
timestamp, type of fault to be injected, and the URI of the
web service being invoked.

V. DBS-EF EXPERIMENTS AND RESULTS

We have developed a specimen Dynamic Binding
System based around an online distributed calculator as
shown in Figure 3 in order to test the effectiveness of our
framework. Here the DBS would field requests and then
choose from six web services. Two web services
(CalculatorWS and CalcWS) offered a full range of methods:
add, subtract, multiply and divide. One web service offered
multiplication only (MultiplicationWS) and three offered
addition only (AdditionWS, AddWS1, AddWS2). Each of
these services were provided with an advertised QoS

attribute of Availability which was set and fixed for the
duration of the experiments. As we were testing the
interaction between the client and the DBS, none of the
services were instructed to behave erroneously and
consequently assumed to be fault free.

In order to obtain meaningful results, each test case was
run 100 times on an Apple MacBook Air, with a 1.8GHz
Core i7 processor with 4GB RAM. Furthermore, we used
soapUI 4.5.0 to verify requests to confirm our observations
in certain cases where we felt the results needed further
investigation.

Of the two types of test, there were a total of 12 different
test cases for invalid requests, and 9 different test cases for
invalid QoS. It is worth noting that these are not exhaustive
test cases, and only represent some of the major types of
fault to be encountered. Our work is not to provide an
exhaustive suite of test cases, but to provide a modular,
extensible framework such that new test cases can be
appended to the suite of existing test cases.

As each individual test case was run 100 times, this gave
us a total

 test case runs.

1) Invalid Request Test Results
From the results of the experiments involving invalid

requests, we observed that the tests were repeatable and
would return the same results for each set of test cases.

We also observed that only 16.67% of test cases returned
a result that was expected, 83.33% returned a result that was
different to the expected output, with no services failing to

return a response.

Figure 3. Experimental Dynamic System

Further analysis showed that 25% of tests returned a
NullPointerException instead of an Invalid Request
Exception. 16.67% of tests returned a NullPointerException
instead of matching against services’ functional
requirements. 8.33% of tests returned a response that was
correct from the called service (i.e., 3 + 1 = 4), instead of an
Invalid Request Exception. 8.33% of tests returned an
IndexOutOfBoundsException due to there being too few
parameters instead of not matching against the functional
properties of the service, or mediating the request properly.

Dynamic
Binding
System

AdditionWS

CalculatorWS

AddWS1

AddWS2

CalcWS

Client

MultiplicationWS

25% returned a response that was incorrect from the service
(i.e., 3 + 1 ≠ 4).

Figure 4. Breakdown of Invalid Request test case results.

What the framework tells us is that the DBS under test
does not provide meaningful error messages back to the user
in the event of an invalid request. What we note in particular
is the tendency for the DBS to process requests where
parameters are not of a valid type. For example, if the
request was: add(1, “three”), the DBS returned the

value 1. This appeared to be an issue with JAX-WS, as
supplying the above request via the soapUI tool showed that
JAX-WS replaces all non-integer values with zero, such that

the request becomes add(1, 0). This was the same for the

case where the request was add(“null”, “null”).
However, it is still the responsibility of the DBS to mediate
this kind of error such that either the string is converted to an
integer where possible, or it returns an error message to the
user.

2) Invalid QoS Test Results
From running the tests for invalid QoS requests, we

observed that as before, the tests returned the same results on
repeated runs. In 33.33% of cases, the returned result from
the DBS matched the expected result in the test case. We
subsequently considered these as passed tests. In 33.33% of
cases the DBS returned a correct result from the service,
when we expected an exception due to a poorly formatted
QoS requirement. In 33.33% of test cases the DBS returned
a response from the service which was correct as previous,
when we expected there to be No Services Available to field
our request. Lastly, no test case failed to receive a response
from the DBS indicating that all test cases were serviced by
the DBS.

As before, we used the soapUI framework to verify some
of our observations. The one interesting observation was
that if we supplied a QoS attribute that we knew to be
unknown to the DBS (for example, a random string of text),
then the DBS would still return a result if the value of the
bogus attribute was less than the advertised values of the
registered services with the DBS.

What we concluded from this is that the DBS does not
properly check for the QoS attribute when considering
candidate services.

Figure 5. Breakdown of Invalid QoS test case results.

3) Observations
As mentioned, a total of 2100 tests were run, and when

we combine both data sets, we see that 14.29% of tests
returned the expected result with 85.71% of tests failing to
return a result that matched the expected outcome.

From this we were able to conclude that the Request
Processing (RP) component was unable to process the
request appropriately but failed to return a meaningful error
message to the user. Consequently, it would require the
developer of the DBS to redesign the RP component in order
to handle invalid input.

VI. RELATED WORKS

A. Comparison with Farj and Looker

Our work is similar to that of Nik Looker in [10] and
Khaled Farj, et al. [18] in that we are using fault injection in
a Service Oriented Environment. In Looker's work, the
author is testing the dependability of web services by placing
those services in an instrumented Apache Axis
implementation. Whilst this approach afforded the tester a
non-invasive approach for fault injection, it focuses solely on
the testing of services. It also requires that the service is
deployed on the instrumented Axis container, which limits
the portability of the approach.

Farj in [18] extended Looker's approach by providing a
framework based on web service proxies and employing
network emulation in order to provide a real-world
environment to test services. For each service instance, a
proxy is generated and the fault injection campaign is
employed by intercepting messages into, and out of each
service under test. The network emulation then afforded a
realistic distributed environment for the services. One
advantage of this approach is that it was no longer required
to have the service residing on an instrumented service
container. However, this approach also focuses on the

testing of services only and does not consider dynamic
binding.

Our work differs from both of these works as we are
focused on testing the dependability of a Dynamic Binding
System that brokers requests to concrete service instances
and not the correctness (or absence thereof) of the concrete
service instances. Similar to Looker and Farj, we adopt a
fault injection approach as it does not require access to the
source code of the DBS under test, and we have employed a
distributed test environment so as to avoid being restricted in
terms of the DBS implementation technologies.

Existing work in dynamic binding focuses on the
development of techniques to enable dynamic behavior in
SOC. For example, [6] utilizes dynamic service discovery at
runtime for an abstract workflow. Additionally, [7] looks at
techniques for matching abstract services to concrete service
instances. Finally [14] looks at incorporating QoS attributes
into dynamic service selection and invocation.

All these works follow a common algorithm as
mentioned in section III. Where our work differs from the
above works is that we are focused on the dependability of
dynamic binding in SOC as opposed to identifying a new
technique that enables dynamic behavior.

B. Dependability in SOC

Jhumka in [12] presents a high-level model for the
dependability of SOC, however, this model is too abstract to
be applied as a testing framework for Dynamic Binding in
SOC.

Similar to Jhumka, Chan in [16] created a fault taxonomy
for web services. This taxonomy whilst being more suited to
our research, still failed to consider how dynamic binding
affects the dependability of service-oriented architectures
such as web services.

In order to be applicable to our work, we have sought to
extend these works to incorporate dynamic binding in the
system and fault models. These models have been used to
provide a series of test cases that can be used to evaluate a
DBS. Our results have shown that we are able to exercise
the fault tolerance mechanisms (or absence thereof) of a
DBS under test.

VII. SUMMARY

In this paper, we have shown that to the best of our
knowledge, there exists a gap in present literature, as the
dependability of dynamic binding is not considered. To
remedy this, we have presented new system and fault models
for dynamic binding in SOC.

Furthermore, we have presented a novel method for the
testing and evaluation of a Dynamic Binding System (DBS).
This DBS Evaluation Framework (DBS-EF) is based on
research into the types of component needed to realize a
DBS and the types of fault that can affect a DBS that would
need to be tolerated.

The DBS-EF utilizes a series of test cases designed to
exercise the components to determine the presence (or lack
thereof) of fault tolerance mechanisms by injecting faults
based on the fault model into messages sent into and from
the DBS. This is achieved via the use of instrumented

services, and a Fault Injection Service that coordinates the
placement and timing of faults.

In this paper, we have tested the interactions between the
client and the DBS via a suite of test cases based around the
fault model. The results of our experiments have shed light
on the implementation of the DBS under test, its fault
tolerance mechanisms (or lack thereof) and also given insight
into the workings of JAX-WS as a web services container.

A. Future Work

Presently our work concentrates on only on the
interactions between the client and the DBS and so only one
type of fault – Invalid Request. However, our future work
will include interactions between the DBS and registered
services, as well as the full suite of faults. We will also be
dealing with multiple QoS attributes. Finally, we intend to
plug-in a real DBS implementation in order to further
validate our results.

ACKNOWLEDGMENT

The work reported in this paper has been supported in
part by the NECTISE program jointly funded by BAE
Systems and the U.K. EPSRC Grant EP/D505461/.

REFERENCES

[1] 1 Vuković, M., Kotsovinos, E., and Robinson, P.: ‘An
architecture for rapid, on-demand service composition’, Service Oriented
Computing and Applications, 2007, 1, (4), pp. 197-212

[2] 2 Papazoglou, M.P., and van den Heuvel, W.J.: ‘Service oriented
architectures: approaches, technologies and research issues’, The VLDB
Journal The International Journal on Very Large Data Bases, 2007, 16, (3),

pp. 389-415

[3] 3 Callaway, R.D., Devetsikiotis, M., Viniotis, Y., and Rodriguez,

A.: ‘An Autonomic Service Delivery Platform for Service-Oriented

Network Environments’, Services Computing, IEEE Transactions on, 2010,
3, (2), pp. 104 -115

[4] 4 Mabrouk, N.B., Beauche, S., Kuznetsova, E., Georgantas, N.,

and Issarny, V.e.: ‘QoS-aware service composition in dynamic service

oriented environments’, in Editor (Ed.)^(Eds.): ‘Book QoS-aware service

composition in dynamic service oriented environments’ (Springer-Verlag

New York, Inc., 2009, edn.), pp. 1-20

[5] 5 Erradi, A., and Maheshwari, P.: ‘Dynamic binding framework
for adaptive web services’, in Editor (Ed.)^(Eds.): ‘Book Dynamic binding
framework for adaptive web services’ (2008, edn.), pp. 162-167

[6] 6 Di Penta, M., Esposito, R., Villani, M.L., Codato, R., Colombo,

M., and Di Nitto, E.: ‘WS Binder: a framework to enable dynamic binding

of composite web services’, in Editor (Ed.)^(Eds.): ‘Book WS Binder: a
framework to enable dynamic binding of composite web services’ (ACM,
2006, edn.), pp. 74-80

[7] 7 Cavallaro, L., and Di Nitto, E.: ‘An approach to adapt service

requests to actual service interfaces’, in Editor (Ed.)^(Eds.): ‘Book An
approach to adapt service requests to actual service interfaces’ (ACM,
2008, edn.), pp. 129-136

[8] 8 Maximilien, E.M., and Singh, M.P.: ‘A framework and ontology
for dynamic web services selection’, IEEE Internet Computing, 2004, 8,
(5), pp. 84-93

[9] 9 Zheng, Z., and Lyu, M.R.: ‘Collaborative Reliability Prediction
for Service-Oriented Systems’, in Editor (Ed.)^(Eds.): ‘Book Collaborative
Reliability Prediction for Service-Oriented Systems’ (2010, edn.), pp. 35-

44

[10] 10 Looker, N.: ‘Dependability Analysis of Web Services’, Durham
University, 2006

[11] 11 Bruning, S., Weißleder, S., and Malek, M.: ‘A fault taxonomy
for service-oriented architecture’, in Editor (Ed.)^(Eds.): ‘Book A fault

taxonomy for service-oriented architecture’ (2007, edn.), pp. 367-368

[12] 12 Jhumka, A.: ‘Dependability in Service-Oriented Computing’, in
Editor (Ed.)^(Eds.): ‘Book Dependability in Service-Oriented Computing’
(Springer London, 2010, edn.), pp. 141-160

[13] 13 Zheng, Z., and Lyu, M.R.: ‘A Distributed Replication Strategy
Evaluation and Selection Framework for Fault Tolerant Web Services’, in
Editor (Ed.)^(Eds.): ‘Book A Distributed Replication Strategy Evaluation
and Selection Framework for Fault Tolerant Web Services’ (2008, edn.),
pp. 145 -152

[14] 14 Châtel, P., Malenfant, J., and Truck, I.: ‘QoS-based Late-

Binding of Service Invocations in Adaptive Business Processes’, in Editor

(Ed.)^(Eds.): ‘Book QoS-based Late-Binding of Service Invocations in

Adaptive Business Processes’ (2010, edn.), pp. 227 -234

[15] 15 Avizienis, A., Laprie, J.C., Randell, B., and Landwehr, C.:

‘Basic concepts and taxonomy of dependable and secure computing’,
Dependable and Secure Computing, IEEE Transactions on, 2004, 1, (1),

pp. 11-33

[16] 16 Chan, K., Bishop, J., Steyn, J., Baresi, L., and Guinea, S.: ‘A
Fault Taxonomy for Web Service Composition’, in Editor (Ed.)^(Eds.):
‘Book A Fault Taxonomy for Web Service Composition’ (Springer Berlin /
Heidelberg, 2009, edn.), pp. 363-375

[17] 17 Küster, U., and König-Ries, B.: ‘Dynamic Binding for BPEL
Processes - A Lightweight Approach to Integrate Semantics into Web

Services’, in Editor (Ed.)^(Eds.): ‘Book Dynamic Binding for BPEL
Processes - A Lightweight Approach to Integrate Semantics into Web

Services’ (Springer Berlin / Heidelberg, 2007, edn.), pp. 116-127

[18] 18 Farj, K., Yuhui, C., and Speirs, N.A.: ‘A Fault Injection Method
for Testing Dependable Web Service Systems’, in Editor (Ed.)^(Eds.):
‘Book A Fault Injection Method for Testing Dependable Web Service
Systems’ (2012, edn.), pp. 47-55

