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First-principles study of intrinsic point defects in hexagonal barium titanate 

J. A. Dawson, J. H. Harding, H.-R. Chen and D. C. Sinclair 

Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, 
Mappin Street, Sheffield, S1 3JD, UK 

 

 

Density functional theory (DFT) calculations have been used to study the nature of intrinsic 

defects in the hexagonal polymorph of barium titanate. Defect formation energies are derived for 

multiple charge states and due consideration is given to finite-size effects (elastic and 

electrostatic) and the band gap error in defective cells. Correct treatment of the chemical 

potential of atomic oxygen means that it is possible to circumvent the usual errors associated 

with the inaccuracy of DFT calculations on the oxygen dimer.  Results confirm that both mono- 

and di-vacancies exist in their nominal charge states over the majority of the band gap. Oxygen 

vacancies are found to dominate the system in metal-rich conditions with face sharing oxygen 

vacancies being preferred over corner sharing oxygen vacancies. In oxygen-rich conditions, the 

dominant vacancy found depends on the Fermi level. Binding energies also show the preference 

for metal-oxygen di-vacancy formation. Calculated equilibrium concentrations of vacancies in 

the system are presented for numerous temperatures. Comparisons are drawn with the cubic 

polymorph as well as with previous potential-based simulations and experimental results.     
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I. INTRODUCTION                

    The perovskite, barium titanate, receives considerable attention for its electrical properties 

which include ferroelectricity, piezoelectricity and a high dielectric constant1-3. Such properties 

mean that it plays a major role in numerous technological applications including multi-layer 

capacitors and positive temperature coefficient (PTC) thermistors. It is not only the cubic close 

packed perovskite structure (c-BaTiO3) that displays useful properties; the high temperature (> 

1425 ˚C) hexagonal polymorph (h-BaTiO3) also displays interesting and potentially useful 

electrical properties depending upon the temperature4-6 and chemical dopants present7. In 

addition to these electrical properties, semiconductivity can also be induced in undoped h-

BaTiO3 as a result of partial reduction of Ti4+ to Ti3+ ions when samples are prepared at high 

temperature under inert or reducing conditions8,9. Through partial re-oxidation of these samples, 

‘colossal’ permittivity effects can be achieved8. Samples prepared in this way also result in 

oxygen deficiency; both experiment and simulation have confirmed that the oxygen loss occurs 

solely at face sharing (O1) sites9-11, see Fig. 1(a). Such intrinsic defects are crucial in controlling 

the electrical properties in this semiconducting material as illustrated by recent publications by 

Natsui et al12,13 on the diffusion behaviour of oxygen in h-BaTiO3. As is the case with the other 

polymorphs of BaTiO3, the main focus of research on h-BaTiO3 is on doping and in particular, 

on transition metal doping14,15.  

    While there exists a significant number of DFT studies completed on c-BaTiO3
16-19, there are 

very few DFT studies (or indeed simulation studies) on the hexagonal polymorph. Colson et al11, 

however, did complete calculations on both the c- and h-polymorphs and obtained good 

agreement with experimental structures as well as simulating Ru-doping of the h-polymorph at 

multiple concentrations. Furthermore, defect formation energies have been derived for intrinsic 
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mono- and di-vacancies using DFT for c-BaTiO3
17, although unlike in this work, the oxygen 

chemical potential was established by calculating the total energy of the oxygen dimer directly, 

whereas ideal gas relations were used for our calculations of the oxygen chemical potential (see 

Sec. II B). To the best of our knowledge no other in-depth study of intrinsic defect 

thermodynamics in h-BaTiO3 exists.       

    In this work, the Zhang-Northrup formalism20 is used to establish defect formation energies. In 

this formalism, the defect formation energy is defined as the difference between the Gibbs free 

energies of the defective and perfect cell with regard to specific chemical potentials and the 

contribution of electrons being added and removed. One drawback of zero-temperature DFT 

calculations is the exclusion of entropic and pressure/volume contributions to the Gibbs free 

energy of each particle. While this is a minor factor for solids as these contributions are small, it 

does present a significant issue for calculations on gaseous particles where such contributions are 

much larger. This problem can be corrected through the use of ideal gas physics in a method 

described by Finnis et al21 and employed more recently for the calculation of defect formation 

energies for alumina22.  Through the use of this method, chemical potentials for atomic species, 

namely oxygen in our case, can be made more accurate thorugh the combination of DFT 

calculations and standard thermodynamics as well as being defined for a specific temperature 

and oxygen partial pressure. The Gibbs free energy of a solid can be accurately determined by 

using the ground-state total energy obtained from DFT calculations.  

     The main purpose of this work is to determine accurate formation energies for the native 

defects of h-BaTiO3. In addition to Ba (VBa), Ti (VTi) and O (VO) mono-vacancies, Ti-O (VTi - 

VO) and Ba-O (VBa - VO) di-vacancies have also been considered, including the binding energies 

of such di-vacancies. Finite-size scaling and band gap corrections have also been applied. The 
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results show a large difference in energy between these defects and this is reflected in the 

calculated concentrations of each vacancy type and possible vacancy site. Such results will 

enable quantitative comparison both with experiment and with previous results calculated for c-

BaTiO3
17.        

    In the following section, we describe the computational approach and methods used to derive 

the formation energies and concentrations of the defects as well as the corrections involved. In 

Sec. III, the results are presented, including defect formation energies for all possible mono-

vacancies and selected di-vacancies, binding energies of VTi - VO and VBa - VO defect pairs, 

cation vacancy concentrations and the relaxed defect geometries of the most prominent mono-

vacancies. The work is concluded in Sec. IV.                             

 

II. METHODOLOGY 

A. Computational details 

    All calculations in this work were performed using the Vienna Ab initio simulation package 

(VASP)23 with the local density approximation (LDA)24,25 and projector augmented-wave 

method26.27. The LDA was chosen to provide consistency with results previously obtained for the 

cubic polymorph of BaTiO3
17. For greater accuracy, the 3s and 3p electrons of the Ti atoms were 

included in the valence electrons for all calculations. Defect formation energies were calculated 

using the h-BaTiO3 30 atom unit cell as well as 60 (2 X 1 X 1) and 120 (2 X 2 X 1) atom 

supercells. A full description of the finite-size extrapolation procedure is given in Sec. II C. A Γ-

point centred 4 X 4 X 3 k-point mesh was used for Brillouin zone integration for the 30 and 60 

atom cells and a 3 X 3 X 2 mesh for the 120 atom cells. A plane wave cutoff energy of 500 eV 
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was applied for all defect calculations. In the case of charged defects, a neutralizing background 

charge was used to preserve cell neutrality.  

 

B. Defect calculations         

    Using the Zhang-Northrup formalism20, the formation energy ( ) of a defect in charge state  

 can be calculated with respect to chemical potentials and the Fermi level: -   

 

 

 
 
where  is the total energy of the defective system and  is the total energy of the 

perfect reference cell. The dependence upon the Fermi level, , is given in the second term, 

here is the position of the valence band maximum (VBM). In this equation,  takes a 

value between 0 and Eg, where Eg is the band gap of the material. The final term defines the 

contribution of the chemical potentials of each atomic species,  is the number of atoms of 

element i removed or added to create the defect,  represents the chemical potential of element i 

and is the sum of the chemical potentials of the reference state and the chosen chemical 

environment (as calculated by equations 3-6 below). The chemical potential of the reference state 

for an element is equivalent to its calculated total free energy per atom (see Sec. III A).  

    From the calculation of defect formation energies, the concentration of that defect in 

equilibrium at a particular temperature can be obtained28: -  

 

(1) 

 

(2) 
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where  is the concentration of possible defect sites,  is the Boltzmann constant and T is the 

temperature. These values can enable quantitative comparison with experiment and in the case of 

h-BaTiO3 an insight into preferred vacancy sites is provided.  

    For defect formation energy calculations, chemical potentials must be calculated to establish 

the thermodynamic boundaries of the system. As discussed in Sec. I, the small temperature and 

pressure dependence of the chemical potential per unit cell of a solid (e.g. Ba, Ti) can be 

neglected. This allows the use of T = 0 K total energy calculations for these atomic species and 

the bulk crystal (as well as its formation energy) to define thermodynamic reservoirs where the 

chemical potentials of the individual atoms cannot exceed the formation energy of the crystal: -  

 

In addition to this condition, further constraints come from the formation of competing 

compounds: -  

 

 

The combination of these equations confines the values of the chemical potentials of the atomic 

species to the stability range of BaTiO3.  

    While it is acceptable to use T = 0 K total energy calculations to define thermodynamic 

boundaries for solids, the chemical potential of gaseous oxygen has a far stronger dependence 

upon temperature and pressure. Furthermore, the choice of functional and pseudopotentials in 

calculating  results in significant error due to the inaccuracies of DFT in simulating the 

oxygen dimer as discussed by Hine et al22. In this work, a method developed by Finnis et al21 is 

(3) 

(4) 

(5) 
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used to avoid calculating  directly from DFT calculations. By using the experimental 

formation energy of BaTiO3 and T = 0 K total energy calculations for Ba and Ti, the oxygen 

chemical potential at standard pressure and temperature, , can be determined without 

the need for direct calculation. Through the use of ideal gas relations and , the 

oxygen chemical potential can be derived for a specific temperature and pressure, . 

The reliability of this approach has been confirmed by comparison to thermodynamic data29. The 

value of  for a specific temperature and pressure is obtained from the ideal gas 

expression and formula for an ideal gas of rigid dumbbells: -  

 

The temperature contribution  is represented by: -  

 

where is the molecular entropy of oxygen gas (0.0021 eV/K) and  is its constant pressure 

heat capacity (7 /2); both values are taken from Ref. 30.  

      For most of the results reported here, a temperature of 1698 K and an oxygen partial pressure 

of 1 atm have been used to calculate  in accordance with the experimental 

polymorphic phase transition conditions of c- to h-BaTiO3.  

 

 

 

(6) 

(7) 
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C. Finite-size corrections 

    One disadvantage of these types of DFT calculation is the spurious defect-defect interactions 

that occur between periodic images, with the magnitude being very much dependent on the 

charge of the defect and the size and shape of the supercell31,32. Elastic interactions are the main 

source of error for neutral defects. These interactions scale inversely to supercell volume, L-3, 

and hence are dealt with inherently by the finite-size scaling extrapolation process. For charged 

defects, electrostatic interactions can be corrected by a multipole expansion as presented by 

Makov and Payne33. The first term in this expression concerns monopole-monopole interactions 

and scales as L-1. This correction can be determined with prior knowledge of the static dielectric 

constant of the crystal, ε, and the Madelung constant of the supercell, α,:- 

 

Using first-principles calculations a value of ε = 57 was obtained for barium titanate34, this value 

was used in the present work. The next term in the multipole expansion relates to monopole-

dipole interactions. Similarly to the elastic interactions, this scales with L-3 and can therefore also 

be accounted for by the finite-size scaling procedure. The results of this procedure generally 

produced small extrapolation errors, as shown by Table 1. For strongly charged defects such Ti 

vacancies, quadrupole and higher terms may become important. However, they have not been 

considered in this work.      

 

 

 

(8) 
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D. Band gap corrections 

    Another shortcoming of DFT calculations is the underestimation of the band gap35. To account 

for this problem, we use the same approach that was used by Erhart and Albe17 for c-BaTiO3. 

This method shifts the valence band ( ) and the conduction band ( ) with respect to each 

other so that the correction energy is obtained from: - 

 

where  and represent the number of electrons occupying conduction band states and the 

number of holes occupying valence band states, respectively. A T = 0 K a band gap of 3.4 eV 

derived from extrapolation of higher temperature data36 was used to correct for the 

underestimation of the band gap while assuming the offset of the calculated band structure is 

restricted to the conduction band i.e.   = 0 and  = 3.4 eV -  . Such corrections only 

affect oxygen vacancies and di-vacancies in charge states below their full ionic values i.e. , 

 and  . Furthermore, these defects already have significantly higher 

formation energies than the equivalent defect in its nominal charge state over the majority of the 

band gap (See Sec. III B) and the band gap corrections succeed in only further increasing these 

defect formation energies.  

 

III. RESULTS AND DISCUSSION 

A. Bulk properties 

    To define thermodynamic boundaries (as described in Sec. II B) the bulk properties of h-

BaTiO3 and its constituent elements/compounds in their standard states must be calculated. All 

(9) 
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bulk property calculations were completed using a Γ-point centred 13 X 13 X 13 k-point mesh and 

were fully converged to an accuracy greater than 1 meV per unit cell.  

    A lattice constant of 4.77 Å and a total energy of -2.24 eV/atom was calculated for bcc cubic 

Ba; these values agree reasonably well with the experimental equivalents of 5.03 Å37 and a 

cohesive energy of -1.90 eV38. Ti has a hcp structure with calculated lattice constants of a = 2.86 

Å and c = 4.54 Å (compared to experimental values of a = 2.95 and c = 4.69 Å39) and a total 

energy of -8.54 eV (compared to an experimental cohesive energy of -4.85 eV38).  

    Barium oxide (BaO) has the sodium chloride structure (Fm3m, space group number 225) with 

a lattice constant of 5.54 Å40 and an enthalpy of formation of -5.68 eV41. DFT calculations 

produce a lattice constant of 3.28 Å and an enthalpy of formation of -5.01 eV for BaO. Rutile 

TiO2 (P42/mnm, space group number 136) has lattice constants of a = 4.59 and c = 2.96 Å42 and 

an enthalpy of formation of -9.78 eV41, in comparison to calculated values of a = 4.56 and c = 

2.92 Å and an enthalpy of formation of -10.09 eV. For h-BaTiO3 (P63/mmc, space group number 

194), lattice constants of a = 5.66 and c = 13.80 Å were calculated which agree well with 

experimental values of a = 5.72 and c = 13.96 Å43. There is also excellent agreement between the 

calculated and experimental enthalpy of formation energies, an experimental value of 17.20 eV44 

and a calculated value of 17.19 eV. In general there is good agreement between the experimental 

and calculated properties of the bulk materials, however, the tendency of LDA calculations to 

underestimate lattice constants is clear, particularly in the cases of BaO and Ba.    
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B. Defect structures                 

    All types of possible mono-vacancies were considered in h-BaTiO3: this includes both 

possible sites for each vacancy and selected di-vacancies. Di-vacancies associated with the Ba2 

atoms and Ti2 atoms located in the Ti2O9 dimers of h-BaTiO3 were chosen because of the strong 

binding behaviour between these sites and oxygen vacancies and because of the preference for 

the formation of these defects over Ba1 and Ti1 vacancies10, respectively. Multiple charge states 

were investigated for all types of vacancies. Fig. 1 shows the relaxed cell geometries for the most 

favourable mono-vacancies in their nominal charge state. 

     

FIG. 1. (Colour online) Relaxed cell geometries for (a) - bulk h-BaTiO3 and (b) - , (c) - , 

(d) -  defects. Vacancy positions are shown by dashed circles and arrows denote the 

direction of relaxation for atoms neighbouring the vacancy. Atoms on the cell boundary (i.e. Ti1 

and Ba1) and bonds have been omitted for clarity.         
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    The introduction of a face-sharing O1 vacancy (Fig. 1(b)) to the system causes the 

neighbouring O1 atoms to relax inwards, while the neighbouring Ti2 atoms move away from the 

newly formed 2+ charged site towards the layers of O2 atoms to accommodate the loss of 

attraction from the loss of the O1 atom. As expected the opposite occurs for the Ti2 vacancy 

(Fig. 1(c)): here O1 atoms are forced away from the 4- vacancy site, whereas the surrounding Ti 

and Ba atoms relax towards the vacancy site. Similar relaxations were observed in DFT 

calculations on vacancies in anatase TiO2
45. For   the local relaxations are not as pronounced 

due to the reduced charge density of a large Ba atom compared to a Ti atom. However, there is a 

small movement of the nearest Ba2 and Ti2 atoms towards the vacancy site (Fig. 1(d)).  

 

C. Formation energies 

    The results for the calculated defect formation energies for three different combinations of 

chemical potentials and with a Fermi level at the valence band maximum are presented in Table 

I. For each vacancy type, the lowest energy vacancy (and hence most prominent) is plotted as a 

function of the Fermi level in Fig. 2. The values in Fig. 2 refer to a μO value calculated at the 

formation temperature of h-BaTiO3, 1698 K, and an oxygen partial pressure of 1 atm. Only the 

energies of the vacancies in their nominal charge states ( ) 

are plotted because in the case of all vacancies, other charge states occupy a small part of the 

band gap or do not exist in the band gap at all.     

    For O vacancies, there is a clear preference for face-sharing O1 vacancies over corner-sharing 

O2 vacancies. This observation is confirmed by other simulations10,11 and by experiment9,46, 

where no evidence of O2 vacancies is reported for either doped or undoped h-BaTiO3. At the 
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metal-rich limit, oxygen vacancies dominate over the entire band gap with negative formation 

energies and hence are the most abundant defect. It is noteworthy that only at the conduction 

band minimum (CBM) does the formation energy reach 0 eV. This suggests that under these 

conditions stoichiometric h-BaTiO3 cannot form and that oxygen vacancies must always be 

present. This observation is confirmed by experiment, where under low  (metal-rich) 

conditions oxygen deficient h-BaTiO3 forms and re-oxidation is necessary to re-form the 

stoichiometric material9. The formation energies of both O1 and O2 vacancies are also 

considerably lower than the value found for c-BaTiO3, where a value of -5.07 eV in metal-rich 

conditions was obtained17. This is partly supported by previous calculations, where the vacancy 

formation energy from lattice statics calculations for O1 in h-BaTiO3 was lower than for an O 

vacancy in c-BaTiO3, but this in turn was lower than the vacancy energy for an O2 atom10. The 

most likely reason for this discrepancy is the different approaches taken in calculating μO in this 

work and in the work by Erhart and Albe17. If the temperature dependence of μO had been taken 

into account in the previous work, the formation energy of an O vacancy in c-BaTiO3 would 

undoubtedly have been lower. Additional error may also arise from the fact that static vacancy 

energy calculations do not take into account the chemical environment of the defect which makes 

direct comparison difficult. Under O-rich conditions, O1 vacancies only dominate in a section of 

the lower half of the band gap (a p-type material).                 

    Unlike O vacancies, neither Ti1 nor Ti2 vacancies ever reach negative formation energies 

under any combination of chemical potentials at the VBM. This is to be expected because of the 

difficulty in removing an ion with a high charge density such as Ti4+ from an ionic system. In 

DFT calculations by Moriwake et al.47 on c-BaTiO3, Ti vacancies are not observed in any 

chemical environment, although this is almost certainly a result of the fact that only neutral 
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defects were considered. High Ti vacancy energies in both c- and h-BaTiO3 have also been found 

using potential-based methods10,48,49. Regardless of this, Ti vacancies (and in particular Ti2 

vacancies) dominate in O-rich conditions in the top half of the band gap (a n-type material).  

Again, good agreement is achieved with lattice statics calculations as the Ti vacancy formation 

energies published here are higher than those for the cubic phase17, which is also true for the 

classical calculations10. It should be noted that Ba-site doping with trivalent lanthanides such as 

La in c-BaTiO3 does produce a substantial solid solution (~25 at%) where the compensation 

mechanism is the formation of Ti-vacancies, i.e. Ba1-xLaxTi1-x/4O3  with 0   0.2550.        

    The results for the formation energy of Ba vacancies suggest that for the majority of the band 

gap it is not the dominant species, either in metal-rich or O-rich conditions (although the 

magnitude of the formation energies is reasonable with respect to the other vacancy types). Fig. 2 

shows that for only a small portion of the band gap (EF = ~1.6 to 2.1 eV) in O-rich (Ba deficient) 

conditions does the Ba2 vacancy species become the dominant defect in the material. This may 

seem surprising considering the energetic penalty of removing a highly charged Ti vacancy. 

However, unlike a , a Ba vacancy does not have such a strong dependence on the Fermi level 

(2- charge compared to a 4- charge), that allows Ti vacancies to dominate in the top half of the 

band gap. Furthermore, calculations on the cubic polymorph also showed only a small area of the 

band gap in a similar chemical environment where Ba vacancies are the predominant defect17 

and previous calculations suggest Ba vacancies in h-BaTiO3 are less favourable than in c-

BaTiO3
10. Direct comparison with experiment is difficult for BaTiO3, as Ba and Ti vacancy 

abundances are measured in doped samples where the concentrations of such vacancies are 

strongly influenced by the nature of the dopant species51.      
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    Given the strong Coulombic interaction between point defects in BaTiO3, it is necessary to 

consider the formation of defect pairs between negatively charged metal vacancies and positively 

charged oxygen vacancies. The binding energy (Eb) of such a defect pair gives an insight into 

whether the defects prefer to pair or remain isolated. The binding energy of a defect 

pair/complex is calculated by: -   

 

where  and are the formation energies of the constituents and  is the 

formation energy of the binding pair. The binding energy is independent of chemical potentials 

and a negative value suggests that the defect pair will readily form. Binding energies of -0.35 eV 

and -0.08 eV were calculated for  and , respectively. For the Ti vacancy 

pairs, binding energies of -0.25 eV and -1.01 eV were observed for  and , 

respectively. This clearly suggests that defect pairs will readily form where possible, with 

 and  di-vacancies having the energetic preference, although, as previously 

discussed, in reality the presence of  defects has not been observed experimentally. Erhart 

and Albe17 obtained significantly stronger binding energies of -0.62 eV and -1.93 eV for the 

equivalent Ba-O and Ti-O di-vacancies in the cubic structure. The proposed reason for the 

greater Ti-O binding in the cubic polymorph is that for these types of di-vacancies in h-BaTiO3, 

there is competition between the attraction of the negatively charged  with both the 

positively charged  and the neighbouring Ti2 atom. This scenario does not exist for c-BaTiO3 

as all Ti atoms are separated by 4.00 Å and hence the Coulombic attraction is not as strong. In 

the case of the  di-vacancy, there is also increased strain because of the close proximity 

of surrounding O1 and O2 atoms which are attracted to , but experience repulsion from the 

(10) 
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binding  resulting in less favourable binding behaviour. A similar explanation can also 

account for the difference in the Ba-O binding energies between the two polymorphs as Ba 

atoms are also separated by ~4.00 Å in the cubic polymorph. As proposed in Ref. 17, it is most 

likely that oxygen vacancies bind to the immobile metal vacancies as they diffuse through the 

system.   
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TABLE I: Formation energies of mono- and di-vacancies in h-BaTiO3 under metal-rich and O-

rich conditions at T = 1698 K,  = 1 atm and with the Fermi level at the valence band 

maximum (EF = 0 in Eq. (1)). Values relevant to the band gap correction (Eq. (9)) are given in 

the third column. The finite-size extrapolation error is given in the final column.  

 

Defect q ne,h Ef (eV) (Metal-rich) Ef (eV) (O-rich)1 Ef (eV) (O-rich)2 Error (eV) 

VO1 0 -2 1.77 6.14 6.14 (0.19) 
 +1 -1 -2.60 1.77 1.77 (0.11) 
 +2 0 -6.80 -2.43 -2.43 (0.07) 
VO2 0 -2 2.55 6.92 6.92 (0.14) 
 +1 -1 -1.82 2.55 2.55 (0.05) 
 +2 0 -6.03 -1.66 -1.66 (0.12) 
VBa1 -2 0 10.47 4.73 6.54 (0.20) 
 -1 +1 9.82 4.08 5.89 (0.14) 
 0 +2 9.22 3.48 5.29 (0.02) 
VBa2 -2 0 10.21 4.47 6.28 (0.09) 
 -1 +1 9.63 3.89 5.70 (0.02) 
 0 +2 9.04 3.30 5.11 (0.14) 
VTi1 -4 0 17.50 10.13 8.04 (0.35) 
 -3 +1 17.00 9.63 7.54 (0.33) 
 -2 +2 16.45 9.08 6.99 (0.23) 
 -1 +3 15.92 8.55 6.46 (0.11) 
 0 +4 15.37 8.00 5.91 (0.11) 
VTi2 -4 0 16.25 8.88 6.79 (0.27) 
 -3 +1 15.74 8.37 6.28 (0.30) 
 -2 +2 15.27 7.9 5.81 (0.21) 
 -1 +3 14.73 7.36 5.27 (0.08) 
 0 +4 14.24 6.87 4.78 (0.09) 
VBa2 - VO1 -1 -1 7.39 6.02 8.11 (0.17) 
 0 0 3.06 

 
1.69 3.78 (0.07) 

 +1 +1 2.31 0.94 3.03 (0.09) 
VBa2 - VO2 -1 -1 8.39 7.02 9.11 (0.23) 
 0 0 4.10 2.73 4.82 (0.14) 
 +1 +1 3.49 2.12 4.21 (0.13) 
VTi2 - VO1 -3 -1 13.37 10.37 8.28 (0.12) 
 -2 0 9.20 6.20 4.11 (0.16) 
 -1 +1 8.62 5.62 3.53 (0.08) 
 0 +2 8.03 5.03 2.94 (0.06) 
 +1 +3 7.44 4.44 2.35 (0.17) 
VTi2 - VO2 -3 -1 13.32 10.32 8.23 (0.22) 
 -2 0 9.21 6.21 4.12 (0.31) 
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 -1 +1 8.45 5.45 3.36 (0.24) 
 0 +2 7.83 4.83 2.74 (0.07) 
 +1 +3 7.21 4.21 2.12 (0.09) 
 

1O-rich environment where  is at the maximum negative value defined by Eqs. 4 and 5.  
2O-rich environment where  is at the maximum negative value defined by Eqs. 4 and 5.       
 

 

     

FIG. 2. (Colour online) Variation of calculated defect formation energies of the lowest energy 

vacancy types in h-BaTiO3 with Fermi level energy (EF). Formation energies refer to the defect 

in its nominal charge state. The calculation of μO was performed at T = 1698 K and = 1 atm.         

 

D. Defect concentrations 

    Using the calculated defect formation energies at a specific combination of chemical 

potentials, the equilibrium defect concentrations can be calculated using Eq. 2. The 

concentrations of the most common defects at a range of temperatures in both Ba- and Ti-

deficient environments are given in Fig. 3. The concentrations are calculated at the Fermi level 

pinning energy (1.22 eV), this value represents the point at which the Fermi level of the material 

-10 

-5 

0 

5 

10 

15 

20 

0 0.5 1 1.5 2 2.5 3 3.5 

ΔE
f  

(e
V

) 

EF (eV) 

0 0.5 1 1.5 2 2.5 3 3.5 

EF (eV) 

0 0.5 1 1.5 2 2.5 3 3.5 

EF (eV) 

 

 

 

 

   

  
 

 

 
 

 

O-rich (Ba deficient) O-rich (Ti deficient) Metal-rich 

 

 

  

 



19 
 

cannot be closer to the valence band as the formation energy of certain defects becomes negative 

meaning that the stoichiometric material is not stable. Metal-rich conditions are not considered as 

the high formation energies of metal vacancies in this environment means that the concentrations 

will be negligible for most values of the Fermi energy. O vacancies are also omitted, as at the 

Fermi level pinning energy their formation energies are very low and will hence be very high in 

concentration and will always be the dominant defect.  

    At the pinning energy and under Ba-deficient conditions, titanium mono- and di-vacancies are 

low in concentration, with di-vacancies being preferred (~7.0 x 1010 cm-3 for VTi2 - VO1 at 1698 K 

compared to ~1.3 x 1010 cm-3 for VTi2 at the same temperature). Conversely, barium mono- and 

di-vacancies are significantly higher in concentration. VBa2 - VO1 shows the highest concentration 

for metal vacancies in Ba-deficient conditions with a concentration of ~9.7 x 1016 cm-3 at 1698 

K, an order of magnitude more than the second most important defect, VBa2. These vacancy 

concentrations are only valid for the undoped material as cation vacancies are often involved in 

compensating donor doped systems and will hence exist in higher concentrations in such doped 

systems52,53.    

    In Ti-deficient conditions, the VTi2 - VO1 di-vacancy pair is the commonest metal defect in the 

system. The concentration of these di-vacancies proves that where possible metal vacancies will 

preferentially bind to oxygen vacancies to lower the internal energy of the crystal. This is also 

confirmed by a molecular dynamics study on doped BaTiO3, where diffusion of VO is inhibited 

by its Coulombic attraction to cation vacancies54. Mono-titanium vacancies are also present in 

significant concentrations, while other defects are only present in far smaller concentrations.  
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     These results have been confirmed by experiment and thermodynamics calculations for both 

the cubic and hexagonal polymorphs of BaTiO3
55,56. Lee et al55 showed using XRD and by 

studying the phase transition temperature variation with respect to the Ba/Ti ratio that a greater 

solubility limit exists under Ba-rich (Ti-deficient) conditions than previously thought in addition 

to the already known solubility limit of the Ti-rich (Ba-deficient) side. This solubility in both Ba- 

and Ti-rich conditions suggests that both Ba and Ti metal vacancies are likely and that they will 

exist as partial-Schottky defects (VBa - VO and VTi - 2VO) in the system, a finding confirmed by 

thermodynamic theory56.           

 

 

FIG. 3. (Colour online) Defect concentrations of VTi2, VBa2, VTi2 - VO1 and VBa2 - VO1 in their 

nominal charge states for temperatures in the range 1500 – 1900 K at the Fermi level pinning 

energy (1.22 eV) in h-BaTiO3. 
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IV. CONCLUSIONS 

    In this work, we have completed an extensive density functional theory study of the intrinsic 

defects in h-BaTiO3. All possible mono-vacancies have been considered as well as metal-oxygen 

di-vacancies and all vacancies have been considered in a range of possible charge states. Defect 

formation energies have been calculated using the Zhang-Northrup formalism20 with necessary 

consideration given to the errors arising from the supercell approach and from the error 

associated with the calculation of the band-gap in DFT studies. The method of Finnis, Lozovoi 

and Alavi21 has also been applied for the calculation of the oxygen chemical potential to limit 

inaccuracies arising from the direct calculation of the oxygen dimer. Equilibrium defect 

concentrations are derived from formation energies for a range of temperatures.  

    Calculations confirmed that all types of vacancies studied exist in their nominal charge state 

over the majority of the band gap and that generally VO1 is the dominant defect in the system in 

accordance with experiment. Under metal-rich conditions, the formation energy of VO1 remains 

negative for all values of the Fermi level up to the conduction band minimum. This suggests that 

under such a low oxygen partial pressure, stoichiometry cannot exist in the system, a finding 

supported by experiment9. For oxygen-rich conditions, VO1 again dominates in the lower half of 

the band gap, while in the upper half metal di-vacancies are the most prevalent defects. Binding 

energies calculated for the VBa - VO and VTi - VO pairs suggest that these di-vacancies will 

readily form by the ‘capture’ of a mobile oxygen vacancy by a metal vacancy. Mono-metal 

vacancy concentrations are exceeded by di-vacancies concentrations, with the highest 

concentrated defects being VBa2 - VO1 (~9.7 x 1016 cm-3 (1698 K)) for a Ba-deficient environment 
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and VTi2 - VO1 (~1.1 x 1017 cm-3 (1698 K) for a Ti-deficient environment, as supported by 

experiment. Excellent agreement has also been observed with previous lattice statics and DFT 

calculations on the cubic polymorph of BaTiO3.  
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