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Abstract—Disjoint NP-pairs are an interesting model of
computation with important applications in cryptography and
proof complexity. The question whether there exists a complete
disjoint NP-pair was posed by Razborov in 1994 and is one
of the most important problems in the field. In this paper we
prove that there exists a complete disjoint NP-pair which is
computed with access to a very weak oracle (a tally NP-oracle).

In addition, we exhibit candidates for complete NP-pairs and
apply our results to a recent line of research on the construction
of hard tautologies from pseudorandom generators.

I. INTRODUCTION

Disjoint NP-pairs have been introduced by Grollmann

and Selman [1] as a complexity-theoretic tool to model

the security of public-key cryptosystems. Subsequently,

Razborov [2] established the link between disjoint NP-

pairs and propositional proof complexity by associating a

canonical pair to a proof system. This connection was further

developed by Pudlák [3] and Krajı́ček [4], [5] and is by now

a fruitful field of research contributing both to structural and

proof complexity (cf. [6]–[11] and [12] for a survey). Due

to these applications there has been strong recent interest in

the theory of disjoint NP-pairs and new exciting results have

been obtained which deepened our understanding of these

objects [6], [7], [13]–[15].

One of the most prominent questions in the field, posed by

Razborov [2], asks whether there exist complete disjoint NP-

pairs. While this problem has been open for 15 years, some

partial answers are known. First, the existence of optimal

propositional proof systems yields a sufficient condition

for the existence of complete NP-pairs [2], [16]. Second,

the question was shown to be largely independent of the

underlying reduction, namely, complete pairs exist under

strong many-one reductions if and only if they exist under

a rather weak variant of Turing reductions [14]. Third, the

question was studied in the relativised setting and was shown

to receive positive and negative answers under suitable

oracles [13], [14].

Our contribution here is to show that there exists a

complete disjoint NP-pair under a very weak oracle. More

precisely, we show that there is a pair (C1, C2) where the

components Ci are computed in nondeterministic polyno-

mial time with access to a tally NP-oracle such that every

disjoint NP-pair strongly many-one reduces to (C1, C2). We

remark that this result is considerably different from the

oracle results in [13] where the oracles are very complex.

Our completeness result connects to a recent line of re-

search, initiated by Cook and Krajı́ček [17], that determines

the power of proof systems computable in polynomial time

with the help of advice. In particular, Cook and Krajı́ček

proved that there exists an optimal propositional proof

system with only one bit of advice. In [18] we have shown

that instead of using a small amount of advice it also suffices

to use a sparse NP-oracle. Thus, in the same spirit as in [16],

our present result transfers the optimality result on proof

systems to a completeness result for promise classes. We

state a general theorem which applies to a large class of

promise classes with promise conditions in coNP.

In the second part of the paper, we apply our completeness

results from the first part to a recent research agenda

aiming at the construction of hard formulas for propositional

proof systems from pseudorandom generators (called proof

complexity generators). The theory of proof complexity

generators was developed by Krajı́ček [4], [19]–[21] and

Alekhnovich, Ben-Sasson, Razborov, and Wigderson [22],

[23]. It aims at proving lower bounds to the proof size of

strong proof systems like Frege systems and their extensions

which constitutes a major challenge in propositional proof

complexity. So far this program has proved to be successful

for weak systems like resolution [4], [22]. Here we give a

characterization of the hardness of these formulas for strong

proof systems in terms of disjoint NP-pairs. Whether such a

characterization helps to solve the original problem remains

open. But it provides further evidence that disjoint NP-pairs

are applicable to interesting, seemingly unconnected areas.

The paper is organized as follows. After reviewing basic

notions from the theory of proof systems and NP-pairs

in Section II, we prove in Section III the existence of

a complete disjoint NP-pair under a tally NP-oracle. We

also generalize the result to further promise classes and

derive sufficient conditions for the existence of complete NP-

pairs without oracle access. In Section IV we exhibit viable

candidates for such complete NP-pairs arising from strong

propositional proof systems. Finally, Section V discusses the

application of these results to the theory of proof complexity

generators.



II. PRELIMINARIES

We assume basic familiarity with complexity classes (cf.

[24]). Throughout the paper we fix the alphabet Σ = {0, 1}.

A set A ⊆ Σ∗ is sparse if there exists a polynomial p such

that for each n ∈ N, |A ∩ Σn| ≤ p(n). A sparse set A is

called tally if A ⊆ {1n | n ∈ N}. The set of all sparse and

tally sets are denoted by Sparse and Tally, respectively.

A. Propositional Proof Systems

Propositional proof systems were defined in a very general

way by Cook and Reckhow [25] as polynomial-time com-

putable functions P which have as its range the set of all

tautologies. A string π with P (π) = ϕ is called a P -proof

of the tautology ϕ. By P ⊢≤m ϕ we indicate that there is a

P -proof of ϕ of length ≤ m. If Φ is a set of propositional

formulas we write P ⊢∗ Φ if there is a polynomial p such

that P ⊢≤p(|ϕ|) ϕ for all ϕ ∈ Φ. If Φ = {ϕn | n ≥ 0} is

a sequence of formulas we also write P ⊢∗ ϕn instead of

P ⊢∗ Φ.

Proof systems are compared according to their strength

by simulations introduced in [25] and [26]. Given two proof

systems P and S we say that S simulates P (denoted by

P ≤ S) if there exists a polynomial p such that for all

tautologies ϕ and P -proofs π of ϕ there is an S-proof π′ of

ϕ with |π′| ≤ p (|π|). A proof system is called optimal if it

simulates all proof systems. Whether or not optimal proof

systems exist is an open problem posed by Krajı́ček and

Pudlák [26].

B. Disjoint NP-Pairs

A pair (A,B) is called a disjoint NP-pair if A,B ∈ NP

and A ∩ B = ∅. Grollmann and Selman [1] defined the

following reduction between disjoint NP-pairs (A,B) and

(C, D): (A, B) ≤p (C, D) if there exists a polynomial time

computable function f such that f(A) ⊆ C and f(B) ⊆ D.

If f performs a ≤p-reduction from (A,B) to (C, D), then

f is also allowed to map elements from the complement of

A∪B to C or D. Therefore f : (A,B) ≤p (C, D) does not

imply in general that f is a many-one reduction between A
and C or between B and D. This, however, is the case for

the following stronger reduction:

Definition 1 (Köbler, Messner, Torán [16]). A disjoint NP-

pair (A,B) is strongly reducible to a disjoint NP-pair

(C, D), denoted by (A,B) ≤s (C,D), if there exists a poly-

nomial time computable function f such that f−1(C) = A
and f−1(D) = B.

Equivalently, we can view ≤s as a reduction between

triples. In addition to the two conditions f(A) ⊆ C and

f(B) ⊆ D for ≤p we also require f(A ∪ B) ⊆ C ∪ D.

The reduction ≤s now has the property that if f re-

alizes a ≤s-reduction from (A,B) to (C, D), then f is

simultaneously a many-one-reduction between A and C as

well as between B and D. Clearly, this also serves as a

characterization of ≤s, namely:

Proposition 2. Let (A,B) and (C, D) be disjoint NP-pairs.

Then (A,B) ≤s (C,D) if and only if there exists a function

f ∈ FP such that f : A ≤p
m C and f : B ≤p

m D.

Obviously ≤s is a refinement of ≤p. It is indeed a proper

refinement as shown by Glaßer, Selman, and Sengupta [14].

III. COMPLETE DISJOINT NP-PAIRS UNDER A TALLY

NP-ORACLE

Here we prove our main result stating that a very weak

oracle suffices to obtain a complete disjoint NP-pair.

Theorem 3. There exists a strongly many-one complete

disjoint NP-pair under a tally NP-oracle, i.e., there exists a

tally set A ∈ NP and a disjoint pair (C1, C2) such that the

following holds:

1) the components C1 and C2 are computable in NPA

with only one query to the oracle A, and

2) every disjoint NP-pair strongly many-one reduces to

(C1, C2).

Proof: We choose a polynomial-time computable and

invertible tupling function 〈·〉 on Σ∗ which is injective on

lengths, i.e., for all strings x1, . . . , xn, y1, . . . , yn ∈ Σ∗,

|〈x1, . . . , xn〉| = |〈y1, . . . , yn〉| implies |xi| = |yi| for

i = 1, . . . , n. We also choose a polynomial-time computable

encoding of nondeterministic Turing machines by natural

numbers. In the following we do not distinguish in notation

between a machine and its encoding. If we represent a

natural number n in unary, we write it as 1n.

We define the oracle set A as follows:

A = {1m | m = |〈1M , 1N , 1n, 1t〉| where

M, N, n, t ∈ N; M,N encode

nondeterministic Turing machines and

there exists some x ∈ Σn such that

both M and N accept x in time ≤ t } .

Intuitively, the set A collects all pairs of nondeterminis-

tic machines which accept a common element. Hence, if

1|〈1
M ,1N ,1n,1t〉| ∈ A, then M, N will not define a disjoint

NP-pair.

By definition, the set A is tally. Let us verify that A ∈ NP.

Because of the length injectivity of the tupling function,

a number m ∈ N already uniquely determines the tuple

〈1M , 1N , 1n, 1t〉 with |〈1M , 1N , 1n, 1t〉| = m. Therefore,

on input 1m we can first determine the entries M, N, n, t
and then verify that M, N indeed encode nondeterministic

Turing machines. Next we guess a string x ∈ Σn and

nondeterministically simulate both M and N on input x
for at most t steps. If both computations accept, then we

accept the input 1m, otherwise we reject.
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Now we define the disjoint pair (C1, C2) which will be

≤s-hard for all disjoint NP-pairs. The component C1 takes

elements of the form

〈1M , 1N , x, 1t〉

with natural numbers M, N, t and a string x ∈ Σ∗. On such

input, C1 first queries the string 〈1M , 1N , 1|x|, 1t〉 to the

oracle A. If the answer is negative, then we simulate M
on input x for at most t steps and answer according to the

output of this simulation. If the answer is positive or if the

simulation does not terminate in t steps, then we reject. The

component C2 is defined analogously, except that we use

the machine N instead of M for the simulation.

To verify the hardness of (C1, C2), let (B1, B2) be

a disjoint NP-pair. Let M,N be nondeterministic Turing

machines for B1, B2, respectively, and let p be a polynomial

bounding the running time of both M and N . Then (B1, B2)
strongly many-one reduces to (C1, C2) via the reduction

x 7→ 〈1M , 1N , x, 1p(|x|)〉 .

The correctness of the reduction is easy to verify.

It is known that there is a close connection between

disjoint NP-pairs and functions from NPSV, single-valued

functions computable in nondeterministic polynomial time

(cf. [13], [27], [28] for definitions and background in-

formation). Using this correspondence we can formulate

Theorem 3 differently as:

Corollary 4. There exists a tally NP-set A and a function

f ∈ NPSVA
such that every function from NPSV is many-

one reducible to f .

From Theorem 3 we also get a sufficient condition for the

existence of complete disjoint NP-pairs:

Corollary 5. If NP = NPNP∩Tally
, then there exist ≤s-

complete disjoint NP-pairs.

We can rephrase this corollary using the notion of low sets

from [29]. Recall that a set A ∈ NP is low for the nth level

Σp
n of the polynomial hierarchy if (Σp

n)
A ⊆ Σp

n. Intuitively,

if a set A is low for Σp
n, then A is useless as an oracle for

the class Σp
n. All sets A ∈ NP which are low for Σp

n are

collected in the nth level Ln of the low hierarchy. Using this

terminology, we can express Corollary 5 differently as:

Corollary 6. If NP ∩ Tally ⊆ L1, then there exist ≤s-

complete disjoint NP-pairs.

Whether or not NP ∩ Tally ⊆ L1 is open, but Ko and

Schöning [30] have shown that NP ∩ Sparse ⊆ L2.

We remark that Theorem 3 allows for a generalization

to other promise classes. In order to state the result, let us

review the general notion of a promise class as defined e.g.

in [16]. A promise R is described as a binary predicate

between nondeterministic polynomial-time Turing machines

N and strings x, i.e., R(N,x) means that N obeys promise

R on input x. A machine N is called an R-machine if N
obeys R on any input x ∈ Σ∗. Given a promise predicate

R, we define the language class

CR = {L(N) | N is an R-machine }

and call it the promise class generated by R.

An important question is how hard it is to verify the

promise for a given instance. In particular, we are interested

in promise classes with promise conditions in coNP. This

notion is made precise in the following definition:

Definition 7. A promise condition R is a coNP-promise if

there exist a language L ∈ coNP and a polynomial-time

computable function corr : Σ∗ × Σ∗ × 1∗ → Σ∗ such that

the following conditions hold:

1) Correctness: For every polynomial-time clocked Turing

machine N , for every x ∈ Σ∗ and m ∈ N, if

corr(x,N, 1m) ∈ L, then N obeys promise R on input

x.

2) Completeness: For every R-machine N with polyno-

mial time bound p, the set

Correct(N) = {corr(x,N, 1p(|x|)) | x ∈ Σ∗ }

is a subset of L.

3) Local recognizability: For every Turing machine N ,

the set Correct(N) is polynomial-time decidable.

Usually, promise classes possess a universal machine,

i.e., there exists a universal machine UR which, given an

R-machine N , input x, and time bound 1m, efficiently

simulates N(x) for m steps such that UR obeys promise

R on 〈N,x, 1m〉.
For promise classes with universal machines and promise

conditions in coNP we can state the following general result:

Theorem 8. Let C be a promise language (or function) class

defined via a coNP-promise. Let C have a universal machine.

Then exists a tally NP-oracle A such that CA contains a

language (or function) which is many-one hard for C.

Proof: The proof proceeds similarly as the proof of

Theorem 3. We just indicate the necessary changes. The

oracle set A now contains all machines which violate the

promise condition on some given length, i.e.,

A = {〈1N , 1n, 1t〉 | N, n, t ∈ N,

N is a nondeterministic Turing machine,

and there exists some x ∈ Σn such that

corr(x,N, 1t) 6∈ L} ,

where L is the coNP-set from Definition 7 in which the

promise of C is expressible. As L ∈ coNP, the set A is a

tally NP-set. The hard set for C will now contain elements

〈1N , x, 1t〉 where N is a correct C-machine on input length

|x| (this is verified via the oracle), and N accepts x in time

≤ t (here we need the universal machine for C).
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IV. CANONICAL CANDIDATES FOR COMPLETE PAIRS

In this section we approach the question whether complete

disjoint NP-pairs exist without making further assumptions.

We will first comment on the general difficulty to construct

a complete pair and then present natural candidates for

strongly many-one complete disjoint NP-pairs.

Complexity classes are usually defined by a machine

model to which resource bounds are imposed. A complexity

class is syntactic if the machines can be appropriately

standardized such that there exists an easy test which verifies

that all these standardized machines define indeed languages

from the complexity class (cf. [31]). For syntactic classes

there is a canonical way how to define complete languages.

Namely, if M denotes the set of all standardized machines

with implicit resource bounds, then

{(M,x) | M ∈ M and M(x) accepts}

is complete for the respective complexity class. For example

the syntactic class NP has the following canonical ≤p
m-

complete language

{(M,x, 1m) |M is a nondeterministic Turing machine

that accepts x in ≤ m steps} .

The machine model for disjoint NP-pairs consists of pairs of

nondeterministic polynomial-time bounded Turing machines

that do not accept any element in common. This, however,

is not a syntactic definition as we cannot test whether

two given nondeterministic Turing machines indeed accept

disjoint languages. In fact, by the theorem of Rice [32] the

set

{(M1,M2) |M1 and M2 are nondeterministic Turing

machines such that L(M1) ∩ L(M2) = ∅}

is undecidable. Therefore, constructing complete disjoint

NP-pairs via the above method fails.

If we restrict the class of all pairs to those disjoint NP-

pairs whose disjointness is shortly provable in some fixed

proof system P , then the situation is different. The ma-

chine model now consists of pairs (M1, M2) of polynomial-

time nondeterministic Turing machines such that the dis-

jointness of L(M1) and L(M2) has polynomial-size P -

proofs for suitable propositional descriptions of M1 and

M2. These propositional descriptions lead to the function

corr(x,M1,M2, 1
n) from Definition 7 which is computable

in polynomial time (details are given in the proof of Theo-

rem 9 below). As further the polynomial-size P -proofs of

Correct(M1,M2) can be guessed and verified in polyno-

mial time, the process of checking that (M1,M2) defines

a disjoint NP-pair can be performed in nondeterministic

polynomial time. Hence, for a propositional proof system

P we can form a syntactic class

DNPP(P ) = {(M1,M2) | P ⊢∗ Correct(M1,M2)} .

If a pair (A,B) is contained in DNPP(P ) we also say that

(A,B) is representable in P .

For the syntactic class DNPP(P ) we can define hard

languages in the canonical way. Translating this canonical

hard language to the propositional level we arrive at a pair

W (P ) = (W1(P ),W2(P )) with

W1(P ) = { 〈ϕ(x̄, ȳ), ψ(x̄, z̄), a, 1m〉 |

Var(ϕ) ∩ Var(ψ) = {x̄}, ϕ(a, ȳ) ∈ SAT,

and P ⊢≤m ¬ϕ(x̄, ȳ) ∨ ¬ψ(x̄, z̄)}

W2(P ) = { 〈ϕ(x̄, ȳ), ψ(x̄, z̄), a, 1m〉 |

Var(ϕ) ∩ Var(ψ) = {x̄}, ψ(a, z̄) ∈ SAT,

and P ⊢≤m ¬ϕ(x̄, ȳ) ∨ ¬ψ(x̄, z̄)} .

In the components W1(P ) and W2(P ) the propositional

formulas ϕ(x̄, ȳ) and ψ(x̄, z̄) describe the Turing machines

M1 and M2 for inputs of length |x̄|, i.e., for all a ∈ Σ|x̄|,

M1 accepts a if and only if ϕ(a, ȳ) is satisfiable (and

similarly for M2 and ψ). In the formulas ϕ,ψ, the variables

x̄ are reserved for the input whereas the variables ȳ and z̄
take the witness and auxiliary information necessary for the

computation of the machines M1 and M2. The P -proofs of

length ≤ m certify the disjointness of L(M1) and L(M2).
Finally, the satisfiability conditions on ϕ(a, ȳ) and ψ(a, z̄)
describe that M1 and M2, respectively, accept the input a.

Let us argue that (W1(P ),W2(P )) is indeed a disjoint

NP-pair. Clearly, both components are in NP. To verify

the disjointness, assume that 〈ϕ(x̄, ȳ), ψ(x̄, z̄), a, 1m〉 is

contained in W1(P ). Since we have a P -proof, the for-

mula ¬ϕ(x̄, ȳ) ∨ ¬ψ(x̄, z̄) is a tautology. By assumption,

ϕ(a, ȳ) is satisfiable and hence ψ(a, z̄) must be a tau-

tology. Therefore, ¬ψ(a, z̄) is unsatisfiable which implies

〈ϕ(x̄, ȳ), ψ(x̄, z̄), a, 1m〉 6∈ W2(P ).
Our next result states that the pair W (P ) is the canonical

choice for a ≤s-hard and, for many natural systems, even

≤s-complete pair for DNPP(P ).

Theorem 9.

1) For any propositional proof system P the pair W (P )
is ≤s-hard for the class DNPP(P ).

2) Let P be a proof system of the form EF +Φ with some

polynomial-time computable set Φ ⊆ TAUT. Then the

pair W (P ) is ≤s-complete for DNPP(P ).

Proof: For the first item, let P be a proof system and

let (A,B) ∈ DNPP(P ). Let M and N be nondeterministic

machines with polynomial running time p(n) which compute

the components A and B, respectively. We construct the

function corr as

corr(x,M, N, 1p(|x|)) = ¬ϕ|x|(x̄, ȳ) ∨ ¬ψ|x|(x̄, z̄)

where ϕi and ψi are sequences of propositional formulas

describing the machines M and N as explained above. As

(A,B) ∈ DNPP(P ) there exists a polynomial q such that
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for all x ∈ Σ∗

P ⊢≤q(|x|) corr(x,M, N, 1p(|x|)) .

It is then straightforward to verify that

a 7→ 〈¬ϕ|a|(x̄, ȳ),¬ψ|a|(x̄, z̄), a, 1q(|a|)〉

realizes the reduction (A,B) ≤s (W1(P ),W2(P )).
For the second item it remains to show W (P ) ∈

DNPP(P ) for proof systems P of the form EF + Φ with a

polynomial-time decidable set Φ ⊆ TAUT. For this we have

to construct propositional representations of W (P ) such

that P admits short proofs for the disjointness of W1(P )
and W2(P ) with respect to these representations. A direct

construction of such P -proofs would be quite tedious, but

we can use the correspondence of extensions of EF to

first-order arithmetic theories (cf. [33], [34] for background

information).

In this framework, the argument proceeds as follows:

first we choose natural arithmetic formulas defining the

components of W (P ). We now argue in the arithmetic

theory S1
2 augmented by the reflection principle of P

(reflection is a strong way to state the correctness of the

proof system P ). Using the reflection principle it is then

straightforward to verify the disjointness of W (P ) with

respect to the chosen arithmetic representations by a first-

order proof. This proof can be translated into a sequence

of polynomial-size propositional proofs in the system P ,

yielding representability of W (P ) in P . For a more detailed

description of this procedure we refer to [8], [9].

Let us mention that for strong proof systems, Razborov’s

canonical pair [2] and Pudlák’s interpolation pair [3] are two

other candidates for complete disjoint NP-pairs. Moreover,

these pairs relate to important properties of proof systems.

Namely, the canonical pair captures the reflection principle

and is linked to the automatizability of the proof system

[3], [35], while the interpolation pair expresses the feasible

interpolation property. The advantage of our W -pair is that

we can show its ≤s-hardness for DNPP(P ) for every proof

system P , whereas to prove such a result for the reflection

or interpolation pair requires some additional assumptions

on the proof system (cf. [9]).

Whether or not disjoint NP-pairs exist must remain open.

However, in the light of results like Theorem 9, the pair

W (P ) (as well as the canonical or interpolation pair of P ) is

a good candidate for a complete disjoint NP-pair for strong

propositional proof systems P (such as P = EF ).

V. PSEUDORANDOM GENERATORS IN PROPOSITIONAL

PROOF COMPLEXITY

This section is devoted to a potential application of the

results of the previous sections for the construction of

hard tautologies from pseudorandom generators (called τ -

formulas). To employ pseudorandom generators as the basis

for proving lower bounds to the proof size in propositional

proof systems was independently suggested by Krajı́ček [4],

[19], [20] and by Alekhnovich, Ben-Sasson, Razborov and

Wigderson [22]. These τ -formulas are candidates for tautolo-

gies without polynomially long proofs in strong proof sys-

tems like EF and their extensions. Proving super-polynomial

lower bounds for strong proof systems constitutes a major

open problem in propositional proof complexity. The aim of

this section is to illustrate that the hardness of τ -formulas

can be expressed by properties of disjoint NP-sets .

We recall some terminology from [4]. Let C = (Cn)n∈N

be a family of polynomial-size Boolean circuits such that

Cn is a circuit with n input and m(n) > n output bits with

some polynomial m. Functions f computed by such families

C are called polynomially stretching (p-stretching).

For b ∈ {0, 1}m(n) we consider propositional formu-

las τ(C)b. The formula τ(C)b has propositional variables

p1, . . . , pn for the bits of the input of Cn, q1, . . . , qm(n) for

the bits of the output of Cn and r1, . . . , rnO(1) for the inner

nodes of Cn. The formula τ(C)b expresses that if r̄ are

correctly computed according to Cn from the input variables

p̄, then the values of the output variables q̄ are different from

the bits of b. The formula τ(C)b is a tautology if and only

if b 6∈ rng(f). But apparently τ(C)b does not only depend

on rng(f) but also on the particular circuits Cn used for the

computation of f .

The formulas τ(C) from a circuit family Cn are called

hard for a proof system P , if there does not exist a sequence

of pairwise different numbers bn ∈ {0, 1}m(n), n ∈ N, such

that

P ⊢∗ τ(C)bn
.

The intuition is that for functions having pseudorandom

properties it should be hard to prove that a given element

lies outside the range of the function. The hardness of a

p-stretching function can be characterized by a hitting set

property for NP/poly-sets. For this we need the following

definition of the resultant of a p-stretching map.

Definition 10 (Krajı́ček [4]). Let f be a p-stretching map

computed by the circuit family C = (Cn)n∈N and let P be a

propositional proof system. The resultant of C with respect

to P , denoted by ResP
C , consists of all NP/poly-sets A for

which there exists a propositional representation ϕn(x̄, ȳ) of

A such that

P ⊢∗ ϕn(x̄, ȳ) → C(z) 6= x .

In [4] this definition is formulated slightly differently, but

as already here the close connection to disjoint NP-pairs

becomes visible we have used similar terminology as in the

previous sections. The following theorem characterizes the

hardness of τ -formulas by a condition on the resultant of P .

Theorem 11 (Krajı́ček [4]). Let P be a proof system of

the form EF + Φ for some polynomial-time computable

set Φ ⊆ TAUT. Let f be a p-stretching function and
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C a polynomial-size circuit family computing f . Then the

following conditions are equivalent:

1) The formulas τ(C) are hard for P .

2) The resultant ResP
C contains only finite sets.

In fact, the hardness of the function f should not depend

on the particular circuits used for the computation of f . For

functions f computed by non-uniform circuit families it is,

however, not possible to get hard formulas τ(C) for all

circuit families C computing f .

While this is not difficult to prove formally it is also

intuitively clear. If a function f is computed by the circuits C
which might yield hard formulas τ(C), then we can modify

these circuits to a circuit family C ′ as follows. To the output

gates of C we attach a circuit of polynomial size which

compares the output produced by C with polynomially many

fixed elements from the complement of rng(f). If this test

is positive, then we output a fixed element from rng(f),
otherwise we return the original output of C. Obviously, C
and C ′ compute the same function f . But intuitively the

formulas τ(C ′) are not hard for sufficiently strong proof

systems P . By inspecting the extra gates attached to the

circuits C we can devise short P -proofs for the disjointness

of rng(f) and the set of those elements which are excluded

in the extra gates of C ′.

However, the situation is different for the functions

f ∈ FP which are computed by uniform circuit families.

Focusing therefore on the case where the circuit families are

uniformly given we say that a polynomial-time computable

p-stretching function f yields representationally indepen-

dent hard τ -formulas for P , if for every uniformly given

circuit family C computing f the resulting formulas τ(C)
are hard for P .

In this case also the resultant ResP
C has to be defined

efficiently and contains just NP-sets which are disjoint with

rng(f) and where this disjointness is provable with short P -

proofs. We can therefore use our terminology about disjoint

NP-pairs to rephrase condition 2 of the theorem by the

following condition 2’:

2’. All sets A ∈ NP with (A, rng(C)) ∈ DNPP(P ) are

finite.

We point out that in condition 2’ the disjointness of A and

rng(f) has to be proven with respect to the circuit family

used for the computation of f , while the representation of

A can be chosen arbitrarily.

Using the ≤s-completeness of the W -pair for DNPP(P )
(Theorem 9) we can restate Theorem 11 in the following

form:

Corollary 12. Let P be a proof system of the form EF +
Φ for some polynomial-time computable set Φ ⊆ TAUT.

For every p-stretching function f ∈ FP the following are

equivalent:

1) f yields representationally independent hard τ -

formulas for P .

2) Every set A ∈ NP with A ∩ rng(f) = ∅ and

(A, rng(f)) ≤s (W1(P ),W2(P )) is finite.

The difference between Corollary 12 and Theorem 11 is

that condition 2 of the corollary only speaks about rng(f)
whereas condition 2 of the above theorem involves the

particular circuits used for the computation of f .

Dropping the requirement (A, rng(f)) ≤s W (P ) from

the second condition of Corollary 12 we arrive at an NP-set

B = rng(f) containing no infinite NP-set in its complement

B̄. Such sets B are called NP-simple (see [24] or [36]). By

Corollary 12, NP-simple sets would yield representationally

independent hard τ -formulas for all proof systems, but their

existence is open.

Simplicity is a concept originating in recursion theory that

can be defined for any complexity class.

Definition 13. Let C be a complexity class.

1) A set A is called C-immune if every subset B ⊆ A
with B ∈ C is finite.

2) A is called C-simple, if A ∈ C and Ā is C-immune.

Here we are interested in the cases C = P and C = NP.

As mentioned, the question whether NP-simple sets exist

is open. Obviously NP 6= coNP is a necessary condition for

the existence of NP-simple sets, other necessary or sufficient

conditions are, however, not known. Vereshchagin proved

that NP-simple sets exist relative to a random oracle [37].

What we actually need for the hardness of τ -formulas is

not the existence of NP-simple sets, but a weaker condition

which could be formalized as:

Definition 14. Let (C,D) be a disjoint NP-pair. We call a

set A NP-simple relative to (C, D) if A ∈ NP and for all

infinite sets B ∈ NP with A ∩ B = ∅ we have (A,B) 6≤s

(C, D).

With this definition Corollary 12 takes the following form:

Corollary 15. For all proof systems P = EF + Φ
with polynomial-time computable Φ ⊆ TAUT and all p-

stretching functions f ∈ FP the following are equivalent:

1) f yields representationally independent hard τ -

formulas for P .

2) rng(f) is NP-simple relative to (W1(P ), W2(P )).

The following easy proposition gives a characterization of

the relative simplicity of an NP-set.

Proposition 16. Let A ∈ NP and let (C,D) be a disjoint

NP-pair. Then A is NP-simple relative to (C, D) if and only

if for all ≤p
m-reductions g : A ≤p

m C the set g−1(D) is finite.

Proof: Let A be NP-simple relative to (C, D). Let us

assume that g−1(D) is infinite for some reduction g : A ≤p
m

C. We have g−1(D) ∈ NP and A∩ g−1(D) = ∅. Therefore

g reduces the disjoint NP-pair (A, g−1(D)) to (C,D), i.e.

A is not NP-simple relative to (C,D).
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If on the contrary A is not NP-simple relative to (C,D),
then there exists an infinite set B ∈ NP with A ∩ B = ∅
and g : (A,B) ≤s (C, D) via some function g ∈ FP. Then

g−1(D) contains B and is therefore infinite.

The proof of Proposition 16 also makes it clear that

the relative NP-simplicity of a set does not depend on

the strength of the reduction used, i.e. using the weaker

reduction ≤p instead of ≤s in Definition 14 results in the

same concept.

In view of the above proposition the NP-simplicity of A
relative to (C, D) can also come from the fact that A is

not ≤p
m-reducible to C. But for the case where (C,D) =

(W1(P ),W2(P )) this cannot happen as W1(P ) and W2(P )
are NP-complete. In this case we can give the following

necessary condition for the relative NP-simplicity of A.

Proposition 17. Let A be NP-simple relative to (C, D) and

let A be ≤p
m-reducible to C. Then Ā is P-immune.

Proof: Let g : A ≤p
m C. If Ā is not P-immune, then

there exists an infinite set B ∈ P with A∩B = ∅. Then the

disjoint NP-pair (A,B) is ≤s-reducible to (C, D) via

g′(x) =

{

g(x) if x 6∈ B
x0 ∈ D if x ∈ B,

i.e. A is not NP-simple relative to (C, D).
Therefore the relative NP-simplicity of a set A is a

notion which lies in strength between the P-immunity of the

complement Ā and the NP-simplicity of A. Whether disjoint

NP-pairs will indeed prove to be helpful in establishing

lower bounds to the proof size in strong proof systems

must remain open. The characterization of these difficult

proof-theoretic problems in terms of disjoint NP-pair as

given in Corollary 12 shows, however, that investigation

into the structure of NP-pairs will remain a demanding and

potentially rewarding task.
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