
This is a repository copy of Edges as Nodes - a New Approach to Timetable Information.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74806/

Proceedings Paper:
Beyersdorff, O and Nebesov, Y (2009) Edges as Nodes - a New Approach to Timetable
Information. In: ATMOS 2009. Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems (ATMOS), 10 September 2009, University of
Cophenhagen, Denmark. Dagstuhl Research Online Publication Server (DROPS) . ISBN
978-3-939897-11-8

https://doi.org/10.4230/OASIcs.ATMOS.2009.2147

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Edges as Nodes -

a New Approach to Timetable Information

Olaf Beyersdorff and Yevgen Nebesov

Institut für Theoretische Informatik, Leibniz-Universität Hannover, Germany
beyersdorff@thi.uni-hannover.de, yevgen.nebesov@stud.uni-hannover.de

Abstract. In this paper we suggest a new approach to timetable information
by introducing the “edge-converted graph” of a timetable. Using this model we
present simple algorithms that solve the earliest arrival problem (EAP) and the
minimum number of transfers problem (MNTP). For constant-degree graphs
this yields linear-time algorithms for EAP and MNTP which improves upon
the known Dijkstra-based approaches. We also test the performance of our
algorithms against the classical algorithms for EAP and MNTP in the time-
expanded model.

Key words: timetable infomation, earliest arrival problem, minimum number
of transfers problem, time-expanded model

1 Introduction

Algorithms for timetable information play an important role in public trans-
portation systems and related applications [8]. A number of important algorith-
mic problems connecting to timetable information is studied in the literature.
One of the most basic of these is the earliest arrival problem (EAP) asking for
a route between two stations s and t that assures the earliest possible arrival
at t and obeys the specified departure time at s.

While the systems used in practice typically employ heuristics to solve these
problems (cf. [8]), there is also a number of exact methods. The two most
common approaches are the time-expanded and the time-dependent approach
which transform the initial network into a weighted digraph such that classical
algorithms for path search such as Dijkstra become applicable [1, 9, 11, 12].

In this paper we propose a novel approach to timetable information which
we call the edge-converted approach. Similarly as in the time-expanded and
time-dependent model, we also convert the initial network into a digraph, but
such that elementary connections are represented as nodes. Thus, in some sense,
the role of edges and nodes is switched in our model. Based on this model we
present two algorithms that solve the earliest arrival problem as well as the min-
imum number of transfers problem (MNTP). Both algorithms are conceptually
simple as they are variants of depth-first and breadth-first search, respectively.
Moreover, these algorithms are very efficient—they only use linear time in the
size of their input, i.e., in terms of the size of the edge-converted network.

To compare the performance of these algorithms to the Dijkstra-based ap-
proaches in the time-expanded model [12], we need to compare the sizes of the
time-expanded and edge-converted graphs. It turns out, that our model has the
advantage to introduce less nodes but uses far more edges (up to O(n3) in the

general case). However, we argue that for practical networks only a linear num-
ber of edges is needed which leads to linear-time algorithms for EAP and MNTP.
In particular, for the class of constant-degree graphs our approach yields linear-
time algorithms for EAP and MNTP where the running time is measured in
the size of the initial network. This improves upon the known Dijkstra-based
solutions which consume O(n log n) running time. We also implemented our al-
gorithms and performed an experimental study which confirms our theoretical
results.

This paper is organized as follows. In Sect. 2 we review basic definitions
from timetable information including the definition of EAP and MNTP. Sec-
tion 3 discusses the two main approaches towards these problems. In Sect. 4
we introduce our new model and compare it to the time-expanded approach.
The following Sect. 5 contains our algorithmic solutions for EAP and MNTP
which are then tested experimentally in Sect. 6. Finally, Sect. 7 concludes with
a discussion of our results and directions for future research.

2 Itinerary Problems

A timetable is a network composed of nodes (station, bus stops, etc.) and some
elementary connections between them. Each elementary connection is a train (or
bus, etc.) which starts and arrives at certain nodes and has a certain departure
and arrival time. So it can be interpreted as a 4-tuple e = (s, t, d, a), where s

and t are nodes, d is the departure time at s and a is the arrival time at t. We
will also call s and t the source node and the target node of e, respectively. A
transfer between two connections e1 = (s1, t1, d1, a1) and e2 = (s2, t2, d2, a2) is
possible if t1 = s2 and a1 ≤ d2. A route or an itinerary between two nodes s

and t is a sequence of elementary connections (e1, . . . , en), where s is the source
node of e1, t is the target node of en, and a transfer between each ei and ei+1

is possible.
The time values are elements of a totally ordered set T with a defined

addition operation. As a rule, T consists of integer numbers between 0 and 1439
and represents the time in minutes after midnight. The time may denote one
or several successive days which can be integrated into one model by counting
the time modulo 1440 and keeping track of the days [5]. In this paper, however,
only one day is used as a time horizon.

A number of important problems on timetable information is described in
[2, 4, 6, 8, 10, 11]. The earliest arrival problem (EAP) is the most basic and
fundamental of them. Instances of EAP are 3-tuples (s, t, d), where s is a source
node, t is a target node, and d is the earliest departure time at s. The task
consists in finding a route from s to t which departs from s not earlier than the
given earliest departure time and minimizes the difference between the arrival
time at t and the earliest given departure time. EAP has a realistic and a
simplified version. The realistic version considers the minimum transfer time at
a station. The transfer time in the simplified version is assumed to be 0. In this
paper we will only consider the simplified version of EAP.

Another problem in timetable information is the minimum number of trans-
fers problem (MNTP). In this case, a query consists of a departure station s

2

and an arrival station t only. The task is to find an itinerary that minimizes the
number of train transfers.

3 Related Work

The existing algorithms for path searches on static networks are not suitable
for timetables, since the edges are available only temporarily within a given
time window. The most common approaches for solving EAP and MNTP are
based on time-expanded [11, 12] and time-dependent [1, 9] models. The defini-
tion and detailed analysis of both algorithms are described in [10]. The idea
of time-expanded and time-dependent models is to transform or to extend the
initial graph in such a way that the known algorithms for static graphs may
be applied. Pyrga, Schulz, Wagner, and Zaroliagis [11] showed in an experi-
mental comparison of the time-expanded and time-depended models that the
time-dependent approach can be faster than the time-expanded up to factor 40.
However, it is not considerably faster in the case of realistic models and has
some drawbacks touching the extensions towards realistic models [10], for in-
stance when modelling minimum transfer times at stations. Therefore, only the
time-expanded model applied to EAP and MNTP will be considered and then
compared to our approach. A comparison with the time-dependent approach is
planned to be done in future research.

3.1 The Time-Expanded Model

The time-expanded model is based on the following transformation. Each ele-
mentary connection e = (s, t, d, a) induces a copy of the source node s tagged
with the departure time stamp d and a copy of the target node t tagged respec-
tively with the arrival time stamp a. Thus, the initial connections become the
connections between a pair of copies according to their time stamps.

Next, for each station s of the initial network all its copies will be captured
and ordered ascending their time stamps. Let v1, . . . , vk be the copies of s in that
order. Then, there is a set of stay-edges (vi, vi+1), i = 1, . . . , k − 1, connecting
the two subsequent copies within a station and representing waiting time at that
station between two time events. Thus, given a graph (S,E), where S is a set of
stations and E is a set of edges or elementary connections, the time-expanded
model will include as many as 2∣E∣ − ∣S∣ stay-edges.

The example in Fig. 1 illustrates the transformation of an initial network
to the time-expanded model. The timetable consists of five stations and seven
elementary connections between these stations. The time stamps at the edges
represent the departure and arrival time of the given connection.

Observation 1 The route between two nodes consists not only of the elemen-
tary connections, but also of some stay-edge connections. It can also happen
that there are many stay-edges belonging to only one station. For example, the
dashed line in Fig. 1 shows, that the route between stations 1 and 5 includes
two stay-edges at station 3. Hence the number of the edges on a route depends
on the number of the transfers and on the number of initial events as a whole.

3

1

2 3

4 5

10-12

10-13

15-17

13-16

11-13
12-14

9-10

9.00

10.00 10.00

11.00

12.00 12.00

13.00

15.00

13.00

16.00

17.00

14.00

 1 2 3 4 5

Fig. 1. An initial network and the transformed time-expanded network

The number of nodes in the time-expanded model is equal to the double
number of elementary connections of the initial graph, since each connection
produces a copy of its source and its target nodes. The number of edges in the
time-expanded model includes the elementary connections and the stay-edge
connections (cf. Table 1).

Table 1. The size of the time-expanded graph

Initial graph (S,E) Time-expanded graph

Number of nodes ∣S∣ 2∣E∣

Number of edges ∣E∣ ≤ 3∣E∣ − ∣S∣ ≤ 3∣E∣

3.2 EAP with the Time-Expanded Model

The original approach for solving the shortest-path problem is the Dijkstra

algorithm [3]. Every edge in the time-expanded model has departure and arrival
time stamps. The time difference between these time stamps can be attached
as the weight to the given edge. Starting at the first copy of the source node,
but, not earlier than allowed by the earliest departure time, we find a shortest
path by reaching any copy of the target node [11]. Given a network G = (S,E),
the complexity of the Dijkstra algorithm is O(∣E∣+ ∣S∣ log ∣S∣). According to
Table 1, for the timetable with ∣S∣ stations and ∣E∣ elementary connections,
the run-time of the Dijkstra algorithm applied on the time-expanded model
is equal to c(3∣E∣ − ∣S∣ + 2∣E∣ log 2∣E∣), where c is a constant stemming from
the Dijkstra algorithm.

4

3.3 MNTP with the Time-Expanded Model

The Dijkstra algorithm can be also used for solving MNTP with the time-
expanded model. The edges between copies of different stations are assigned
a weight of 1, and stay-edges are assigned a weight of 0. Starting at the first
possible copy of a source station, the shortest path to a copy of a target station
yields a solution of MNTP. The complexity of MNTP with the time-expanded
model coincides with the complexity of EAP, since it uses the same algorithm.

We remark that the above described applications of the time-expanded
model refer to the earliest ideas of the time-expanded approach. Recently, many
speed-up techniques for EAP and MNTP have been developed. The extensions
and improvements of the time-expanded approach and shortest-path algorithms
are described in [2,5,7,11,12]. In this paper our approach for solving EAP and
MNTP is only compared to the original formulations of the time-expanded
model and the shortest-path algorithms. The comparison to the newest im-
provements of the time-expanded and time-dependent model should be made
in future research.

4 Our Approach: The Edge-Converted Model

In this section we will describe a new model for timetable information. Similar to
the time-expanded approach, we use a transformation of the initial network to
obtain a static structure supporting well known algorithms, such as Dijkstra

or breadth-first search. The core idea of our approach is to convert the initial
elementary connections to nodes. Therefore we call it edge-converted approach.
The whole transformation routine is listed below:

Step 1. At first we take all the stations of the initial network as new nodes.
We call these nodes type A nodes.

Step 2. Then for every elementary connection e = (s, t, d, a), a new node
that gets all four parameters of the edge e will be created. We call these nodes
type B nodes (see Fig. 2).

Step 3. Now we connect type A nodes to type B nodes according to the
next two rules.

a) There is an outgoing edge from a type A node u to a type B node v =
(s, t, a, d) if u = s.

b) There is an outgoing edge from a type B node v = (s, t, a, d) to a type A
node u if t = u (see Fig. 2).

Step 4. Next, we add several edges connecting type B nodes with each other.
There are four conditions for the existence of an edge between two type B nodes
u = (su, tu, du, au) and v = (sv, tv, dv, av):

a) tu = sv
b) au ≤ dv
c) For all type B nodes w = (sw, tw, dw, aw), if sw = su, tw = tu, and aw ≤ dv,

then du ≥ dw.

5

1

2 3

4 5

1-2
9-10

1-3
10-12

4-5
13-16

2-4
12-14

2-4
11-13

2-3
10-13

3-5
15-17

Type A

Type B

1

2 3

4 5

1-2
9-10

1-3
10-12

4-5
13-16

2-4
12-14

2-4
11-13

2-3
10-13

3-5
15-17

Fig. 2. Generation of nodes in the edge-converted model (left) and the complete edge-
converted graph for the initial network from Fig. 1 (right)

d) For all type B nodes w = (sw, tw, dw, aw), if sw = sv, tw = tv, and au ≤ dw,
then aw ≥ au.

The complete edge-converted graph from the example in Fig. 1 is depicted
in Fig. 2.

A route between two nodes (independent of their type) is defined as a usual
path in the edge-converted graph. We start with some initial observations on
the edge-converted graph.

Observation 2

1. The connections between two type B nodes represent a transfer possibility
between two elementary connections in the initial timetable.

2. If there exists a route between two type A nodes u and v, then there exists a
route which only contains type B nodes as intermediate nodes, i.e., the only
type A nodes are the source u and the target v. Thus, the length of a route is
not dependent on the network size, but only on the number of the necessary
transfers (compare with Observation 1).

3. The edge-converted graph has no cycles consisting only of type B nodes.

We will use these observations in the applications below where we search
some path between two type A nodes only via type B nodes.

Now we want to estimate the size of the new edge-converted model. Each
node has been induced either by an initial station (type A) or by an initial
elementary connection (type B). So the number of new nodes can be calculated
as the sum of the initial nodes and edges. The number of new edges cannot be
provided in an explicit form and does not only depend on the number of the
initial edges or nodes but also on the connections’ time stamps. Rules c) and d)
from Step 4 in our construction filter out the “bad” transfer possibilities from
the set of all possible transfers. The remaining edges between type B nodes
represent the “good” transfer possibilities. Thus, the total number of edges in
the edge-converted graph equals 2 ⋅#initial edges + #good transfers.

6

Let us calculate an estimate for this number. Given a timetable with n

stations, each station can be connected at most to n− 1 stations in the original
network. If we assume that there are at most k elementary connections between
each pair of the initial stations, then, in the worst case, the edge-converted
model contains O(kn3) edges connecting type B nodes with each other.

This, however, does not happen in realistic networks. Towards a better anal-
ysis, let us assume that the original network is of constant degree of at most d,
i.e., every station has at most d ingoing and d outgoing connections to other
stations. In this case we get ≤ d2n edges for connecting type B nodes and ≤ 2dn
edges for connecting type A nodes to the type B nodes. Thus, the total size of
the edge-converted graph is linear in the size of the original network. This is
depicted in Table 2. As the table shows, regarding realistic networks, our model
contains fewer nodes, but more edges than in the time-expanded model.

Table 2. A comparison of the size of the time-expanded and edge-converted models

Initial graph Time-expanded model Edge-converted model

Very dense networks

#stations = n ≤ 2kn2 ≤ n+ kn2

#elementary connections ≤ kn2 ≤ 3kn2 − n ≤ kn3 + 2kn2

Constant-degree networks

#stations = n ≤ 2dn ≤ (d+ 1)n
#elementary connections ≤ dn ≤ (3d− 1)n ≤ (d2 + 2d)n

A possible drawback of our construction is that, unlike in the time-expanded
approach, we can only incorporate a fixed time horizon into the edge-converted
model. Thus for practical purposes, one has to define a fixed maximal travel
time and adjust the time horizon accordingly to one or several days.

5 EAP and MNTP with the Edge-Converted Model

The common approach to solve EAP or MNTP in the time-expanded approach
is to use the Dijkstra algorithm which consumes more than linear running
time. For the edge-converted model we will describe below two algorithms for
EAP and MNTP with only linear run-time. Moreover, our algorithms have the
advantage of great simplicity as they implement variants of depth-first search
and breadth-first search, respectively.

Our algorithms include a pre-processing step that has to be done only once.
Let (s, t, d) be an EAP query. We need to find a route connecting the stations
s and t, starting not earlier than at the given time d and providing the earliest
arrival time at t. The main idea of our algorithm below is to use a usual depth-
first search but starting from the target node t and moving backwards to the
source s. This algorithm solves the EAP if we execute the next pre-processing
routine on the edge-converted model:

1. First we delete all the edges constructed in step 3.a) in the section above.
They are redundant for solving the EAP using the next algorithm.

7

2. Next, given some node v of type A or type B in an edge-converted graph,
it has a set of ingoing edges {e1, . . . , ek}. Every edge ei = (ui, v) in this list
has a start node ui of type B, because there are no edges starting in type A
nodes according to the previous step. We sort the set of ingoing edges for
each node v in descending order by the arrival time stamps of their start
nodes ui.

5.1 EAP with the Edge-Converted Model

Algorithm 1 implements an inverse depth-first search on an edge-converted net-
work constructed and pre-processed according to the above rules. The algorithm
uses a stack S supporting the operations push(S, u) and pop(S, u) which push
and pop a node u from the top of S. During the computation the algorithm
maintains an array route[u] which for each type B node u points towards a
subsequent connection. At the end, the fastest route from s to t can be read off
by following the pointers in the array, starting with route[s].

Algorithm 1 EAP in the edge-converted model
Require: an EAP query (G, s, t, d0)

where G = (V,E) is an edge-converted network, s, t ∈ V are the start and target node,
and d0 is the earliest departure time

1: for all v ∈ V do

2: route[v]← nil
3: visited[v]← false
4: end for

5: push(S, t)
6: while S is not empty do

7: u← pop(S)
8: visited[u]← true
9: if u is a type A node then {this only happens if u = t}
10: su ← u

11: else

12: u = (su, tu, du, au) is a type B node
13: end if

14: if su = s then

15: route[s]← u

16: return route
17: end if

18: for all edges e = (v, u) (in descending order according to the arrival time a of v) do
19: v = (sv, tv, dv, av) is a type B node
20: if visited[v] = false and dv ≥ d0 then

21: route[v]← u

22: push(S, v)
23: end if

24: end for

25: end while

26: return there is no connection between s and t starting after time d0

We state the correctness of the algorithm in the following theorem.

Theorem 3. Algorithm 1 solves the EAP in the edge-converted model in linear
time.

8

Proof. Let G be an edge-converted network and let (s, t, d0) be an EAP query.
Let u1, . . . , uk be the set of predecessors of t, ordered according to the arrival
time stamps of the type B nodes ui (in ascending order). Each node ui is the
root of a depth-first search tree Ti consisting of all nodes which are visited from
ui in Algorithm 1. If the EAP instance (s, t, d0) has a solution, then there exists
a type B node vs = (s, v, d, a) such that d ≥ d0 and vs is contained in one of
the trees Ti for some 1 ≤ i ≤ k.

We prove the correctness of Algorithm 1 by induction on the number i. First
note that if s is reached in line 14, then

(vs = route[s], route[route[s]], . . . , ui, t)

describes the unique path from vs to t in Ti. In the base case i = 1, we have
vs ∈ T1. But then we have found a route from s to t which arrives at t by the
earliest possible connection in the network, and hence this route is optimal.

Let now vs ∈ Ti with i ≥ 2. Aiming towards a contradiction, we assume that
Algorithm 1 returns the route via the connections (vs, . . . , ui), but this is not
the optimal solution. This means that there exists some node v′s = (s, v′, d′, a′)
such that d′ ≥ d0 and there exists a route (s, v′s, . . . , uj , t) which leads to an
earlier arrival at t. As the connections u1, . . . , uk have been ordered according
to their arrival times, we have j < i. But then v′s ∈ Tj and Algorithm 1 would
have returned the route (s, v′s, . . . , uj , t) by the induction hypothesis.

Therefore, Algorithm 1 is correct. It runs in linear time, because every type B
node is visited at most once. ⊓⊔

In Theorem 3 the time is measured in terms of the input, i.e., in terms of
the edge-converted network. As the size of the edge-converted graph is linear
for constant-degree graphs (cf. Table 2), we immediately get:

Corollary 4. For constant-degree graphs, Algorithm 1 solves the EAP in linear
time measured in the size of the initial network.

In comparison, using Dijkstra on constant-degree graphs only yields algo-
rithms with running time O(n log n). In real networks, each station only has a
limited number of connections per time interval. Therefore, real networks will
usually be close to regular graphs.

5.2 MNTP with the Edge-Converted Model

To solve MNTP with the edge-converted model we can use breadth-first search
(see Algorithm 2). Starting at the source node s, we find the minimum number
of transfers route by reaching the target node t. Instead of a stack, Algorithm 2
uses a queue Q. The correctness of the algorithm can be shown by induction
on the number of transfers in the optimal route from s to t. Thus we get:

Theorem 5. Algorithm 2 solves the MNTP in the edge-converted model in
linear time.

Again, for regular networks we obtain a linear-time bound in terms of the
original network:

Corollary 6. For constant-degree graphs, Algorithm 2 solves the MNTP in
linear time measured in the size of the initial network.

9

Algorithm 2 MNTP in the edge-converted model
Require: an MNTP query (G, s, t)

where G = (V,E) is an edge-converted network and s, t ∈ V are the start and target node
1: for all v ∈ V do

2: route[v]← nil
3: visited[v]← false
4: end for

5: if s = t then

6: return route
7: end if

8: enqueue(Q, s)
9: while Q is not empty do

10: u← dequeue(Q)
11: visited[u]← true
12: for all edges e = (u, v) do
13: if visited[v] = false and v = (sv, tv, d, a) is a type B node then

14: route[v]← u

15: if tv = t then

16: route[t]← v

17: return route
18: end if

19: enqueue(Q, v)
20: end if

21: end for

22: end while

23: return there is no connection between s and t

6 Experiments

To test the performance of the algorithms for EAP and MNTP in our model we
implemented the time-expanded and edge-converted model. To solve EAP and
MNTP in the time-expanded model we used Dijkstra with a priority queue,
yielding time complexity O(n log n). These algorithms were tested against Al-
gorithms 1 and 2 in the edge-converted model on randomly generated data.

The experiments were run on a PC with an Intel Core2Duo processor at
1.6 GHz and 2 GB RAM running Windows Vista. The algorithms were imple-
mented in C++ compiled with a VC8 compiler on the maximum optimization
level. We used the Boost Graph Library [14] for all the graph, node, edge, and
iterator classes.

6.1 Test Data Generation

We use a rectangle area to distribute a set of stations. The stations are randomly
chosen in the area by assigning some x and y coordinates. Each station u gets
some priority p(u) in the interval [0, 1]. The priorities are uniformly distributed
among all nodes. The distance d(u, v) between two stations u and v is defined
as the Euclidean distance between u and v in the plane.

For each pair of stations (u, v) we introduce elementary connections between

u and v if p(u)⋅p(v)
d(u,v) is greater than some chosen threshold. We choose the number

of these elementary connections proportional to 1
d(u,v) . The time horizon is

defined as [0, 1439]. For an elementary connection between u and v, we define

10

the travel time proportional to d(u, v). The departure time at u is uniformly
distributed over the time horizon taking into account that the arrival time must
also fall within the time horizon.

6.2 Performance Analysis

We ran experiments with 20, 30, 40, 50, 60, and 70 stations. As the pre-
processing time increases rapidly with the number of nodes, we could not per-
form experiments with many stations, for lack of hardware. For each experiment
we generated the test data and counted the number of nodes and elementary
connections in the initial network as well as in the time-expanded and edge-
converted models. Then we solved EAP and MNTP by both approaches and
measured the time. The results are shown in Table 3.

Table 3. Experimental comparison of EAP and MNTP in the time-expanded model (using
Dijkstra with priority queue) and in the edge-converted model (Algorithms 1 and 2)

Initial graph Time-expanded model Edge-converted model

EAP MNTP EAP MNTP
#nodes #edges #nodes #edges

in sec. in sec.
#nodes #edges

in sec. in sec.

20 1048 2019 7020 11 15 1068 11434 4 34

30 2854 5336 18743 20 28 2884 52763 9 140

40 4141 7676 27016 48 64 4186 89643 15 213

50 7332 13035 46241 126 162 7382 221402 27 250

60 9140 16179 57438 143 180 9200 295835 36 321

70 10296 18108 64346 325 421 10366 351010 67 325

The results clearly show that Algorithm 1 solves EAP considerably faster
than using Dijkstra in the time-expanded model, wheras for MNTP we ob-
tain similar running times. Comparing the size of the two models it is apparent
that the edge-converted approach reduces the number of nodes by a factor of
2 whereas the number of edges drastically increases. Instead of using an ex-
plicit stack, we implemented Algorithm 1 recursively which explains the better
running time in comparison to Algorithm 2 which uses a queue.

7 Conclusion and Future Work

Our theoretical results as well as our practical evaluations show that using
the edge-converted model might be an interesting alternative to the known al-
gorithmic techniques for timetable information. This is mainly due to the very
easy algorithms based on depth-first and breadth-first search. Particularly Algo-
rithm 1 for EAP allows for a very simple and efficient recursive implementation.

However, our results here only provide a first basic study of this model
and further investigation seems to be necessary. In particular, we would like
to compare the edge-converted model with more sophisticated versions of the
time-expanded approach which use a range of speed-up techniques forDijkstra

[12, 13, 15, 16]. An interesting question for further research is whether similar

11

speed-up techniques are applicable in the edge-converted model. It also appears
interesting to compare our model with the time-dependent approach (cf. [11]
for an extensive comparison of the time-dependent and time-expanded models).
Finally, in future work we would like to test the edge-converted model on larger
and preferably real networks.

References

1. G. S. Brodal and R. Jacob. Time-dependent networks as models to achieve fast exact
time-table queries. Electr. Notes Theor. Comput. Sci., 92:3–15, 2004.

2. D. Delling, T. Pajor, and D. Wagner. Engineering time-expanded graphs for faster
timetable information. In Proc. 8th Workshop on Algorithmic Approaches for Trans-
portation Modeling, Optimization, and Systems (ATMOS), 2008.

3. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1:269–271, 1959.

4. L. Fleischer and M. Skutella. The quickest multicommodity flow problem. In Proc.
9th International Conference on Integer Programming and Combinatorial Optimization
(IPCO), pages 36–53, 2002.

5. R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies: Faster
and simpler hierarchical routing in road networks. In Proc. 7th International Workshop
on Experimental and Efficient Algorithms (WEA), pages 319–333, 2008.

6. E. Köhler, K. Langkau, and M. Skutella. Time-expanded graphs for flow-dependent transit
times. In Proc. 10th Annual European Symposium on Algorithms (ESA), pages 599–611,
2002.

7. E. Köhler, R. H. Möhring, and H. Schilling. Acceleration of shortest path and constrained
shortest path computation. In Proc. 4th International Workshop on Experimental and
Efficient Algorithms (WEA), pages 126–138, 2005.

8. M. Müller-Hannemann, F. Schulz, D. Wagner, and C. D. Zaroliagis. Timetable infor-
mation: Models and algorithms. In Proc. 4th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS), pages 67–90, 2004.

9. A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in networks with
time-dependent edge-length. Journal of the ACM, 37(3):607–625, 1990.

10. E. Pyrga, F. Schulz, D. Wagner, and C. D. Zaroliagis. Experimental comparison of shortest
path approaches for timetable information. In Proc. 6th Workshop on Algorithm Engi-
neering and Experiments and 1st Workshop on Analytic Algorithmics and Combinatorics
(ALENEX/ANALC), pages 88–99, 2004.

11. E. Pyrga, F. Schulz, D. Wagner, and C. D. Zaroliagis. Efficient models for timetable
information in public transportation systems. ACM Journal of Experimental Algorithmics,
12:1–39, 2008.

12. F. Schulz, D. Wagner, and K. Weihe. Dijkstra’s algorithm on-line: An empirical case
study from public railroad transport. ACM Journal of Experimental Algorithmics, 5:12,
2000.

13. F. Schulz, D. Wagner, and C. D. Zaroliagis. Using multi-level graphs for timetable infor-
mation in railway systems. In 4th International Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 43–59, 2002.

14. The Boost Graph Library. Available from http://www.boost.org.
15. D. Wagner and T. Willhalm. Speed-up techniques for shortest-path computations. In

Proc. 24th Symposium on Theoretical Aspects of Computer Science, pages 23–36, 2007.
16. D. Wagner, T. Willhalm, and C. D. Zaroliagis. Geometric containers for efficient shortest-

path computation. ACM Journal of Experimental Algorithmics, 10:1–30, 2006.

12

