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Abstract. The classical approach to proof complexity perceives proof
systems as deterministic, uniform, surjective, polynomial-time computable
functions that map strings to (propositional) tautologies. This approach
has been intensively studied since the late 70’s and a lot of progress
has been made. During the last years research was started investigating
alternative notions of proof systems. There are interesting results stem-
ming from dropping the uniformity requirement, allowing oracle access,
using quantum computations, or employing probabilism. These lead to
different notions of proof systems for which we survey recent results in
this paper.

1 Introduction

In their seminal paper [CR79], Cook and Reckhow defined the notion of a proof
system for an arbitrary language L as a polynomial-time computable function
f with range L. A string w with f(w) = x is called an f -proof for x ∈ L.
All classical proof systems like Resolution, Cutting Planes, or Frege systems fall
under this general concept, and in the last thirty years there has been great
progress in understanding the complexity of proofs in this model (cf. [Seg07] for
a recent survey).

While the Cook-Reckhow approach is certainly the most useful setting for
practical applications, it is nevertheless interesting to ask what happens if we
allow alternative computational resources for the verification of proofs. This
approach is very common in complexity theory where besides (non-)deterministic
polynomial time a number of other models like randomisation, non-uniformity,
oracle access, or new paradigms as quantum computing are studied.

In proof complexity these considerations were started recently by several re-
searchers. In this paper we mainly survey results on proof systems with advice
which were introduced by Cook and Kraj́ıček [CK07], but also mention ran-
domised systems investigated by Hirsch and Itsykson [HI10,Hir10] and quantum
proof systems introduced by Pudlák [Pud09]. The common idea in these ap-
proaches is that verification of proofs can be performed with additional resources,
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not just polynomial time. The results show a number of new phenomena such as
the existence of optimal proof systems with advice or under weak oracles. Such
results are not known in the classical setting. We also address other interesting
questions such as the existence of polynomially bounded proof systems—which
receives a different characterization in the advice model—and whether proofs
can be shortened by using quantum rules.

2 Proof Systems Using Advice

Our first non-classical model will be proof systems that use advice. Like in the
classical setting of Karp and Lipton [KL80] this will allow the proof systems to
use a specified amount of non-uniform information. Proof systems with advice
were recently introduced by Cook and Kraj́ıček [CK07] and further developed
by Beyersdorff, Köbler, and Müller [BKM09,BM09,BM].

2.1 Setting the Stage

Our general model of computation for proof systems f with advice is a poly-
nomial-time Turing transducer with several tapes: an input tape containing the
proof �, possibly several work tapes for the computation of the machine, an
output tape where we output the proven element f(�), and an advice tape
containing the advice. We start with a quite flexible definition of proof systems
with advice for arbitrary languages, generalizing the notion of propositional proof
systems with advice from [CK07].

Definition 1 ( [BKM09]). For a function k : ℕ → ℕ, a proof system f for L
is a proof system with k bits of advice, if there exist a polynomial-time Turing
transducer M , an advice function ℎ : ℕ → �∗, and an advice selector function
ℓ : �∗ → 1∗ such that

1. ℓ is computable in polynomial time,
2. M computes the proof system f with the help of the advice ℎ, i.e., for all

� ∈ �∗, f(�) = M(�, ℎ(∣ℓ(�)∣)), and
3. for all n ∈ ℕ, the length of the advice ℎ(n) is bounded by k(n).

For a class F of functions, we denote by ps/F the class of all ps/k with k ∈ F .

We say that f uses k bits of input advice if ℓ has the special form ℓ(�) = 1∣�∣.
On the other hand, in case ℓ(�) = 1∣f(�)∣ for all � in the domain of f , then f is
said to use k bits of output advice. By this definition, proof systems with input
advice use non-uniform information depending on the length of the proof, while
proof systems with output advice use non-uniform information depending on the
length of the proven formula.

We note that proof systems with advice are a quite powerful concept, as for
every language L ⊆ �∗ there exists a proof system for L with only one bit of
advice. In contrast, the class of all languages for which proof systems without
advice exist coincides with the class of all recursively enumerable languages.



2.2 Polynomially Bounded Proof Systems with Advice

The classical Cook-Reckhow Theorem states that NP = coNP if and only if the
set of all tautologies TAUT has a polynomially bounded proof system, i.e., there
exists a polynomial p such that every tautology ' has a proof of size ≤ p(∣'∣)
in the system. Consequently, showing super-polynomial lower bounds to the
proof size in propositional proof systems of increasing strength provides one way
to attack the P/NP problem. This approach, also known as the Cook-Reckhow
program, has lead to a very fruitful research on the length of propositional proofs.

What happens if the proof systems may use advice? Which languages admit
polynomially bounded proof systems in this new model? In [BKM09] a complete
characterization of this question was given. In particular, there is a tight con-
nection of this problem to the notion of nondeterministic instance complexity.
Similarly as Kolmogorov complexity, instance complexity measures the complex-
ity of individual instances of a language [OKSW94]. We now give the definition
of nondeterministic instance complexity from [AKMT00].

Definition 2 (Arvind et al. [AKMT00]). For a set L and a time bound t,
the t-time-bounded nondeterministic instance complexity of x with respect to L
is defined as nict(x : L) = min{ ∣M ∣ : M is a t-time-bounded nondeterministic
machine, L(M) ⊆ L, and M decides correctly on x }.

We collect all languages with prescribed upper bounds on the running time
and nondeterministic instance complexity in a complexity class.

Definition 3 ( [BKM09]). The complexity class NIC[log, poly] contains all lan-
guages L for which there exists a polynomial p such that nicp(x : L) ≤ O(log ∣x∣)
holds for all x ∈ �∗.

This class can be strictly placed between familiar non-uniform complexity classes:

Theorem 4 ( [BKM09]). NP ⊊ NP/1 ⊊ NP/log ⊊ NIC[log, poly] ⊊ NP/poly.

The classes in Theorem 4 are exactly the classes which in appear in the
characterization of polynomially bounded proof systems with advice, as given in
Table 1. Quite unusually in complexity theory, all complexity classes appearing
in this table are distinct by Theorem 4.

Table 1. Languages with polynomially bounded proof systems

input advice output advice reference

ps/poly NP/poly NP/poly [BKM09]

ps/log NIC[log, poly] NP/log [BKM09]

ps/1 NIC[log, poly] NP/1 [BKM09]

ps/0 NP [CR79]



Concentrating on propositional proof systems (or more generally, on lan-
guages from coNP), the picture simplifies a bit because it was shown in [BKM09]
that for a language L ∈ coNP, L ∈ NP/log if and only if L ∈ NIC[log, poly].

It is also natural to ask, how likely these assumptions actually are, i.e.,
what consequences follow from the assumption that such proof systems exist.
For TAUT we obtain a series of collapse consequences of presumably different
strength as shown in Table 2.

Table 2. Consequences of the existence of polynomially bounded proof systems (results
are from [BKM09])

Assumption Consequence

if TAUT has a polynomially bounded . . . then PH collapses to . . .

ps/poly (input or output advice) SNP
2 ⊆ Σ

p
3

ps/log (input or output advice) PNP[log]

ps/O(1) (input advice) PNP[log]

ps/O(1) (output advice) PNP[O(1)] = BH

ps/0 (no advice) NP

2.3 Optimal Proof Systems with Advice

Proof systems are compared according to their strength by simulations as intro-
duced in [CR79] and [KP89]. If f and g are proof systems for L, we say that g
simulates f if there exists a polynomial p such that for all x ∈ L and f -proofs
w of x there is a g-proof w′ of x with ∣w′∣ ≤ p (∣w∣). If such a proof w′ can even
be computed from w in polynomial time, we say that g p-simulates f . Proof
systems f , g which mutually (p-)simulate each other are called (p-)equivalent.

A prominent open question posed in [KP89] is whether there exists a strongest
proof system, called a (p-)optimal proof system, which (p-)simulates all proof
systems for L. This question has interesting consequences such as existence of
complete languages for promise classes [KMT03,BS09]. Despite a considerable
research effort the existence of optimal proof systems is still open (cf. [Hir10] in
this volume). Surprisingly, Cook and Kraj́ıček [CK07] have shown that there ex-
ists a propositional proof system with one bit of input advice which simulates all
classical Cook-Reckhow proof systems. The proof of this result easily generalizes
to arbitrary languages L, thus yielding:

Theorem 5 (Cook, Kraj́ıček [CK07], [BKM09]). For every language L
there exists a proof system P with one bit of input advice such that P simulates
all ps/log for L. Moreover, P p-simulates all advice-free proof systems for L.

In contrast, it seems unlikely that we can obtain a similar result for out-
put advice by current techniques (cf. [BM08] were we investigated this problem



for propositional proof systems). The question whether this optimality result
can be strengthened to p-optimality (where the simulations are replaced by p-
simulations) was also studied in detail in [BM08], with both negative and positive
results providing partial answers to the question.

We remark that optimal proof systems are known to imply complete sets for
various promise classes [KMT03], and this relation also holds in the presence
of advice [BS09]. A related line of research has shown strong time and space
hierarchy theorems for randomised and other semantic classes which use advice
[FS04, FST05, vMP07,KvM08]. All these results are not known to hold in the
classical advice-free setting.

2.4 Proof Systems with Advice and Bounded Arithmetic

Propositional proof systems enjoy a very close relationship to weak arithmetic
theories, so-called bounded arithmetic, which in particular yields insight into
strong proof systems as Frege systems and their extensions [Kra95]. This connec-
tion also holds in the presence of advice, and this, in fact, was the motivation for
their introduction in [CK07]. There, Cook and Kraj́ıček investigate Karp-Lipton
collapse consequences of the assumption NP ⊆ P/poly. The classical Karp-Lipton
Theorem states that NP ⊆ P/poly implies a collapse of the polynomial hierarchy
PH to its second level [KL80]. Subsequently, these collapse consequences have
been improved by Köbler and Watanabe [KW98] to ZPPNP and by Sengupta
and Cai to S

p
2 (cf. [Cai07]). Making the stronger assumption that NP ⊆ P/poly

is provable in some weak arithmetic theory, Cook and Kraj́ıček obtained stronger
collapse consequences, namely to the Boolean hierarchy if the theory is PV (cf.
also [Jeř09,BM]).

One important intermediate step towards this result is a surprising trade-off
between advice and nondeterminism (which is unlikely to hold without reference
to bounded arithmetic):

Theorem 6 (Cook, Kraj́ıček [CK07]). PV proves NP ⊆ P/poly if and only
if PV proves coNP ⊆ NP/O(1).

The latter condition can be interpreted as saying that there exists a polynomially
bounded proof system using constant advice (and, moreover, the polynomial
boundedness in provable in PV ). In fact, Cook and Kraj́ıček even exhibit a
natural proof system P with advice that is polynomially bounded if PV proves
NP ⊆ P/poly: the system P is an extended Frege system with constant advice.

2.5 Simplifying the Advice

From a practical point of view, proof systems with advice are susceptive to crit-
icism: advice can be arbitrarily complex (even non-recursive) and thus verifying
proofs with the help of advice does not form a feasible model to use in practice.
The next result shows that for propositional proof systems, logarithmic advice
can be replaced by a sparse NP-oracle without increasing the proof length.



Theorem 7 ( [BM09]).

1. Every propositional proof system with logarithmic advice is simulated by a
propositional proof system computable in polynomial time with access to a
sparse NP-oracle.

2. Conversely, every propositional proof system computable in polynomial time
with access to a sparse NP-oracle is simulated by a propositional proof system
with logarithmic advice.

We remark that sparse NP-sets indeed seem to be very weak if used as oracles.
For instance, TAUT ∕∈ NPS with a sparse NP-oracle S, unless the polynomial
hierarchy collapses to its second level [Kad89].

Another simplification of advice was investigated in [BM09]. As we have seen,
there are two natural ways to enhance proof systems with advice by either sup-
plying non-uniform information to the proof (input advice) or to the proven
formula (output advice). Intuitively, input advice is the stronger model: proofs
can be quite long and formulas of the same size typically require proofs of differ-
ent size. Hence, supplying advice depending on the proof size is not only more
flexible, but also results in more advice per formula.

Therefore, shifting the advice from the proof to the formula will result in a
simplification of advice. In this direction in was shown in [BM09] that if there
exists a proof system with advice with nontrivial upper bounds on the proof
lengths, then there is such a proof system with output advice.

3 Probabilistic Proof Systems

We will now turn to the use of probabilism to compute proof systems. Usually,
the term “probabilistic proofs” is associated with interactive proof systems like
IP or Babai’s Arthur-Merlin classes MA and AM. Besides from randomisation,
the power of these proof systems stems from using interaction between a powerful
prover and a polynomial-time verifier.

A non-interactive model of randomized proofs was very recently introduced
by Hirsch and Itsykson [HI10]. They define two concepts: heuristic acceptors and
heuristic proof systems. Acceptors are not really proof systems, but algorithms
which accept all elements from the language and do not stop on other inputs.
There is, however, a close relationship between acceptors and proof systems
(cf. [KP89]). As there is a nice survey on optimal acceptors and optimal proof
systems in this volume [Hir10], we will be very brief on this randomized model.

For the randomized approach, we have to consider a probability distribution.
A distribution D is concentrated on some set A, if �D(A) = 1.

Definition 8 (Hirsch, Itsykson [HI10]). A pair (D,L) is a distributional
proving problem if D is a family of probability distributions Dn concentrated on
L ∩ {0, 1}n.

Hirsch and Itsykson define a heuristic acceptor for a distributional proving
problem (D,L) as a randomized algorithm which always accepts inputs from L



and accepts inputs from L̄ only with small probability (see [Hir10] for the exact
definition). For this model they show an optimality result:

Theorem 9 (Hirsch, Itsykson [HI10]). Let L be recursively enumerable and
D be a polynomial-time samplable distribution. Then there exists an optimal
automatizer for (D,L).

The authors also consider heuristic proof systems and show interesting results
on these systems with respect to automatizability, i. e., the problem to construct
proofs for given formulas (see [Hir10]).

4 Quantum Proof Systems

As our last model we briefly mention quantum proof systems as introduced by
Pudlák [Pud09]. Since Shor’s polynomial-time quantum algorithm for factoring
[Sho97], quantum computations are a computational model which has attracted
an enormous amount of research. Recently, Pudlák investigated the usage of
quantum rules in propositional proof systems [Pud09].

Pudlák first introduces a general model of quantum proof systems and then
focuses on quantum Frege systems. Let us start with the general concept.

Definition 10 (Pudlák [Pud09]). A quantum proof system consists of a set
A ⊆ �∗ (the set of valid proofs) and a family of circuits Cn (the proof system)
such that

1. A is decidable in polynomial time and Cn is P-uniform (Efficiency);
2. for any proof � ∈ A, C∣�∣(�) produces a superposition of strings of tautologies

(Correctness);
3. for every tautology ' there exists � ∈ A such that ' occurs in the superposi-

tion of C∣�∣(�) (Completeness).

Regarding the completeness condition, it is also important that by measuring
C∣�∣(�) we can obtain ' with a probability which is not too small. Hence quantum
proof systems also have probabilistic aspects.

The next concept which Pudlák introduces are quantum rules which are based
on unitary transformations. Using a finite set of quantum rules, Pudlák arrives at
the notion of quantum Frege systems. Comparing quantum Frege with classical
Frege systems, Pudlák obtains the surprising result that quantum Frege systems
do not have shorter proofs, i. e., every quantum Frege system is simulated by a
classical Frege system. On the other hand, it does not seem possible to extract
classical proofs from quantum Frege proofs, i. e., under cryptographic assump-
tions quantum Frege systems are not p-simulated by classical Frege systems.

5 Conclusion

We conclude by mentioning that there are more interesting approaches which we
did not cover in this survey. For instance, space complexity for proof systems was



intensively investigated in the context of Resolution [ET01,ABSRW02,BSN08].
Here the minimal space to refute a set of clauses is of particular interest as it
corresponds to the memory consumption of modern SAT solvers which often
combine DPLL algorithms with clause learning. Therefore, both lower bounds
for Resolution space [ABSRW02,BSG03,EGM04,ET03] as well as optimal trade-
offs between space and length, i. e., between memory and run-time consumption,
have been intensively studied [Nor06,NH08,BSN08,BSN09].

Another approach is to provide a finer analysis of proof lengths in the model
of parameterized proof complexity. Parameterized resolution and, moreover, a
general framework for parameterized proof complexity was recently introduced
by Dantchev, Martin, and Szeider [DMS07]. In that paper, Dantchev et al. show
a complexity gap in parameterized tree-like resolution for propositional formu-
las arising from translations of first-order principles. A purely combinatorial
approach to obtain lower bounds to the proof size in parameterized tree-like
resolution was developed in [BGL10].

Of course, non-classical proof complexity is still a relatively young area of
research and many problems are still open. In particular, it is interesting to
determine the relationship between the different approaches (e. g. with respect to
simulations as in Theorem 7). We believe that further research into non-classical
measures of proofs will both strengthen the connections between computational
and proof complexity and lead to new insights for classical proof systems.
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