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We examine a model system where attractors may consist of a het�
eroclinic cycle between chaotic sets� this �cycling chaos� manifests
itself as trajectories that spend increasingly long periods lingering
near chaotic invariant sets interspersed with short transitions be�
tween neighbourhoods of these sets� Such behaviour is robust to
perturbations that preserve the symmetry of the system� we exam�
ine bifurcations of this state�
We discuss a scenario where an attracting cycling chaotic state is
created at a blowout bifurcation of a chaotic attractor in an in�
variant subspace� This di�ers from the standard scenario for the
blowout bifurcation in that in our case� the blowout is neither sub�
critical nor supercritical� The robust cycling chaotic state can be
followed to a point where it loses stability at a resonance bifurcation
and creates a series of large period attractors�
The model we consider is a 	th order truncated ordinary di�er�
ential equation 
ODE� model of three�dimensional incompressible
convection in a plane layer of conducting �uid subjected to a verti�
cal magnetic eld and a vertical temperature gradient� Symmetries
of the model lead to the existence of invariant subspaces for the
dynamics� in particular there are invariant subspaces that corre�
spond to regimes of two�dimensional �ows� with variation in the
vertical but only one of the two horizontal directions� Stable two�
dimensional chaotic �ow can go unstable to three�dimensional �ow
via the cross�roll instability� We show how the bifurcations men�
tioned above can be located by examination of various transverse
Liapunov exponents� We also consider a reduction of the ODE to
a map and demonstrate that the same behaviour can be found in
the corresponding map� This allows us to describe and predict a
number of observed transitions in these models� The dynamics we
describe is new but nonetheless robust� and so should occur in other
applications�
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� Introduction

There has been a lot of recent interest in the chaotic dynamics of nonlinear
systems that possess invariant subspaces� a number of quite subtle dynami
cal e�ects come to light in examining the interaction of attractors with the
invariant subspaces� This is especially important in interpreting and predict
ing dynamics of simulations and experiments where the presence of discrete
spatial symmetries implies the existence of invariant subspaces�

A fundamental bifurcation in such a setting is the blowout bifurcation ����
where a chaotic attractor within an invariant subspace loses stability to per
turbations transverse to the invariant subspace� At such a bifurcation point�
there may or may not be a bifurcation to a nearby �branch� of chaotic attrac
tors�

In contrast with this� the presence of invariant subspaces can lead to the exis
tence of what have been called robust heteroclinic cycles ���� between equilib
ria� that is� heteroclinic cycles that are persistent under small perturbations
that preserve the symmetry� These cycles may or may not be attracting �����
Recently it has been recognised that cycles to more complicated invariant sets
can also occur robustly in symmetric systems� in particular to chaotic invariant
sets� this behaviour was named �cycling chaos� in a recent paper by Dellnitz
et al� ��� and has been further investigated by Field ���� and Ashwin ����

In this paper we �nd there is a connection between these dynamical properties�
we show a scenario where a blowout bifurcation creates an attracting �cycling
chaotic� state in a bifurcation that is analogous to a saddlenode homoclinic
bifurcation with equilibria replaced by chaotic invariant sets� We also inves
tigate how the attracting cycling chaotic state that is created in the blowout
bifurcation loses stability at a resonance of Liapunov exponents� �A resonance

bifurcation in its simplest form occurs when a homoclinic cycle to an equilib
rium loses attractiveness� in many problems� this occurs when the real parts of
eigenvalues of the linearisation become equal in magnitude ����� In spite of the
system being neither a skew product nor being a homoclinic cycle to a chaotic
set as in ��� we see similar behaviour and can predict the loss of stability by
looking at a rational combination of Liapunov exponents�

We �nd this scenario of a blowout bifurcation to cycling chaos is a mech
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anism for transition from stable twodimensional to fully threedimensional
magnetoconvection� The model we study is a Galerkin truncation for magneto
convection in a region with square plan� subject to periodic boundary condi
tions on vertical boundaries and idealised boundary conditions on horizontal
boundaries� Phenomenologically speaking we see a change from a chaotically
varying twodimensional �ow �with trivial dependence on the third coordinate�
and which comes arbitrarily close to a trivial conduction state� to an attracting
state where trajectories spend increasingly long times near one of two sym
metrically related twodimensional �ows interspersed with short transients�
We explain and investigate this transition in terms of a blowout bifurcation
of a chaotic attractor in an invariant subspace�

In the paper of Ott and Sommerer ���� that coined the phrase �blowout bi
furcation�� two scenarios are identi�ed� Either the blowout was supercritical

in which case it leads to an on�o� intermittent state ����� or it is subcritical

and there is no nearby attractor after the bifurcation� We �nd an additional
robust possibility for bifurcation at blowout�

Near this transition the threedimensional �ow patterns show characteristics
of intermittent cycling between two symmetrically related �laminar� states
corresponding to twodimensional �ows� but the time spent near the laminar
state is� on average� in�nite� This suggests that the blowout is supercritical�
but in a weaker sense which we make precise� Namely� we say a blowout is set
supercritical if there is a branch of chaotic attractors after the blowout whose
limit contains the attractor in the invariant subspaces before the blowout� In
particular there may be other invariant sets contained in this limit and so any
natural measures on the bifurcating branch of attractors �if they exist� need
not limit to the natural measure of the system on the invariant subspace�

We also show that the attractors corresponding to twodimensional �ows are
not Liapunov stable� but are Milnor attractors near the transition to three
dimensions� and so in particular we expect the presence of noise to destabilise
twodimensional attractors near blowout by a bubbling type of mechanism ����

We �nd in our example that the state of cycling chaos is attracting once it
has been created� trajectories cycle between neighbourhoods of the chaotic
sets within the invariant subspaces� and the time between switches from one
neighbourhood to the next increases geometrically as trajectories get closer
and closer to the invariant subspaces� By estimating the rate of increase of
switching times� we are able to show that cycling chaos ceases to be attracting
in a resonance bifurcation� One remarkable aspect of this study is that we are
able to predict the parameter values at which the blowout bifurcation and the
resonance occur� requiring only a single numerical average over the chaotic set
within the invariant subspace�
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Our approach to this problem is a combination of careful numerical simulations
and analysis of problems with the symmetry of the model to gain insight into
the dynamics� By reducing to an approximate map� we can perform fast and
accurate longtime simulations and hence get a fuller picture of the dynamics
and bifurcations that determine the behaviour in this model�

The paper is organised as follows� in section � we introduce the ODE model for
magnetoconvection� discuss its symmetries and corresponding invariant sub
spaces� We also summarise what is known about the dynamics of the ODE
model� This is followed by a description of the creation� persistence and loss
of stability of the cycling chaos on varying a parameter in numerical simula
tions in Section �� Section � shows how one can� under certain assumptions�
derive a map model of the dynamics of the ODE that has the same dynamical
behaviour� Section 
 is a theoretical analysis of the blowout bifurcation that
creates the cycling chaotic attractor and is followed in Section � by a theo
retical analysis of its loss of stability� Finally� Section � discusses some of the
implications of this work on the chaotic dynamics of symmetric systems�

� An ODE model for magnetoconvection

The model we study is an ODE on R� described by the following equations

�x� ��x� � x�� � x�x� � �y��x��

�x� ���x� � x�x��

�x� ���x� � �Qa � �x�x��

�y���y� � y�� � y�y� � �x��y��

�y����y� � y�y�� ���

�y����y� � �Qb � �y�y��

�a� 	�x� � a��
�b� 	�y� � b��

����� � x�� � y��


These ODEs have been derived as an asymptotic limit of a model of three
dimensional incompressible convection in a plane layer� with an imposed verti
cal magnetic �eld� for further details and details of its derivation� see �����������
In the context of this model� x� and y� represent the amplitudes of convective
rolls with their axes aligned in the Y and X �horizontal� directions respec
tively� x� and y� represent modes that cause the rolls to tilt� and x� and y�
represent shear across the layer in the X and Y directions� The modes a and
b represent the horizontal component of the magnetic �eld in the X and Y
directions� and � represents the horizontally averaged temperature�






The model has are �ve primary parameters� � is proportional to the imposed
temperature di�erence across the layer� with � � � at the initial bifurcation to
convection� � is related to the horizontal spatial periodicity length� but is an
arbitrary small parameter in the model of �������� � and 	 are dimensionless
viscous and magnetic di�usion coe�cients� and Q is proportional to the square
of the imposed magnetic �eld� Note that �� 	 and Q are scaled by factors of
�� � and �� from their usage in ����������� Two secondary parameters that we
use are � � ����������� and � � �������������� In the parameter regime
of interest� all parameters are nonnegative�

��� Symmetries of the model

Consider D� ��T
� acting on the plane with unit cell ��� ���� in the usual way�

with the torus T � acting by translations on the plane� and D� by re�ections
in the axes and rotation through ���� We de�ne the following group elements

x� re�ection through X � � �X� Y � �� ��X� Y ��

�

x� re�ection through X � ��� �X� Y � �� �� �X� Y ��

y� re�ection through Y � � �X� Y � �� �X��Y ��

�

y� re�ection through Y � ��� �X� Y � �� �X� � � Y ��

�� ��� rotation about �X� Y � � ��� �� �X� Y � �� ��� � Y�X��

������� translation �X� Y � �� �X � �� Y � ���

���

Note that �� ������ and any re�ection  can be used to generate the group
D� ��T

��

We consider the subgroup

G � hx� 
�

x� y� 
�

y� �i
 ���

Since G contains the subgroup �Z��
�� generated by x

�

x and y
�

y� of trans
lations T �� it follows that G is isomorphic to a semidirect product D� ���Z��

�

�jGj � ���� The ODE ��� is equivariant under the group G of symmetries
acting on R� by

x�x�� x�� x�� y�� y�� y�� a� b� �� � �x���x���x�� y�� y�� y���a� b� ���
�

x�x�� x�� x�� y�� y�� y�� a� b� �� � ��x�� x���x�� y�� y�� y���a� b� ��� ���

��x�� x�� x�� y�� y�� y�� a� b� �� � �y���y���y�� x�� x�� x���b� a� ��
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Table �
Selected xed point subspaces S of the action of G on R� together with name�
representative point and dimension of S� There are others 
e�g� 
�� x� �� �� �� �� �� �� t��
but these are not important for the dynamics we discuss here�

S Name Representative point dimS

F Full symmetry 
�� �� �� �� �� �� �� �� t� �

Rx x�rolls 
x� �� �� �� �� �� �� �� t� �

Ry y�rolls 
�� �� �� x� �� �� �� �� t� �

D� � diagonal 
x� �� �� x� �� �� �� �� t� �

D� � diagonal 
x� �� ���x� �� �� �� �� t� �

Rxy Mixed modes 
x� �� �� y� �� �� �� �� t� �

Px x�rolls � shear 
x� y� z� �� �� �� a� �� t� �

Py y�rolls � shear 
�� �� �� x� y� z� �� a� t� �

Qx x�rolls � shear � crossrolls 
x� y� z� w� �� �� a� �� t� �

Qy y�rolls � shear � crossrolls 
w� �� �� x� y� z� �� a� t� �

T No symmetry 
u� v� w� x� y� z� a� b� t� 	

T

Qx Qy

Px Py Rxy

Rx Ry D� D�

F

J
JJ�

�
���

J
JJ�

J
JJ�
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���
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Fig� �� A portion of the isotropy lattice for the action of G on R� under which 
��
is equivariant� We have shown xed point subspaces of some conjugate subgroups
separately for clarity� The isotropies of Px and Py are the smallest isotropies that
physically involve only two�dimensional e�ects�

This action gives rise to a number of isotropy types� shown in Table �� Figure �
gives a partial isotropy lattice for this group action� Dynamics in F always
decays to the trivial equilibrium point� corresponding to the absence of con
vection� We refer to dynamics in Px and Py as twodimensional� since these
correspond to twodimensional convection in the original problem �though
dimPx is 
�� Dynamics in Rx and Ry corresponds to mirror symmetric two
dimensional rolls with their axes aligned along the Y and X directions� we
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refer to equilibrium points in these subspaces as xrolls and yrolls respec
tively� In Px and Py� convection is twodimensional but not mirror symmetric�
and is referred to as tilted rolls� Dynamics in Qx and Qy corresponds to three
dimensional convection that is still invariant under one mirror re�ection �tilted
rolls with a crossroll component�� Otherwise we say the dynamics is fully three
dimensional�

In a slight break from convention we say the �xed point subspaces S as having
isotropy subgroup Iso�S� rather than considering the isotropy subgroups as
the fundamental objects�

��� Summary of known dynamics of the model

There has been a great deal of work already on analysing the dynamics of some
special cases of the model ���� Rucklidge and Matthews ���� considered two
dimensional convection �that is� restricted to Px� and conducted a detailed
survey of the resulting PDEs and the �fthorder set of ODEs� focussing on
two parameter regimes� �rst the nonmagnetic case �with Q � �� and � and �
varying� and then the magnetic case �with � � �
��
 and 	 � �
�
� with � and
Q varying�� For small but nonzero values of Q �for example� Q � ������ the
typical pattern of behaviour that they found was� the rolls created in the initial
convective instability at � � � lose stability to tilted rolls at � � �
������
which in turn undergo a Hopf bifurcation at � � �
������ There is then a
complicated sequence of global bifurcations involving the collision of periodic
orbits with the trivial and roll equilibrium points� Amongst these numerous
bifurcations� there is a parameter interval ��
��
�� � � � �
��
��� with
Lorenzlike chaotic dynamics� A detailed comparison with simulations of the
PDEs for twodimensional incompressible magnetoconvection con�rmed the
qualitative similarity between the dynamics of the PDEs and of the ODEs�

This approach was extended to threedimensional convection ���� and magneto
convection ����� With the parameters �xed at Q � ����� � � �
��
� 	 � �
�

and � � �

� Rucklidge and Matthews ���� found that as � is increased� there
is an instability from twodimensional tilted rolls in Px to threedimensional
convection in Qx at � � �
����
� before the Hopf bifurcation in Px� The three
dimensional steady solutions undergo a Hopf bifurcation at � � �
������ The
resulting periodic orbit� which is contained in Qx� undergoes a series of period
doubling bifurcations leading to chaos� but by � � �
��� all that remains is
an attracting structurally stable heteroclinic cycle connecting four equilibrium
points �in Rx� Px� Ry and Py�� This cycle ceases to be attracting at � � �
��
��
�computed using a method adopted from ������ The value of � at which the
heteroclinic cycle ceases to be attracting increases with �� and for � � �
��
the Hopf bifurcation from tilted rolls occurs in Px before the heteroclinic cycle
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loses stability� suggesting that there will be an attracting heteroclinic cycle
connecting two roll equilibrium points in Rx and Ry and two periodic orbits
in Px and Py� Numerical evidence in both the ODE model and in the PDEs for
compressible convection indicates that this is indeed the case ����� Since the
periodic orbit in Px is known to become chaotic for higher �� Matthews et al�

���� speculated that there might be an attracting heteroclinic cycle connecting
the chaotic sets in Px and Py�

In this paper� we address issues raised by this earlier work� if there is a hetero
clinic cycle connecting chaotic sets in these ODEs� how is it created� exactly in
what way are the connections structurally stable� and how can its asymptotic
stability be computed� We choose � � �
��

 �with the other parameters as
in ����� so that the dynamics within Px is chaotic� and vary �� which does
not alter the dynamics in Px but does a�ect how the chaotic set within Px

responds to perturbations outside that subspace� We dicuss only the dynamics
of the ODEs� not the PDEs� but note that in the earlier studies� the ODEs
have modelled the behaviour of the PDEs remarkably well�

� Numerical simulations of the ODEs

We present numerical simulations of the ODEs that demonstrate two aspects
of cycling chaos that we seek to explain� how cycling chaos can be created in
a blowout bifurcation� and how cycling chaos can cease to be attracting�

We concentrate on parameter values that are known to have Lorenzlike chaotic
dynamics within Px and Py�

� � �
��

� Q � ����� � � �
��
 and 	 � �
�
 �
�

�and hence � � �

��
 and � � �
�
�� although we note that qualitatively
similar attractors are found for a large proportion of nearby parameter values�
These parameter values correspond to those in Figures �
�c� and ���a� in
����� The numerical method used was a Bulirsch	Stoer adaptive integrator
����� with a tolerance for the relative error set to ����� for each step�

We use the parameter � as a normal parameter �see �
�� for the dynamics
in Px and Py� that is� it controls instabilities transverse to Px and Py in the
directions Qx and Qy without altering the dynamics inside Px or Py�

��� Cycling chaos
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Fig� �� Numerical solutions of the model ODEs with � � ������� Q � �����
� � ������ � � ���� and 	 � ���� 
a� x� against time� 
b� y� against time� 
c� x�
against x�� 
d� x�� y� and jx�j � jy�j in perspective� The crosses in 
c� and 
d� rep�
resent the x�roll� y�roll and trivial equilibrium points in Rx� Ry and F � Note that
the chaotic attractor is close to a heteroclinic cycle that connects the x�rolls� the
y�rolls and the trivial xed point�
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In Figure � we show a typical example of timeseries when there is attracting
cycling chaos �with � � �
��� The system starts with x� oscillating chaotically
while y� is quiescent� switches to a state where y� oscillates chaotically while x�
is quiescent� and so on� A more careful examination reveals that after a switch
the trajectory remains close to a �xed point inRx orRy for an increasing length
of time� Physically� this corresponds to chaotic twodimensional convection
that switches between rolls aligned in the X and Y directions� Figure ��c�
shows the chaotic trajectories projected onto the �x�� x�� plane� while �d�
illustrates switching between Px �the �horizontal� plane� and Py �the �vertical�
plane��

Note how the chaotic behaviour in Figure ��a� and �b� repeats� trajectories
spend longer and longer near the unstable manifolds of the xroll and yroll
equilibrium points and take longer and longer between each switch� This is
illustrated further in Figure �� which shows intersections of a trajectory with
the Poincar e surface jx�j � jy�j � �
�� close to the trivial solution� There
are two phases evident in the cycle� the order one chaotic behaviour of x�
near Px �while y� grows exponentially�� and the exponential growth of jx�j
as the trajectory moves away from Py �while y� behaves chaotically�� The
time between switches increases monotonically and the rate of increase varies
with �� the normal parameter� In these numerical simulations� the switching
time saturates when certain components of the solution come close to the
machine accuracy of the computations �about ���	�	 for double precision��

We argue that this is evidence for attracting cycling chaos� trajectories ap
proach a structurally stable heteroclinic cycle between chaotic sets� In Fig
ure � we show a schematic picture of the heteroclinic cycle� We recall that the
�xed point spaces Rx and Ry are � dimensional� Rxy is � dimensional� Px and
Py are 
 dimensional and Qx and Qy are � dimensional invariant subspaces in
the � dimensional phase space� The system starts near the xroll equilibrium
point in Rx� which is unstable to shear �x��� the parameters are such that the
unstable manifold of xrolls comes close to the trivial solution and returns to a
neighbourhood of xrolls� This global nearconnection within Px is the source
of the chaotic behaviour� We refer to the chaotic sets in Px and Py as Ax and
Ay respectively� these contain the relevant roll equilibrium points and they
both contain the trivial solution� so there are structurally stable connections
from the trivial solution to the roll equilibrium points and from those to Ax

and Ay� Within Qx� Ax is unstable to crossrolls �y�� since the trivial solu
tion is equally unstable in the x� and y� directions� Eventually y� grows large
enough that there is a switch to the yroll equilibrium point in Ry� at which
point y� starts to grow� Thus the cycle connects invariant sets in the following
�xed point subspaces�


 
 
� Rx � Px � Qx � Ry � Py � Qy � 
 
 
 ���

��
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Fig� �� Numerical solutions of the model ODEs� cycling chaos with 
a� 	 � �����

b� 	 � ����� 
c� 	 � ���� and 
d� 	 � ����� showing the values of jx�j at which the
trajectory intersects the surface dened by jx�j� jy�j � ����� The rising exponential
growth phases correspond to the system switching from chaos in Py to chaos in
Px� The time between switches increases as the system approaches the attracting
cycling chaos� but the rate of increase depends on 	�

between the equilibrium points in Rx and Ry� and Ax and Ay within Px and Py�
with the structurally stable connections needed to complete the cycle from Ax

and Ay to the yroll and xroll equilibrium points lying within Qx and Qy�

Note that our scenario is certainly a simpli�cation of the full set of hetero
clinic connections� there are other �xed points contained in the closure of the
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Fig� �� A schematic illustration of the location of the robust cycle relative to the
invariant subspaces forced by symmetry� The cycle is between the chaotic invariant
sets Ax and Ay 
within Px and Py� and two xed points contained in Rx and Ry�
The cycle is robust to G�equivariant perturbations that x the dynamics in Px and
Py� The intersection of Px and Py at the trivial solution is not shown� although Ax

and Ay do in fact intersect there�

smallest attracting invariant set� in particular the origin is contained within
the cycle�

��� Blowout

We turn now to the question of how the cycling chaos is created� With � � �


we �nd attracting twodimensional chaos �Figure 
a� b�� which loses stability
around � � �
�� �c� in a blowout bifurcation� and for � � �
�� �d�� there is
exponential growth away from Px into Qx� Within Qx� the yroll equilibrium
points are sinks� establishing the structurally stable connection from the chaos
in Px to the equilibrium point in Ry� and hence the creation of cycling chaos�

��� Resonance

As illustrated in Figures �� as � decreases towards �
��� trajectories spend
progressively longer in each visit to Px and Py before switching to the conju
gate chaotic invariant set� Eventually� trajectories come arbitrarily close to the
invariant subspaces Px and Py �limited only by machine accuracy in the nu
merical simulations�� Figure � shows how the time intervals between switches
between Ax and Ay increases as the system approaches this heteroclinic cycle�
and how the rate of approach to the heteroclinic cycle decreases as � ap
proaches �
��� The intervals between switches grow by a factor of about �
��
�
� and �
� per switch for � � �
��� � � �
�� and � � �
�
 respectively� and
�
�� and �
�� for � � �
�� and �
��� By � � �
��� the heteroclinic cycle is
no longer attracting� and for � � �
�� and �
��� the system settles down to
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Fig� �� Numerical solutions of the model ODEs� The top panel 
a� shows the chaotic
time dependence of x�� independent of 	� and the lower three panels show the
blowout bifurcation� 
b� 	 � ����� before the blowout bifurcation 
solutions de�
cay to two�dimensional chaos�� 
c� 	 � ���� near the blowout bifurcation� and

d� 	 � ���� after the blowout bifurcation 
solutions grow to cycling chaos�� The
straight lines show the average growth or decay rates predicted by the Liapunov
exponents calculated using 
����
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Fig� �� Time intervals between switches between Px and Py with 	 in the range
���������� The intervals between switches increase by a factor of about ���� and ����
per switch for 	 � ���� and ���� respectively� The switching times stop increasing
once the values of variables become so small that the cubic terms in the ODEs
cannot be represented accurately with double�precision numbers 
and calculations
were terminated once any variable went below �������� For 	 � ���� and ����� the
system approaches a periodic orbit and the intervals between switches goes to a
constant 
though in the case of 	 � ����� the periodic orbit is only achieved after
���� switches��

periodic behaviour that is bounded away from Px and Py� though the periodic
orbits are actually quite close to these invariant subspaces� For these calcula
tions� we imposed a cuto� of ������� the calculation ceased once any variable
became smaller than this�

In the next section� we derive a map that allows us to compute longer tra
jectories more accurately� and we demonstrate cycling chaos� its creation in a
blowout bifurcation and its loss of attractiveness using this map� We analyse
the blowout bifurcation in section 
� and argue in section � that the cycling
chaos created in that bifurcation ceases to be attractive at a resonance�
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� Reduction to a map

In this section� we discuss a map that models the behaviour of the ODEs in
the parameter regime described above� and that helps clarify what happens
near blowout bifurcation and the resonance of the cycling chaos� In particular�
an examination of the map enables us to determine which combination of
eigenvalues and Liapunov exponents determines the stability of cycling chaos
in the ODEs�

��� Derivation

We rely on a map derived for the twodimensional dynamics by breaking up
the �ow into pieces near and between equilibrium points ����� Within the Px

subspace� the leading stable eigendirection of the origin �that is� the eigendi
rection with negative eigenvalue closest to zero� is in the �x�� a� plane� and the
unstable direction of the origin is along the x� axis� All trajectories leaving
the origin in that direction follow the structurally stable connection within Rx

to one or other of the xroll equilibrium points� The onedimensional unsta
ble manifold of xrolls lies within Px� and the chaotic attractor is associated
with a global bifurcation at which that unstable manifold collides with the
origin� Near this global bifurcation� the dynamics within Px is modelled by an
augmented Lorenz map�

�x�� x� � ��� ��
�
sgn�x����� C�jx�j�����x�

�
���

de�ned as a map from the surface of section jx�j � h to itself� Details of the
derivation are given in ����� but brie�y�  is a parameter related to � in the
ODEs� with  � � at the global bifurcation� h is a small positive constant that
we scale to one� sgn�x� � �� if x � � and �� if x � �� �� depends on the
ratio of various stable and unstable eigenvalues at the origin and the xroll
equilibrium points �with � � �� � ��� and C� is a �negative� constant�

It is a straightforward matter to include the e�ect of a small perturbation in
the y� and y� directions� Near the Px subspace� y� and y� will grow linearly at
a rate that depends on x�� This means that we get a mapping of the form

�x�� x� � ��� y�� y�� ���
sgn�x���� � C�jx�j�����x�� C�y�jx�j��� C	y�jx�j��

�
� ���

where C� and C	 are constants and the exponents �� and �	 again depend on
ratios of eigenvalues� with �� � � and �	 � �� The exponent �� is negative

��



since a small value of x� implies that the trajectory spends longer near the
origin� so y� has a longer time to grow� Similarly� near Py we get the mapping

�x�� x�� y�� y� � ��� ���
C�x�jy�j��� C	x�jy�j��� sgn�y����� C�jy�j�����y�

�
� ���

as long as x� is much smaller than y��

These maps are valid provided that the trajectory remains close to the Px

or Py subspaces� We model the switch from behaviour near Px to near Py

by assuming that ��� holds provided that jx�j � jy�j� otherwise� the trajec
tory leaves the neighbourhood of the origin along the y�axis� visits a yroll
equilibrium point and returns to the surface of section jy�j � � near the origin�

�x�� x� � ��� y�� y�� ��
�
C�x�jy�j��jy�j����C
jy�j��jy�j�� � ����

sgn�y���� � C�jy�j��jy�j���� sgn�y��
�
�

where� as above� C�� C
 and C� are constants and ��� �
 and �� are ratios of
eigenvalues� Similarly� ��� holds if jx�j � jy�j� otherwise the trajectory switches
from Py to Px�

�x�� x�� y�� y� � ��� ��
�
sgn�x����� C�jx�j�� jx�j���� sgn�x��� ����

C�y�jx�j�� jx�j�� ��C
jx�j�� jx�j��
�



Then in the full map� as long as jx�j � jy�j� the trajectory behaves chaotically
under ��� �near the Px subspace�� with x� obeying a Lorenz map and y�
growing or decaying according to the value of x�� If y� grows su�ciently that
jy�j � jx�j� there is one iterate of map ����� which makes x� small as the
system switches from Px to Py� followed by many iterates of ���� and one
iterate of ���� as the system switches back to Px�

The � exponents can be determined from the eigenvalues of the trivial solution
and of xrolls� The relevant eigenvalues of the origin are �in the notation of
����� the growth rate � of x� and y� and the slowest decay rate �� of �x�� a��
determined by the eigenvalue of

��� ��Q
	 �	

�
����

��



closest to zero� The relevant eigenvalues of xrolls are the growth rate �� and
the slowest decay rate ��� of �x�� x�� a�� determined by the eigenvalues of

�
��
�� p

� �
�
p
� �� ��Q

� 	 �	

�
	
 
 ����

The other important eigenvalues at the xroll equilibrium point are the decay
rate of y� ����� and the decay rate of y� ����� Then we have

���
���
�

�� � ��� � �� �
���
�

�� � �� �	 �
���
�

�� � �
� �

���
��

��
� �
 �

���
��

� �� �
����
��


 ����

From �tting the map to trajectories of the ODEs with � � �
�� �see Figure 
b��
we �nd values for the constants�

���
�������
C� � ��
���
�� C���
������ C	 � �
������ ��
�

C� � ���
�
� C
��
��
�
� C� � �
���
���


The eigenvalues that do not depend on � are�

�� � ��
�
����� �� � �
������ ��� � ��
������
 ����

With these eigenvalues� we have �� � �
������ �	 � �
������ �
 � �
����� and
�� � �
��
��� while �� �negative� and �� depend on ��

��� Iterating the map

We seek to reproduce in the map what we have observed in the ODEs� the
blowout bifurcation that creates cycling chaos� and the loss of attractiveness of
cycling chaos� The �rst of these �Figure �� is straightforward� typical Lorenz
like chaos is shown in Figure ��a�� while the change from decay towards Px to
growth away from Px at � � �
�� is shown in �b	d��

Cycling chaos is found after the blowout bifurcation �Figure �a�� the system
switches between chaos in Px and chaos in Py� getting closer and closer to the
invariant subspaces after each switch and spending longer between switches
�Figure �b�� The rate of increase of the intervals between switches depends
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Fig� �� Blowout in the map 
������ compare with Figure �� 
a� Chaotic behaviour
of x� near Px� For di�erent values of 	 
b� 	 � ���	� c� 	 � ����� d� 	 � ������ the
distance from Px as measured by jy�j decays in 
b� and grows in 
d�� The blowout
bifurcation occurs for parameters near 
c�� The straight lines show the average
growth or decay as predicted by 
�	�� averaged over ���� iterates�
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Fig� �� Resonance in the map 
������ compare with Figures � and �� 
a� and 
b��
	 � ������ showing the approach to cycling chaos and the increase in number of
iterates between switches 

 � ������� 
c� and 
d�� 	 � ������ showing growth away
from cycling chaos 

 � ��		��� and saturation to a periodic orbit� The dashed lines
in 
c� and 
d� show the predicted rate of increase or decrease of the switching times
from 
�	��

on �� and is about a factor of ���� per switch for � � �
��� Decreasing � to
�
��� �Figure �c�d� results in growth away from cycling chaos and saturation
to a periodic orbit�

These calculations required formulating the map ��	��� in terms of the loga
rithms of the variables in order to cope with the large �������� dynamic range�
The one place in which accuracy is inevitably lost is in the switch from Px

to Py �and back�� using ����� the C�jy�j�� jy�j�� term is swamped by the order
one � As a result of this� the chaotic trajectories start in exactly the same
way each time the system switches from one invariant subspace to the other�

In terms of the ODEs� the trajectory entering a neighbourhood of Px close to x
rolls shadows the unstable manifold of that equilibrium point �lying inside Px

and leading to the chaotic set Ax� until the switch to Py� This is in agreement
with the ODE behaviour shown in Figure ��
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� Analysis of the blowout bifurcation

We brie�y review some de�nitions� If A is a compact �owinvariant subset
then we de�ne the unstable set

Wu�A� � fx � R� � ��x� 	 Ag ����

and the stable set �or basin of attraction�

Ws�A� � fx � R� � ��x� 	 Ag ����

where ��x� �resp� ��x�� is the limit set of a trajectory of the ODE passing
through x in the limit t� �
 �resp� 
�� We say a compact invariant set A
is an attractor in the sense of Milnor if

��Ws�A�� � � ����

where ���� is Lebesgue measure on R�� It is said to be a minimal Milnor at�

tractor if there are no proper compact invariant subsets S � A with ��Ws�A�n
Ws�S�� � � ��
��

As shown in ���� Milnor attractors can occur in a robust manner if the attractor
lies within an invariant subspace� Suppose P is an invariant subspace and A is
a compact invariant set in P such that A is a minimal Milnor attractor for the
�ow restricted to P and such that A has a natural ergodic invariant measure
� for the �ow restricted to P � It is possible to show �under certain additional
hypotheses ���� that A as an attractor in the full system if and only if !��� � ��
where ! is the most positive Liapunov exponent for � in a direction transverse
to P �see �
� for a detailed discussion�� If we have access to a normal parameter
�
� such that we can vary the normal dynamics without changing the dynamics
in P � we can vary ! through zero and observe loss of attractiveness of A at
what Ott and Sommerer have termed a blowout bifurcation �����

	�� Set criticality of a blowout bifurcation

Ott and Sommerer identify two possible scenarios at blowout� At a supercritical
blowout the attractor bifurcates to a family of attractors displaying ono�
intermittency ����� with trajectories that come arbitrarily close to A and thus
linger near A for long times �but with a wellde�ned mean length of lingering
or �laminar phase��� At subcritical blowout there are no nearby attractors after

��



loss of stability of A� Note that ��� discusses the question of how to distinguish
these cases�

However� what we see in this paper is that there is at least one other possibility
at blowout bifurcation that is also robust to normal perturbations� namely a
bifurcation to a cycling state or a robust heteroclinic cycle between chaotic
invariant sets� This can be seen to be set supercritical but not supercritical�
in the following sense�

By reparametrising if necessary we can assume that we have a normal param
eter

c � !��� ����

so A undergoes a blowout bifurcation at c � �� By the argument above� A is
an attractor only if c � ��

If there is a family of minimal Milnor attractors Ac� c � � such that for all
� � �

�
c������

Ac  A ����

then we say that the blowout is set supercritical� Note that as discussed in ����
and implied by the very word �blowout�� we cannot typically expect the limit
of the attractors to just be the set A�

If in addition Ac supports a family of natural ergodic invariant measures �c

�c � �� and �c � � as c� � then we say the blowout is measure supercritical

or just supercritical� �Convergence is the in the C� topology on probability
measures�� This de�nition of criticality was used in ����

If the blowout is not set supercritical then we say the blowout is subcritical�

It seems that one will often get bifurcations in symmetric systems that are
set supercritical but not supercritical� For example one can generically get a
blowout from a group orbit of attractors �under a �nite group� which yields
a single attractor that limits onto the whole group orbit� Moreover� in the
cycling chaos studied here� the attractor after blowout includes not only the
chaotic invariant sets� but also �xed points involved in the heteroclinic cycle�
As it is a cycle� it does not possess a natural ergodic invariant measure ����
and averages of observables from the system in this state will typically not
converge but continue to oscillate more and more slowly�

The blowout scenario described above holds only for variation of normal pa
rameters� in general the variation of a parameter will a�ect both the normal

��



dynamics and the dynamics within the invariant subspace� If the dynamics
in the invariant subspace is chaotic� we can expect to see a large number of
bifurcations happening within the invariant subspace and these will cause the
blowout to be spread over an interval of parameter values� there is no reason
why !��x� should vary continuously with a parameter that varies �x in a very
discontinuous manner�

Nevertheless� for the numerical results presented in Section � the dynamics
in the invariant subspace vary in quite regular way� This is because in our
system the parameter � is a normal parameter for the attractor Ax� for more
discussion of normal parameters� see �
����

	�� Evidence of blowout bifurcation in the ODE model

By mechanisms described in ���� the pure x and y chaotic dynamics corre
sponding to dynamics within Px and Py respectively can become chaotic by
means of a symmetric global bifurcation that generates Lorenzlike attractors
approaching the equilibrium solution with full symmetry and xroll or yroll
equilibrium solutions in Rx or Ry�

Now suppose there exist chaotic attractors Ax and Ay contained in Px and Py
�on average they have more symmetry�� From here on we will mostly discuss
Ax but note that as Ay is a conjugate attractor� the same will hold for Ay�

These attractors contain a saddle equilibrium e in F �the trivial solution� and
so in particular they cannot be Liapunov stable attractors� This is because
W u�e� � Px must be nontrivial manifold �otherwise e is an attractor� thus
W u � Py is also nontrivial as Iso�Py� is conjugate to Iso�Px�� Therefore

Wu�Ax� �	 Ax ����

and so Ax cannot be Liapunov stable� However it is possible that Ax is an
attractor in the sense of Milnor� this will imply that the basin will be locally
riddled in the sense of �
��

We assume that Ax and Ay are minimal Milnor attractors containing e� We
also assume that they have natural ergodic invariant measures �x and �y
supported on them� We now concentrate on Ax� Whether Ax is an attractor
depends on its the spectrum of normal Liapunov exponents� Note that the zero
Liapunov exponent corresponding to time translation always corresponds to
a perturbation tangential to the invariant subspace� If

!��x� � �� ����

��



where !��� is the most positive normal Liapunov exponent for the measure ��
it is possible to show that Ax satis�es ���� �
�� and hence that Ax is a Milnor
attractor�

It is comparatively easy to compute !��x� in that case� as the largest trans
verse Liapunov exponent of Ax in the parameter regime discussed corresponds
to directions in the Qx direction� where linearised perturbations are described
by

�y� �
�
�� ��t�� �x��t�

�
�
y�
 ����

Thus we can see that

!��x� � �� h�i�x � �hx��i�x� ��
�

where hf�x�i� �
R
f�x�d��x�� From the equation for �� it is possible to show

that

lim
T��

�

T

TZ
� dt � lim

T��

�

T

TZ
x�� dt ����

along bounded trajectories of the ODE� For the given parameter values it is
possible to approximate h�i�x � ��
����� and so hx��i�x � �
������ Thus

!��x� � �� hx��i�x � �hx��i�x � �
������ �
������� ����

implying that the blowout bifurcation occurs at approximately � � �
��� which
is in good agreement with the simulations �Figure 
b��

Note that whenever e is hyperbolic and within the attractor Ax there exists
at least one ergodic invariant measure �e �in particular that one supported
on e� such that !��e� � �� In particular� this means that the basins of the
attractors Ax and Ay are riddled for all parameter values in our problem"

Likewise� in the map ��� near Px� the logarithm of y� obeys

log jy�j �� log jy�j� logC� � �� log jx�j� ����

where �� is a function of �� The most positive normal Liapunov exponent in
this case is then

! � logC� � ��hlog jx�ji� ����

��



where the average is taken over the Lorenz attractor� Averaging over ���

iterates of ��� yields hlog jx�ji � �

���� and� solving ���� for �� we obtain � �
�
��� at the blowout bifurcation� in agreement with the data in Figure ��b��

As !��x� passes through ��Ax loses stability and becomes a chaotic saddle� and
in doing so it creates a continuum of connections from Ax to the �xed point �y
rolls� in Ry� These connections are robust to Gequivariant perturbations� as
yrolls are sinks within Qx� and so there is a robust cycle alternating between
the equilibrium points in Rx and Ry and the chaotic sets in Px and Py�

We observed in sections � and � that this cycling chaos is attractive once it is
created� we turn to the stability of cycling chaos in the next section�

� Analysis of the resonance of cycling chaos

It is clear from Figures �� � and � that the key to understanding the loss
of stability of cycling chaos lies in obtaining the rate at which trajectories
approach that state� It is possible to estimate this rate for the map� and we
use information gained in this calculation to carry out the same estimate in
the ODEs� and thus are able to obtain the values of � at which the loss of
stability occurs� in the map and in the ODEs� What is remarkable is that�
once a single average over Ax has been computed numerically� the value of �
at the bifurcation point can be obtained analytically�


�� Rate of approach to cycling chaos

We suppose that �in the map� the system arrives near Px with given values
of �x�� �� y�� y��� iterates using ��� n times �n � ��� ending up in a state
�x�

�� �� y
�

�� y
�

�� with jy�

�j � jx�

�j� There follows one iterate of ����� leaving the
system near Py in a state �x��

�� x
��

�� y
��

� � �� �we are ignoring changes of sign of
the variables�� We need to establish an estimate of �x��

�� x
��

��� a measure of the
distance from Py� given that �y�� y�� were small when the system started close
to Px�

Properly� the value of y�

� after n iterates will depend on the values of x� over
those n iterates� but if n is large� we approximate the detailed history of x�
by its average and obtain

log jy�

�j� log jy�j� n!e� ����

log jy�

�j� log jy�j� n!c� ����

�




where

!e� logC� � ��hlog jx�ji� ����

!c� logC	 � �	hlog jx�ji ����

are Liapunov exponents in the expanding and contracting directions around Px�
!e is precisely the Liapunov exponent that went through zero at the blowout
bifurcation in ����� Note that we have e�ectively approximated the chaotic
set Ax by an equilibrium point�

The trajectory escapes from the neighbourhood of Px once jy�

�j � jx�

�j� since x�
is typically of order one �compared to the tiny initial value of y��� we assume
that the escape takes place when jy�

�j � �� so obtaining

n�� �

!e
log jy�j� ����

log jy�

�j� log jy�j � !c

!e
log jy�j� ��
�

with x�

� and y�

� both of order one�

One iterate of ���� now yields

log jx��

�j� log jx�

�j� logC� � �� log jy�

�j� �� log jy�

�j� ����

log jx��

�j� logC
 � �	 log jy�

�j� �
 log jy�

�j
 ����

These expressions will be dominated by log jy�

�j once the trajectory is very
close to the heteroclinic cycle� so� neglecting terms of order one� we obtain

�
log jx��

�j
log jx��

�j

�

�
�����

!c
!e

��

��
!c
!e

�


�
	

�
log jy�j
log jy�j


�O��� ����

for large negative values of log jy�j and log jy�j� A conjugate map will describe
the return from Py to Px� One eigenvalue of the matrix is zero because of the
way we approximated the behaviour near the chaotic set� the other eigenvalue
is

� � �
 � ��
!c

!e
� ����

which we refer to as the stability index�

��



The zero eigenvalue forces log jx��

�j � �����
� log jx��

�j� so after one iterate of the
composite map ����� the dynamics will obey

�
log jx��

�j
log jx��

�j

� �

�
log jy�j
log jy�j



 ����

Clearly if � � �� log jx�j and log jy�j will tend to �
 and the trajectory will
asymptote to attracting cycling chaos� Conversely� if � � �� cycling chaos is
unstable and trajectories will leave the domain of validity of the approxima
tions we have made� We can also deduce from ���� that the number of iterates
between each switch will increase by a factor of � per switch�

At the point at which cycling chaos is created �as !e increases through zero��
we see that � is much greater than one� provided that !c is negative and �� is
positive� both of which are true in the examples we have discussed� We deduce
that cycling chaos is attracting near to its creation at the blowout bifurcation�


�� Loss of stability of cycling chaos

From the condition that � � � at the loss of stability of the chaotic cycle� we
determine that this bifurcation occurs in the map at � � �
����� in agreement
with the data in Figure ��

Returning to the ODEs� we observe that in ���� �� and �
 are ratios of eigen
values of xrolls �proportional to decay rates of y� and y��� while !e and !c

are the growth rate of y� and the decay rate of y� near the chaotic set Ax� In
the ODEs� the linearisation of ��� about Ax yields �� for the decay rate of y��
while the growth rate of y� is given by ����� Hence we have the stability index

� � �
 � ��
��

!e

����

for the ODEs� where !e is given by ����� Note that �� and !e are both functions
of �� The condition � � � is readily solved for �� and has solution � � �
��� At
� � �
�� the ODEs are still approaching cycling chaos� with switching times
increasing by a factor of above ���� per switch �see Figure ��� However� the
ODEs have not yet reached their asymptotic rate of slowing down� resolving
this small discrepancy�

On decreasing � below �
��� the stability index � increases above unity and
the cycling chaos will no longer be attracting� This loss of stability can broadly
be classed as a resonance of Liapunov exponents� Observe that the resonance
will be located at di�erent � for di�erent invariant measures supported on Ax�y

��



and so we expect the presence of riddling and associated phenomena found in
��� at a resonance of a simpler model displaying cycling chaos�

We note that constructing and analysing the map was required in order to de
termine the combination of eigenvalues and Liapunov exponents that governs
the stability index � in the ODEs�

We observe that for � below the resonance bifurcation� the system exhibits
behaviour that is numerically indistinguishable from periodic� there appear
to be a large number of coexisting apparently periodic orbits� We hypothesize
that the resonance creates a branch of �approximately periodic attractors�� i�e��
attractors that have a wellde�ned �nite mean period of passage around the
cycle� going to in�nity at the resonance ���� These might lock onto long periodic
orbits for progressively smaller �� as found in the numerical simulations� For
this example� the approximately periodic attractor branches set supercritically
from the cycling chaos� however one presumes that subcritical branching is also
possible� Research is presently in progress on understanding the more detailed
branching behaviour at this bifurcation�

� Discussion

This study has shown that one possible� apparently generic scenario for loss
of stability of a chaotic attractor in an invariant subspace on varying a normal
parameter is as follows� there is a blowout bifurcation that creates an attract
ing� robust heteroclinic cycle between chaotic invariant sets �cycling chaos��
The bifurcation is set supercritical but not supercritical� i�e�� the bifurcated
attractors contain the attractor for the system in the invariant subspace� but
unlike in a supercritical bifurcation �to an ono� intermittent state� the length
of laminar phases increases unboundedly along a single trajectory even at a
�nite distance from the blowout�

This cycling chaotic state can be modelled well by the network shown in
Figure � although in reality the network is complicated by the facts that �a�
there are other �xed points contained in the closure of unstable manifolds and
�b� the �xed points in Fx and Fy are actually contained in the chaotic sets Ax

and Ay rather than being isolated� We suspect this may have the consequence
that there is no Poincar e section to the �ow and so the cycle is �dirty� in
the terminology of ���� Nevertheless� the normal Liapunov spectrum of the
invariant chaotic set seems to determine the attraction or not of the cycle�

The attracting cycling chaos is observed to lose stability via a mechanism
that resembles a resonance of eigenvalues in an orbit heteroclinic to equilibria�
Such a resonance has been seen to occur in special classes of systems with

��



skew product structure ���� in analogy to the branching of periodic orbits at
a homoclinic resonance investigated by ����

Throughout this investigation� it has been necessary to monitor carefully sev
eral numerical e�ects� In particular� for trajectories that display asymptotic
slowing down characteristic of cycling chaos there will be a point at which
rounding errors cause the dynamics either to transfer to the invariant sub
space� or keep the dynamics a �nite distance from the invariant subspace�
In the context of physical systems there will always be imperfections in the
system and noise that will destroy the invariant subspaces� Nevertheless the
perfect symmetry model will be very useful in describing what one expects to
see in such imperfect situations�

It still remains to prove rigorously that the observed scenario is generic and
so of interest to other� less speci�c models and in particular PDE models of
which this is a truncation� We could like to emphasise that the behaviour
we see occurs for a reasonably large region of physically relevant parameters
in the ODE model and moreover we are unaware of any other classi�cation
which explains and predicts the observed dynamics to the degree that we have
done here� In principal cycling chaos can be seen in ODE models down to
dimension �� though not smaller than this� thus this dynamics should be seen
as something that will not be created at a generic bifurcation from a trivial
state� but rather in a more complicated dynamical regime far from primary
bifurcation�

We have discussed a possible route to cycling chaos through a blowout bifur
cation� and how cycling chaos might cease to be attracting� both in general
terms and in the context of a speci�c model� Our general results ought to be
applicable to a variety of other problems� In particular� behaviour that might
be understood in terms of cycling chaos has been seen by Knobloch et al� ����
in an ODE model of the dipole	quadrupole interaction in the solar dynamo�
In their model� there is a weakly broken symmetry between the dipole and
quadrupole subspaces� and the system switches between the two subspaces�
favouring one over the other since they are not equivalent�

Finally� one comment that deserves to be made is that the choice of � as
the parameter allows an important simpli�cation because of this parameter is
normal for dynamics within Px and Py� One assumes that similar behaviour
will be observed for nonnormal parameters with the exception that the chaos
in the invariant subspace will be fragile ��� and destroyed by many arbitrarily
small perturbations� see ����

��
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