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Proof Complexity of Non-classical Logics

Olaf Beyersdorff

Institute of Computer Science, Humboldt University Berlin, Germany★

beyersdo@informatik.hu-berlin.de

Abstract. Proof complexity is an interdisciplinary area of research uti-
lizing techniques from logic, complexity, and combinatorics towards the
main aim of understanding the complexity of theorem proving proce-
dures. Traditionally, propositional proofs have been the main object of
investigation in proof complexity. Due their richer expressivity and nu-
merous applications within computer science, also non-classical logics
have been intensively studied from a proof complexity perspective in the
last decade, and a number of impressive results have been obtained. In
this paper we give the first survey of this field concentrating on recent
developments in proof complexity of non-classical logics.

1 Propositional Proof Complexity

One of the starting points of propositional proof complexity is the seminal paper
of Cook and Reckhow [CR79] where they formalized propositional proof systems
as polynomial-time computable functions which have as their range the set of all
propositional tautologies. In that paper, Cook and Reckhow also observed a fun-
damental connection between lengths of proofs and the separation of complexity
classes: they showed that there exists a propositional proof system which has
polynomial-size proofs for all tautologies (a polynomially bounded proof system)
if and only if the class NP is closed under complementation. From this observa-
tion the so called Cook-Reckhow programme was derived which serves as one of
the major motivations for propositional proof complexity: to separate NP from
coNP (and hence P from NP) it suffices to show super-polynomial lower bounds
to the size of proofs in all propositional proof systems.

Although the first super-polynomial lower bound to the lengths of proofs
had already been shown by Tseitin in the late 60’s for a sub-system of res-
olution [Tse68], the first major achievement in this programme was made by
Haken in 1985 when he showed an exponential lower bound to the proof size
in Resolution for a sequence of propositional formulas describing the pigeonhole
principle [Hak85]. In the last two decades these lower bounds were extended to
a number of further propositional systems such as the Nullstellensatz system
[BIK+96], Cutting Planes [BPR97,Pud97], Polynomial Calculus [CEI96,Raz98],
or bounded-depth Frege systems [Ajt94,BIK+92,BPI93,KPW95]. For all these
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proof systems we know exponential lower bounds to the lengths of proofs for
concrete sequences of tautologies arising mostly from natural propositional en-
codings of combinatorial statements.

For proving these lower bounds, a number of generic approaches and general
techniques have been developed. Most notably, there is the method of feasible
interpolation developed by Kraj́ıček [Kra97], the size-width trade-off introduced
by Ben-Sasson andWigderson [BSW01], and the use of pseudorandom generators
in proof complexity [ABSRW04,Kra01,Kra04].

Despite this enormous success many questions still remain open. In particular
Frege systems currently form a strong barrier [BBP95], and all current lower
bound methods seem to be insufficient for these strong systems. A detailed survey
of recent advances in propositional proof complexity is contained in [Seg07].

Let us mention that the separation of complexity classes is not the only moti-
vation for studying lengths of proofs. In particular for strong systems like Frege
and its extensions there is a fruitful connection to bounded arithmetic which
adds insight to both subjects (cf. [Kra95]). Further, understanding weak systems
as Resolution is vital to applications as the design of efficient SAT solvers (see
e. g. [PS10] for a more elaborate argument). Last not least, propositional proof
complexity has over the years grown into a mature field and many researchers
believe that understanding propositional proofs and proving lower bounds—
arguably the hardest task in complexity—is a very important and beautiful field
of logic which is justified in its own right.

2 Why Non-classical Logics?

Besides the vivid research on propositional proof complexity briefly mentioned
in the previous section, the last decade has witnessed intense investigation into
the complexity of proofs in non-classical logics. Before describing some of the
results, let us comment a bit on the motivation for this research. Arguably, for
computer science non-classical logics are even more important than classical logic
as they are more expressive and often more suitable for concrete applications. It
is therefore quite important to enhance our understanding of theorem proving
procedures in these logics, in particular, given the impact that lower bounds to
the lengths of proofs have on the performance of proof search algorithms.

Another motivation comes from complexity theory. As non-classical logics are
often more expressive than propositional logic, they are usually associated with
large complexity classes like PSPACE. The satisfiability problem in the modal
logic K was shown to be PSPACE-complete by Ladner [Lad77], and this was
subsequently also established for many other modal and intuitionistic logics.1

Thus, similarly as in the Cook-Reckhow programme mentioned above, proving
lower bounds to the lengths of proofs in non-classical logics can be understood

1 In fact, PSPACE seems to be the “typical” complexity of monomodal logics and
similar systems which we will consider here. The complexity often gets higher for
logics in richer languages, e. g., PDL or the modal �-calculus, but I am not aware of
any proof complexity research on these, though.



as an attempt to separate complexity classes, but this time we are approaching
the NP vs. PSPACE question. Intuitively therefore, lower bounds to the lengths
of proofs in non-classical logic should be easier to obtain, as they “only” target
at separating NP and PSPACE. In some sense the results of Hrubeš [Hru09] and
Jeřábek [Jeř09] on non-classical Frege systems (see Sect. 4) confirm this intuition:
they obtain exponential lower bounds for modal and intuitionistic Frege systems
(in fact, even extended Frege) whereas to reach such results in propositional
proof complexity we have to overcome a strong current barrier [BBP95].

Last not least, research in non-classical proof complexity will also advance
our understanding of propositional proofs as we see a number of phenomena
which do not appear in classical logic (as e. g. with respect to the question of
Frege vs. EF and SF, see Sect. 5). These results are very interesting to contrast
with our knowledge on classical Frege as they shed new light on this topic from
a different perspective.

3 Proof Systems for Modal and Intuitionistic Logics

We start by introducing some of the relevant proof systems for non-classical logic.
While most lower bounds for classical propositional proofs are shown for weak
systems like Resolution, Cutting Planes, or Polynomial Calculus, researchers in
non-classical logics have mostly investigated Frege style systems. This is quite
natural as many modal logics are even defined via derivability in these systems.

Frege systems derive formulas using axioms and rules. In texts on classical
logic these systems are usually referred to as Hilbert-style systems, but in proof
complexity it has become customary to call them Frege systems [CR79]. A Frege
rule is a (k + 1)-tuple ('0, '1, . . . , 'k) of formulas such that {'1, '2, . . . , 'k} ∣=
'0. The standard notation for rules is

'1 '2 . . . 'k

'0
.

A Frege rule with k = 0 is called a Frege axiom. A formula  0 can be derived from
formulas  1, . . . ,  k by a Frege rule ('0, '1 . . . , 'k) if there exists a substitution
� such that �('i) =  i for i = 0, . . . , k.

Let ℱ be a finite set of Frege rules. An ℱ-proof of a formula ' from a set of
formulas � is a sequence '1, . . . , 'l = ' of propositional formulas such that for
all i = 1, . . . , l one of the following holds:

1. 'i ∈ � or
2. there exist numbers 1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ ik < i such that 'i can be derived from
'i1 , . . . , 'ik

by a Frege rule from ℱ .

A Frege system is a set ℱ of Frege rules which is implicationally complete,
meaning that for all formulas ' and sets of formulas � we have � ∣= ' if and
only if there exists an ℱ-proof of ' from �.

Every text on classical logic uses its own favourite Frege system, but the
actual choice of the rules for the system does not matter (see Sect. 5). Typically,



these Frege systems use a number of simple axioms like p → (q → p) and
(p→ q) → (p→ (q → r)) → (p→ r) together with modus ponens

p p→ q

q

as its only proper rule.

In addition to the propositional connectives (chosen such that they form a
basis for the set of all boolean functions), the modal language contains the unary
connective □. As mentioned, non-classical logics are very often defined via an
associated Frege system. As an example, a Frege system for the modal logic K
is obtained by augmenting a propositional Frege system by the modal axiom of
distributivity

□(p→ q) → (□p→ □q)

and the rule of necessitation
p

□p
.

The modal logic K can then simply be defined as the set of all modal formulas
derivable in this Frege system. Other modal logics can be obtained by adding
further axioms, e. g., K4 is obtained by adding the axiom □p → □□p, KB
by adding p → □¬□¬p, and GL by adding □(□p → p) → □p. As two last
examples, S4 is obtained by extending K4 by □p→ p and S4Grz by extending
S4 by □(□(p→ □p) → p) → □p. For more information on modal logics we refer
to [BdRV01] or the thorough introduction in [Jeř09].

While modal logics extend the classical propositional calculus, intuitionistic
logics are restrictions thereof. We will not define them precisely, but just mention
that intuitionistic logic and its superintuitionistic extensions are again defined
via Frege systems with a suitable choice of axioms and modus ponens as their
only rule (cf. e. g. [Jeř09] for details).

4 Lower Bounds for Modal and Intuitionistic Logics

One of the first topics in proof complexity of non-classical logics was the inves-
tigation of the disjunction property in intuitionistic logic, stating that if ' ∨  
is an intuitionistic tautology, then either ' or  already is. Buss, Mints, and
Pudlák [BM99, BP01] showed that this disjunction property even holds in the
following feasible form:

Theorem 1 (Buss, Mints, Pudlák [BM99,BP01]). Intuitionistic logic has
the feasible disjunction property, i. e., for the standard natural deduction calculus
for intuitionistic logic (which is polynomially equivalent to the usual intuitionistic
Frege system) there is an algorithm A such that for each proof � of a disjunction
' ∨  , the algorithm A outputs a proof of either ' or  in polynomial time in
the size of �.



Subsequently, Ferrari, Fiorentini, and Fiorino [FFF05] extended this result to
Frege systems and to further logics such as the modal logic S4.

A related property to feasible disjunction is the feasible interpolation prop-
erty. As mentioned in Sect. 1, feasible interpolation is one of the general ap-
proaches to lower bounds in proof complexity. This technique was developed by
Kraj́ıček [Kra97] and has been successfully applied to show lower bounds for
a number of weak systems as Resolution or Cutting Planes (but unfortunately
fails for strong systems as Frege systems and their extensions [KP98,BPR00]).
For intuitionistic logic, feasible interpolation holds in the following form:

Theorem 2 (Buss, Pudlák [BP01]). Intuitionistic logic has the feasible in-
terpolation property, i. e., from a proof � of an intuitionistic tautology

(p1 ∨ ¬p1) ∧ ⋅ ⋅ ⋅ ∧ (pn ∨ ¬pn) → '0(p̄, q̄) ∨ '1(p̄, r̄)

using distinct sequences of variables p̄, q̄, r̄ (such that p̄ = p1, . . . , pn are the
common variables of '0 and '1) we can construct a Boolean circuit C of size
∣�∣O(1) such that for each input ā ∈ {0, 1}n, if C(ā) = i, then 'i(p̄/ā) is an
intuitionistic tautology (where variables p̄ are substituted by ā, and q̄ or r̄ are
still free).

A version of feasible interpolation for some special class of modal formulas was
also shown for the modal logic S4 by Ferrari, Fiorentini, and Fiorino [FFF05].
Once we have feasible interpolation2 for a proof system, this immediately implies
conditional super-polynomial lower bounds to the proof size in the proof system
as in the following theorem:

Theorem 3 (Buss, Pudlák [BP01], Ferrari, Fiorentini, Fiorino [FFF05]).
If NP ∩ coNP ∕⊆ P/poly, then neither intuitionistic Frege systems nor Frege sys-
tems for S4 are polynomially bounded.

This method uses the following idea: suppose we know that a sequence of
formulas 'n

0 ∨ 'n
1 cannot be interpolated by a family of polynomial-size circuits

as in Theorem 2. Then the formulas 'n
0 ∨'n

1 do not have polynomial-size proofs
in any proof system which has feasible interpolation. Such formulas 'n

0 ∨'n
1 are

easy to construct under suitable assumptions. For instance, the formulas could
express that factoring integers is not possible in polynomial time (which implies
NP ∩ coNP ∕⊆ P/poly).

2 A terminological note (which I owe to Emil Jeřábek): while it became customary to
refer to “feasible interpolation” in the context of intuitionistic proof systems, it may
be worth a clarification that this is actually a misnomer. Interpolation means that
if '(p̄, q̄) →  (p̄, r̄) is provable, where p̄, q̄, r̄ are disjoint sequences of variables, then
there is a formula �(p̄) such that '(p̄, q̄) → �(p̄) and �(p̄) →  (p̄, r̄) are also provable.
In intuitionistic logic, this is a quite different property from the reformulations using
disjunction which come from classical logic. What is called “feasible interpolation”
for intuitionistic logic (such as in Theorem 2) has nothing to do with interpolation, it
is essentially a feasible version of Haldén completeness. Similarly, the modal “feasible
interpolation” from [FFF05] is a restricted version of the feasible modal disjunction
property.



To improve Theorem 3 to an unconditional lower bound, we need super-
polynomial circuit lower bounds for suitable functions, and such lower bounds
are only known for restricted classes of Boolean circuits (cf. [Vol99]). One such
restricted class consists of all monotone Boolean circuits. Razborov [Raz85] and
Alon and Boppana [AB87] were able to show exponential lower bounds to the size
of monotone circuits which separate the Clique-Colouring pair. The components
of this pair contain graphs which are k-colourable or have a clique of size k+ 1,
respectively. Clearly, this yields a disjoint NP-pair. The disjointness of the Clique-
Colouring pair can be expressed by a sequence of propositional formulas

¬Colourkn(p̄, s̄) ∨ ¬Cliquek+1
n (p̄, r̄) (1)

where Colourkn(p̄, s̄) expresses that the graph encoded in the variables p̄ is k-
colourable. Similarly, Cliquek+1

n (p̄, r̄) expresses that the graph specified by p̄
contains a clique of size k + 1.

In order to prove lower bounds for the formulas (1) we need a monotone
feasible interpolation theorem, i. e., a version of Theorem 2 where the circuits C
are monotone. Such a result is known for a number of classical proof systems
including Resolution and Cutting Planes, but does not hold for Frege systems
under reasonable assumptions (factoring integers is not possible in polynomial
time [KP98,BPR00]). Therefore, under the same assumptions we cannot expect
a full version of monotone feasible interpolation for modal extensions of the
classical Frege system. Note that the above mentioned feasible interpolation
theorem of Ferrari et al. [FFF05] also only holds for a restricted class of modal
formulas.

Hrubeš [Hru07b,Hru09] had the idea to modify the Clique-Colouring formu-
las (1) in a clever way by introducing the modal operator □ in appropriate places
to obtain

□(¬Colourkn(p̄, s̄)) ∨ ¬Cliquek+1
n (□p̄, r̄) (2)

with k =
√
n. For these formulas he was able to show in [Hru09] that

1. the formulas (2) are modal tautologies;
2. if the formulas (2) are provable in K with m(n) distributivity axioms, then

the original formulas (1) can be interpolated by monotone circuits of size
O(m(n)2).

Together these steps yield unconditional lower bounds for modal Frege systems:

Theorem 4 (Hrubeš [Hru07b,Hru09]). The formulas (2) are K-tautologies.
If L is a sublogic of GL or S4, then every Frege proof of the formulas (2) in the

logic L uses 2n

(1)

steps.

The first proof of Theorem 4 in [Hru07b] was obtained by a rather involved
model-theoretic argument, but his later paper [Hru09] contains the simplified
approach sketched above.

Along the same lines, Hrubeš proved lower bounds for intuitionistic Frege
systems. For this he modified the Clique-Colouring formulas to the intuitionistic



version
n⋀

i=1

(pi ∨ qi) → (¬Colourkn(p̄, s̄) ∨ ¬Cliquek+1
n (¬q̄, r̄) (3)

where again k =
√
n.

Theorem 5 (Hrubeš [Hru07a,Hru09]). The formulas (3) are intuitionistic

tautologies and require intuitionistic Frege proofs with 2n

(1)

steps.

The first proof of Theorem 5 in [Hru07a] was given via a translation of intu-
itionistic logic into modal logic, but again [Hru09] reproves the result via the
simplified approach. Theorem 5 also implies an exponential speed-up of classi-
cal logic over intuitionistic logic, because the formulas (3) have polynomial-size
classical Frege proofs [Hru07a]. The lower bounds of Theorems 4 and 5 were
extended by Jeřábek [Jeř09] to further logics, namely all modal and superintu-
itionistic logics with infinite branching.

5 Simulations between Non-classical Proof Systems

Besides proving lower bounds a second important topic in proof complexity is the
comparison of proof systems via simulations introduced in [CR79] and [KP89]
(but see also [PS10] for a new notion). Frege systems and its extensions are one of
the most interesting cases in this respect. We recall the definition of polynomial
simulations from [CR79]: two proof systems P and Q are polynomially equivalent
if every P -proof can be transformed in polynomial time into a Q-proof of the
same formula, and vice versa. Frege systems also depend on the choice of the
language, i. e., the choice of the propositional connectives. When speaking of the
polynomial equivalence of two systems over different propositional languages, it
is implicitly understood that the formulas are suitably translated into formulas
over the new basis (see [PS10] for a discussion). In the classical setting, Cook and
Reckhow were able to show the equivalence of all Frege systems using different
axioms, rules, and propositional connectives [CR79,Rec76]. For this equivalence
to hold, two things have to be verified:

– First, let F1 and F2 be two Frege systems using the same propositional
language. Then the equivalence of F1 and F2 can be shown by deriving
every F1-rule in F2 and vice versa.

– Second, if F1 and F2 are Frege systems over distinct propositional languages
L1 and L2, respectively, then we have to translate L1-formulas into L2-
formulas before we can apply the method from the previous item. To still
obtain polynomial size formulas after the translation, Reckhow [Rec76] first
rebalances the formulas to logarithmic logical depth. In classical proposi-
tional logic this is possible by Spira’s theorem.

For non-classical logics the situation is more complicated. Rebalancing the for-
mulas to logarithmic depth is not possible because in modal and intuitionistic
logic there are examples of formulas which indeed require linear depth. For this



reason, the equivalence of modal or intuitionistic Frege systems using different
connectives is still open (cf. [Jeř06]).

But even for Frege systems in a fixed language the question is quite intricate
because of the presence of admissible rules. In general, inference rules

R =
'1 . . . 'k

 

can be classified according to whether they are valid or admissible. The rule R
is valid in a logic L if '1, . . . , 'k ∣=L  where ∣=L is the consequence relation
of the logic L. The rule R is admissible in L if for every substitution � the
following holds: if �('1), . . . , �('k) are theorems of L, i. e., ∣=L �('i) holds for
i = 1, . . . , k, then also �( ) is a theorem of L, i. e., ∣=L �( ). In classical logic,
every admissible rule is also valid. But this is not the case in non-classical logic.
For instance, in the modal modal logic K4 the rule

□'

'

is admissible, but not valid. Admissibility has been thoroughly studied for many
non-classical logics. In particular, starting with a question of Friedman [Fri75] it
was investigated whether admissibility of a given rule is a decidable property, and
this was answered affirmatively for many modal and intuitionistic logics [Ryb97].
In fact, for intuitionistic logic and many important modal logics such as K4, GL,
S4, and S4Grz, deciding the admissibility of a given rule is coNEXP-complete
as shown by Jeřábek [Jeř07]. Thus this task is presumably even harder than
deciding derivability in these logics which is complete for PSPACE.

Let us come back to the above question of the equivalence of all Frege systems
for a non-classical logic. If a Frege system uses non-valid admissible rules, then
we might not be able to re-derive the rules in another Frege system. Hence, again
Reckhow’s proof method from the first item above fails. But of course, admissible
rules may help to shorten proofs. Luckily, there is a way out. Building on a
characterization of admissible rules for intuitionistic logic by Ghilardi [Ghi99],
Iemhoff [Iem01] constructed an explicit set of rules which forms a basis for all
admissible intuitionistic rules. Using this basis, Mints and Kojevnikov [MK06]
were able to prove the equivalence of all intuitionistic Frege systems:

Theorem 6 (Mints, Kojevnikov [MK06]). All intuitionistic Frege systems
in the language →,∧,∨,⊥ are polynomially equivalent.

Subsequently, Jeřábek [Jeř06] generalized these results to an infinite class of
modal logics (so-called extensible logics [Jeř05]). We single out some of the most
important instances in the next theorem:

Theorem 7 (Jeřábek [Jeř06]). Let L be one of the modal logics K4, GL, S4,
or S4Grz and let B be a complete Boolean basis. Then any two Frege systems
for L in the language B ∪ {□} are polynomially equivalent.

We also mention that admissible rules have very recently been studied for many-
valued logics by Jeřábek [Jeř10a,Jeř10b].



Another interesting topic is the comparison of Frege systems and their exten-
sions such as extended and substitution Frege systems. Extended Frege allows
the abbreviation of possibly complex formulas by propositional atoms. Substi-
tution Frege systems allow to infer arbitrary substitution instances of a proven
formula in one step by the so-called substitution rule. Both these mechanisms
might decrease the size of proofs in comparison with Frege, but a separation
between these systems is not known for classical propositional logic.

Already in the first paper [CR79] which introduces these systems, Cook
and Reckhow observe that substitution Frege polynomially simulates extended
Frege, but conjecture that the former might be strictly stronger than the latter.
However, in classical propositional logic both systems are indeed polynomially
equivalent as was shown independently by Dowd [Dow85] and Kraj́ıček and
Pudlák [KP89]. While this proof of equivalence fails in non-classical logics, it is
still possible to extract some general information from it as in the next result:

Theorem 8 (Jeřábek [Jeř09]). For any modal or superintuitionistic logic,
extended Frege and tree-like substitution Frege are polynomially equivalent.

This shows that Cook and Reckhow’s intuition on extended vs. substitution
Frege was indeed correct and is further confirmed by results of Jeřábek [Jeř09]
who shows that going from extended to substitution Frege corresponds to a
conservative strengthening of the underlying logic by a new modal operator.
Building on these characterizations, Jeřábek exhibits examples for logics where
the EF vs. SF question receives different answers:

Theorem 9 (Jeřábek [Jeř09]).

1. Extended Frege and substitution Frege are polynomially equivalent for all
extensions of the modal logic KB.

2. Substitution Frege is exponentially better than extended Frege for the modal
logic K and for intuitionistic logic.

The precise meaning of the phrase “exponentially better” is that there are se-
quences of tautologies which have polynomial-size substitution Frege proofs, but
require exponential-size proofs in extended Frege. These sequences are again
the Clique-Colour tautologies used by Hrubeš [Hru09]. However, Hrubeš’ lower
bounds were extended by Jeřábek [Jeř09] to a large class of logics with infinite
branching in the underlying Kripke frames, and item 2 of Theorem 9 also holds
for these logics.

6 Further Logics and Open Problems

Besides modal and intuitionistic logics there are many other non-classical logics
which are interesting to analyse from a proof complexity perspective. One exam-
ple of such logics are non-monotonic logics of which Reiter’s default logic [Rei80]
is one of the most popular. The semantics and the complexity of default logic
have been intensively studied during the last decades (cf. [CS93] for a survey).



In particular, Gottlob [Got92] has identified and studied two reasoning tasks
for propositional default logic: the credulous and the skeptical reasoning prob-
lem which can be understood as analogues of the classical problems SAT and
TAUT. Due to the stronger expressibility of default logic, however, credulous
and skeptical reasoning become harder than their classical counterparts—they
are complete for the second level Σp

2 and Π
p
2 of the polynomial hierarchy [Got92].

Elegant sequent calculi were designed for the credulous and skeptical reason-
ing problems by Bonatti and Olivetti [BO02]. When analysing the proof com-
plexity of these systems it turns out that lower and upper bounds to the proof
size in credulous default reasoning and in classical Frege systems are the same
up to a polynomial.

Theorem 10 ( [BMM+10]). The lengths of proofs in the credulous default
calculus and in classical Frege systems are polynomially related. The same holds
for the number of steps.

This means that while the decision complexity of the logic increases, this increase
does not manifest in the lengths of proofs. In contrast, for the skeptical default
calculus of Bonatti and Olivetti an exponential lower bound to the number of
steps applies [BMM+10].

A similar result as Theorem 10 was observed by Jeřábek [Jeř09] for tabu-
lar modal and superintuitionistic logics which are in coNP. Jeřábek constructs
translations of extended Frege proofs in these logics to propositional proofs,
thereby obtaining analogous versions of Theorem 10 for extended Frege in these
modal and superintuitionistic logics. Thus, the current barrier in classical proof
complexity admits natural restatements in terms of non-classical logics.

Let us conclude with some open problems. Besides extending research on
proof lengths to further logics, we find the following questions interesting:

Problem 1. So far, research on proof complexity of non-classical logics has con-
centrated on Frege type systems or their equivalent sequent style formulations.
Quite in contrast, many results in classical proof complexity concern systems
which are motivated by algebra, geometry, or combinatorics. Can we construct
algebraic or geometric proof systems for non-classical logics?

Problem 2. One important tool in the analysis of classically strong systems as
Frege systems is their correspondence to weak arithmetic theories, known as
bounded arithmetic (cf. [Kra95]). Is there a similar connection between non-
classical logics, particularly modal logic, to first-order theories yielding further
insight into lengths of proofs questions?
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[Kra95] Jan Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity

Theory, volume 60 of Encyclopedia of Mathematics and Its Applications.
Cambridge University Press, Cambridge, 1995.
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