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Abstract—Decomposition-based methods are often cited as the
solution to problems related with many-objective optimization.
Decomposition-based methods employ a scalarizing function to
reduce a many-objective problem into a set of single objective
problems, which upon solution yields a good approximation of
the set of optimal solutions. This set is commonly referred to as
Pareto front. In this work we explore the implications of using
decomposition-based methods over Pareto-based methods from
a probabilistic point of view. Namely, we investigate whether
there is an advantage of using a decomposition-based method, for
example using the Chebyshev scalarizing function, over Pareto-
based methods.

Index Terms—Many-Objective optimization, Chebychev de-
composition, Pareto-based methods, Decomposition-basedmeth-
ods

I. I NTRODUCTION

A traditional classification of optimisation problems has
been their separation into linear and nonlinear problems

[1]. However, this ignores a large body of research in convex
programming, which is a special class of methods that apply
to a subclass of nonlinear optimisation problems, for whicha
solution can be obtained with relative ease, even for relatively
large scale problems [2]. Therefore a more relevant distinction
of optimisation problems would be their classification based
on convexity. This is so because this distinction will radically
impact the approach used in solving such problems and the
expected quality of the produced solutions. In the fortunate
case that a problem can be expressed in a convex form,
then for all practical purposes it can almost be considered as
solved. Furthermore the solution obtained for convex problems
is guaranteed to be the global optimum, however it is not
necessarily unique. Namely, a solution obtained for a convex
program is the global minimum (maximum) for a minimi-
sation (maximisation) problem. Also such a solution can be
obtained quite efficiently [2]. These facts strongly motivate
the additional effort required to attempt to identify whether
a problem is convex. However the process of identifying a
convex problem is non-trivial and is further complicated by
the fact that different formulations can be more difficult to
solve [2].
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For nonconvex problems, guarantees about the obtained
solution can only be given when an exhaustive search is
performed. That is, only if the entire domain of definition
of the objective function is explored. Naturally such a task
can very easily become unmanageable. However once the
fact that a problem is nonconvex is established, there are
several metaheuristics1 that can be employed to obtain a
solution. Some examples of metaheuristics, often referred
to as evolutionary algorithms (EAs) in the literature are,
genetic algorithms (GAs) [3], [4], evolution strategies (ES)
[5], differential evolution (DE) [6] particle swarm optimisation
(PSO) [7], [8] and others [9]–[11].

Although a solution produced by any of the aforementioned
methods will most likely be suboptimal, metaheuristics per-
form well in practice. Meaning that compared to the alternative
of using random search [12], [13], which has the property
of asymptotical convergence [14], EAs in practice, converge
faster to the neighbourhood of optimal solutions for a number
of problems [15]–[18]. Of course, this does not imply that
EAs are superior to random search for all problems. The
implication is that if domain knowledge is exploited then
EAs can be a very effective [19], especially in light of the
fact that even convex problems turn into nonconvex at the
slightestprovocation. An example of this phenomenon is seen
in machine learning, where kernel-based learning algorithms
that have ashallow architecture, namely a single layer of
kernels for which the weights are to be determined, are linear
in the parameters and produce convex problems. However,
such architectures seem to be inefficient for certain tasks while
deep architectures, namely architectures with several layers
of kernels, can learn more complex tasks more efficiently,
however the estimation of their parameters (learning) is non-
convex [20]. Such examples serve as feedback to practitioners
not to become overly dependent on a particular method, but
instead, carefully investigate the nature of the problem soas
to select theoptimal approach for its solution, a process that
is nonconvex in itself.

Another important classification is the separation of optimi-
sation problems into single-objective, that is problems where
the objective function is a mapping of the typef : Cn → C,
and, multi-objective whereby the objective function mapping

1An algorithmic framework of heuristic optimisation algorithms. Heuristic
is the Greek word forsearch. Metaheuristic algorithms commonly have a
stochastic (Greek word forrandom) component.
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has the following form2 f : Cn → Ck. This classification is
important because in the latter case, there is no obvious or
unique way to induce a complete ordering for nonconvex [21,
pp. 113], [1, pp. 61] as well as for convex problems [2, pp.
174]. Without order a direction of search cannot be established.
This is a well known issue in multi-objective optimisation
and has been addressed to varying degrees of success by
several researchers in the field of mathematical programming
[21]–[23] and more recently in evolutionary computation [4],
[24], [25]. In general there are two approaches employed
to resolve this issue: Pareto-based and decomposition-based
methods. In both methodologies and assuming, thea posteriori
preference articulation paradigm [1, pp. 63] is employed, the
relative importance of the objectives is unknown. In the case
that preference information is given by the decision maker
(DM), then using a decomposition method to combine the
scalar objective functions can be used, see Section IV. An
alternative is to distill the preference information givenby
the decision maker in a utility function, however this requires
extensive knowledge of the problem structure and does not
guarantee that its solutions will be Pareto optimal [21, pp.62].
Pareto-based methods use the Pareto-dominance relations [1]
to induce partial ordering in the objective space.

Decomposition-based methods have been predominantly
used in mathematical programming [1], [2]. These methods
use scalarising functions to decompose a multi-objective prob-
lem into several single objective subproblems. These subprob-
lems are defined with the help of weighting vectors. The
weighting vectors arek-dimensional vectors with positive3

components whose sum is equal to one. Thelocation on
the Pareto front that each subproblem tends to converge,
depends on the choice of weighting vectors and the scalarizing
function of choice. Therefore, to control the final distribution
of solutions on the Pareto front the set of weighting vectors
must be carefully selected for the entire Pareto front to be
covered.

Many-objective problems are an important subclass of
multi-objective problems that have more than3 objectives,
with applications in control and aerospace [9], [26]. However,
as many authors point out, Pareto-based evolutionary algo-
rithms are facing difficulties for many-objective problemsfor
a number of reasons. For example, for increasing number of
dimensions the number of incomparable solutions dominates
the population, hence the selection pressure is massively
reduced which leads to poor convergence rate to the Pareto
front [27]. A proposed solution is to increase the population
size [28], however this approach is of limited use since it is
easy to overrun the available computational resources for even
a 10 objective problem. To see this consider the fact that to
obtain a Pareto optimal set for a10-objective problem, that
has comparable quality with the resulting Pareto set of a2-
objective problem and a population size of100, the size of
the set must be approximately1010 [29]. This obviates the
fact that throwing more resources at the problem is not an

2In this work we can assumeC = R, since we only consider problems
with real variables.

3On some occasions this constraint is relaxed to allow for non-negative
weighting vector components, i.e. zeros are allowed in the weighting vector.

option. Another problem that Pareto-based methods face for
many objectives is that it is unclear how to preserve diversity in
the solutions. This problem hints toward the fact that perhaps
in many-objective problems we should redefine the objectives
of a posteriori preference articulation based algorithms to a
smaller region of the Pareto front.

Some authors allege that the solution is to use
decomposition-based algorithms since they scale well for large
population sizes and seem to have better convergence rate
compared with Pareto-based algorithms [28], a view that
seems to be adopted by several authors [30]–[33] and as
can be seen by the number of publications based on the
MOEA/D algorithm introduced in [34]. However, although the
experimental results seem to support this view, the difference
of decomposition-based with Pareto-based algorithms is not
impressive if relative performance is to be considered. Addi-
tionally, decomposition-based methods have their fair share of
difficulties. For instance, a straightforward method to distribute
the solutions on the Pareto front seems elusive to obtain
for decomposition-based methods. This deficiency stems from
the fact that it is not straightforward to select the weighting
vectors and the scalarizing function as most results available
in the literature apply only to convex optimization problems
[1], [21], [35]. There is however one scalarizing function,
namely the Chebyshev scalarizing function, that can be used
for nonconvex problems as well since the produced solutions
will at least be weakly Pareto optimal4 and there is a theorem
that states that all Pareto optimal solutions can be obtained
for some weighting vector [1, pp. 99]. Perhaps this is the
reason for the increased use of this scalarizing function in
the literature, see for example [34], [36]–[38].

To date there is no theoretical evidence to support the above-
mentioned view. Namely, that decomposition-based methods
are superior to Pareto-based methods for many-objective prob-
lems. Some studies have appeared in the literature, for example
[29], [39] but the assumption is that the objective function
is unimodal, i.e. convex or quasi-convex. This assumption
limits the scope of these works since evolutionary algorithms
(EAs) are applied to nonconvex problems, that is problems
that classical optimization methods fail or are inefficient. In
this work we study the difficulties that EAs face in many-
objective problems and explore the difference of Pareto-based
and dominance-based methods for this class of problems. Our
prior assumptions about the problem structure are much more
relaxed and realistic compared with [29].

The main contributions of this work can be summarized as
follows:

• The effect of Pareto dominance methods is studied from
a theoretical perspective and an explanation of the diffi-
culties experienced by several Pareto-based algorithms is
presented.

• Decomposition-based methods are also studied and their
relation to dominance methods is clarified. A major
result is that methods based on the Chebyshev scalarizing
function are equivalent to methods based on Pareto-
dominance under certain assumptions that are usually

4See Section II for definition.
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trivially met in decomposition-based algorithms.
• Lastly, given some prior information about the Pareto

front geometry theoptimal scalarizing function is iden-
tified. Optimal in the sense that with this scalarizing
function the probability of finding a better solution,
given a starting pointzc, will have a slower rate of
decrease compared to other scalarizing functions and
at the same time similar guarantees provided by the
Chebyshev scalarizing functions can be given.

The remainder of this paper is structured as follows. In
Section II fundamental concepts pertaining to many-objective
problems and set ordering relations are introduced. In Sec-
tion III we discuss Pareto-based methods and explore the
effect of dominance relations in many-objective problems.
Furthermore in Section IV we perform a similar analysis as
was conducted for Pareto-based methods, for a popular classof
decomposition methods based on the weighted metrics scalar-
izing functions. In Section V we show that similar assurances
as the ones provided by the Chebyshev scalarizing function
can be given for anℓp-norm based decomposition function
with p < ∞. Furthermore, in Section VI we reflect on the
consequences of the presented results in this work and present
contexts in which our results can be used constructively to
improve algorithms tackling many-objective problems. Lastly
in Section VII, this work is summarized and concluded.

II. FUNDAMENTAL CONCEPTS ANDDEFINITIONS

A multi-objective optimisation problem is defined as:

min
x

F(x) = (f1(x), f2(x), . . . , fk(x))

subject tox ∈ S,
(1)

where k is the number of scalar objective functions andx
is the decision vector with a domain of definitionS ⊆ Rn,
while Z is the objective space and is the forward image5 of
S under the mappingF. When the number of objectives,k,
is more than3 then the problem defined by (1) is referred to
as many-objective. The issue with many-objective problems6

is that a complete ordering cannot be defined without the help
of a decision maker (DM). This in turn creates difficulties
for evolutionary algorithms (EAs) that use Pareto-dominance
methods for fitness assignment. Pareto-dominance relations
define a partial ordering in objective space, therefore enabling
the comparison of solutions. Pareto-dominance relations are
usually denoted by the� binary relation. Also, for any two
vectorsa,b ∈ Z, the expressiona � b is interpreted as: solu-
tion a dominatesb in the context of a minimization problem.
The aforementioned relation holds when all the elements of
a are smaller or equal to the corresponding elements inb

and at least one element is strictly smaller. Another familyof
methods used for fitness assignment is based on scalarizing
functions, usually referred to as decomposition methods. In
decomposition-based fitness assignment, the objective function
is weighted and aggregated using a scalarising function, thus
transforming (1) to a single-objective problem. However, it is

5Namely,F : S → Z.
6As well as multi-objective problems

common for problems with more than one objective that a
family of solutions are generated. This family of solutions, in
the absence of prior information, should be representativeof
the entire Pareto front, whenever possible. The Pareto front is
the minimal set of the set of feasible solutions in objective
space.

A binary relationR (≤,�) on a setC is said to be apartial
ordering [40, pp. 7] if,

i. R is reflexive:xRx for everyx ∈ C.
ii. R is transitive: ifxRy andyRz =⇒ xRz.
iii. R is antisymmetric, namely ifxRy andyRx =⇒

x = y.
If a partial ordering is defined on a setC, then this set is said
to be partially ordered or a poset. For a partially ordered
set, it may happen that the relationR does not hold for all
elements of the set, so for a binary relation7 ≤ the following
is a possibility: forx, y ∈ C, x � y and x � y, in which
case the elementsx, y are incomparable - this is exactly the
reason why such a relation is calledpartial ordering for the
setC. For example one way to extend the≤ relation from
R to R2 is to define it as the application of the common
≤ relation to the elements of the vectors inR2, namely,
(x1, x2) ≤ (y1, y2) ⇐⇒ x1 ≤ y1 andx2 ≤ y2. Then this
relation is a partial ordering for the setC = R2, that is for
x = (2, 2), y = (3, 4), z = (6, 5), x ≤ x, also sincex ≤ y and
y ≤ z =⇒ (2, 2) ≤ (6, 5) = x ≤ z. Furthermore, a binary
relationR (<,≺) on a setC is said to be astrict partial
ordering [41] if,

i. R is irreflexive:¬(xRx) for everyx ∈ C.
ii. R is transitive: ifxRy andyRz =⇒ xRz.
iii. R is asymmetric, namely ifxRy =⇒ ¬(yRx).

If there exist no incomparable elements in a set,C, under the
binary relationR, thenC is said to beordered (equivalently,
linearly or simply ordered) andR is said to be acomplete
ordering on the setC, or equivalently linear or simple
ordering.

A set C ⊆ Rn is convex if for any x,y ∈ C and any
θ ∈ [0, 1],

θx + (1− θ)y ∈ C. (2)

A set C is a cone if θx ∈ C for all x ∈ C and θ ≥ 0. A
coneC ⊂ Rn is called aproper cone if it is convex, closed,
pointed and has nonempty interior. A cone is pointed if it
contains no line, for example the cone,C = {(x, f(x)) ∈
R2 : f(x) > 0}, is not pointed since it contains an infinite
number of lines:f(x) = c, ∀x ∈ R, for any c ∈ R+. An
example of a pointed cone is the nonnegative orthantRn

+,
which is also a proper cone. Proper cones play a significant
role in inducing partial ordering and are strongly related to the
concept of Pareto optimality as will become clear in the next
section.

A function f : Rn → R is said to be convex if the domain
of definition of f , denoted asdom f , is a convex set and
∀x,y ∈ dom f andθ ∈ [0, 1] we have,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (3)

7Note that the relation,≤, has a more abstract meaning and is not its usual
definition. It is after all only a symbol.



4 ACSE RESEARCH REPORT, NO. 1030, NOVEMBER 2012

A function is strictly convex if the inequality in (3) is
strict. Accordingly a function is concave if−f is convex. A
more interesting definition of convex and concave functions
is formulated with the aid of theepigraph of a function,
see Appendix II-A. For an applications driven exposition on
convex analysis and optimization the reader is referred to [2],
while a more theoretical perspective can be found in [42], [43]
and of course [44].

A. Epigraph

The epigraph of a functionf : Rn → R is defined as:

epi f = {(x, t) : x ∈ dom f, t ∈ R, f(x) ≤ t}, (4)

consequentlyepi f ⊂ Rn+1. If the epigraph of a function is
a convex set then the function is convex and vice versa. The
hypograph of a functionf : Rn → R, meaningbelow the
graph, is defined as,

hypo f = {(x, t) : x ∈ dom f, t ∈ R, f(x) ≥ t}. (5)

If a function is concave, its hypograph is a convex set. In
general a functionf : Rn → R with a convex domain of
definition is:

• Convex, if and only ifepi f is a convex set. If in addition
hypo f is nonconvex then,f is strictly convex.

• Concave, if and only ifhypo f is a convex set. If in
additionepi f is nonconvex then,f is strictly concave.

• Convex and concave, if bothepi f and hypo f are
convex. A concave and convex function is affine.

• Nonconvex, if bothepi f andhypo f are nonconvex.

B. Pareto Front Geometry

Assuming that the Pareto front can be represented by a
piecewise continuous function,g : Rk−1 → R and k the
number of objectives, then there are three types ofgeometries
and combinations thereof, that the PF can have. Namely the
function,g, can have parts that are convex, concave, of affine.
We refer to a Pareto front as,

• Convex, ifepi g is a convex set.
• Concave, ifhypo g is a convex set.
• Affine, if both epi g andhypo g are convex.
• Discontinuous, ifdom g is nonconvex org is discontin-

uous.
• Partially convex, ifg is convex over a convex subset of

dom g.
• Partially concave, ifg is concave over a convex subset of

dom g.
• Partially affine, ifg is convex and concave over a convex

subset ofdom g.
• Piecewise convex, ifg partially convex over all convex

subsets ofdom g.
• Piecewise concave, ifg partially concave over all convex

subsets ofdom g.
• Piecewise affine, ifg partially affine over all convex

subsets ofdom g.

III. PARETO METHODS AND DERIVATIVES

A. Overview

In mathematical programming, the Pareto dominance re-
lations are mainly used for theoretical purposes. However,
in evolutionary computation they are heavily used in fitness
assignment. Fitness assignment has a similar function to the
negative gradient in gradient search - it indicates a promising
direction of search. Therefore if such a direction is unavail-
able to the EA, then continuation of the search becomes
increasingly more difficult as there is no indication thatbetter
solutions are being generated. This type of difficulty that
EAs face in many-objective problems is described asloss of
selective pressure in the EA literature [45].

If the relative importance of the objectives is unspecified,
one way to partially order the objective vectors,z ∈ Z, is to
use the Pareto8 dominance relations, originally introduced by
Edgeworth [46] and further studied by the economist Vilfredo
Pareto [47]. A more general way to define dominance relations
is by using generalised inequalities (≺,�) and the help of a
proper coneK. A commonly used cone for this is the non-
negative orthant,Rk

+. So, forK = Rk
+ anda,b ∈ Rk, a ≺K b

is true when9 b− a ∈ intK, and,a �K b whenb− a ∈ K.
However, since the non-negative orthant is almost always used
to define generalised inequalities the subscript,K, is usually
omitted. This notational convention is adopted in this work, so
a subscript in generalised inequalities will be used only when
the proper cone,K, is other than the non-negative orthant or
the meaning is unclear from the context.

Specifically, in a minimisation context, a decision vector
x̃ ∈ S is said to bePareto optimal if there is no other
decision vectorx ∈ S such thatfi(x) ≤ fi(x̃), for all i, and,
fi(x) < fi(x̃) for at least onei = 1, . . . , k. Namely there
exists no other decision vector that maps to a clearly superior
objective vector. Similarly, a decision vectorx̃ ∈ S is said to
beweakly Pareto optimal if there is no other decision vector
x ∈ S such thatfi(x) < fi(x̃) for all i = 1, . . . , k. Further-
more, a decision vector̃x ∈ S is said toPareto-dominatea
decision vectorx iff fi(x̃) ≤ fi(x), ∀i ∈ {1, 2, . . . , k} and
fi(x̃) < fi(x), for at least onei ∈ {1, 2, . . . , k} then x̃ � x.
So, in terms of generalised inequalities, ifF(x̃) � F(x) and
F(x̃) 6= F(x), then x̃ � x. Also, a decision vector̃x ∈ S is
said tostricly dominate, in the Pareto sense, a decision vector
x iff fi(x̃) < fi(x), ∀i ∈ {1, 2, . . . , k} then x̃ ≺ x. That is,
if F(x̃) ≺ F(x), thenx̃ ≺ x. It should be noted at this point,
that when≺,� are used in decision space, their meaning is
mostly symbolic and is used to reflect the dominance relations
in the objective space. For example, letx1 = (0, 0, 0, 0),x2 =
(3, 3, 3, 3) and f(x1) = (4, 4), f(x2) = (1, 1). Clearly, for
Ks = R4

+, x1 ≺Ks
x2, however according to the above

definition of strict dominance it should bex2 ≺ x1, because
F(x2) ≺Kz

F(x1) for Kz = R2
+. This can happen because

the decision vectors are implicitly ordered according to their
forward image in objective space, where the usual partial
ordering, induced by the coneKz is employed. Lastly, the

8Referred to as Edgeworth-Pareto dominance relations by some authors.
9The notationintK is used to denote theinterior of the setK, in this

case the coneK.
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Fig. 1. Left: Dominance relations defined by a coneK = Rk
+, in this instanceK = R2

+. Right: Dominance relations defined by anacute proper cone
K = {z :

∑k
i=1

θizi, θi ≥ 0} with zi forming an acute angle withzj for all i 6= j. The region,S contains superior solutions tozc and the regionI inferior
solutions, whileD is the union of all the regions in,Z, that contain incomparable solutions tozc. A mnemonic for the notation of the regions in the above
figures isSuperior for S, Inferior for I and non-Dominated for the D regions respectively.

ordering induced by the binary relations≺,� is calledpartial
because of the following possibility:x,y ∈ Z but x � y

and y � x, in which case the vectorsx,y are said to be
incomparable. For example, the vectorsx = (3, 2, 1) and
y = (1, 2, 3) are incomparable. Dominance relations induced
by two different proper cones are depicted inFig. (1). Pareto-
dominance relations and dominance relations imposed by the
setK = Rn

+ \ 0 are equivalent [1, pp. 24]. Notice that the0
element is removed fromK, this means that Pareto-dominance
relations are not reflexive, i.e.x �K x does not hold as,
x− x = 0 /∈ K.

Most multi-objective problem solvers attempt to identify a
set of Pareto optimal solutions, this set is a subset of thePareto
optimal set (PS) which is also referred to asPareto front
(PF). The Pareto optimal set is defined as follows:P = {z :
∄ z̃ � z, ∀ z̃ ∈ Z}, namely, it is the set of objective vectors
that are not dominated by any objective vector in the feasible
objective space. The decision vectors whose forward image
under the objective function is the set,P , are also referred to
as the Pareto set and are denoted asD, namelyF : D → P .
That is, the decision space is implicitly ordered accordingto
the partial ordering applied to the objective space.

Algorithms based on Pareto dominance based methods for
tackling multi-objective (and many-objective) problems have
several difficulties to overcome. For instance a well distributed
Pareto front is not guaranteed simply by using dominance
relations. One answer to this problem has been presented in
[48], where the authors introduceε-dominance. In essence,
ε-dominance creates a strict partial ordering based on the
set Kε = Rk

+ + ε. This type of dominance relation is
useful to maintain well distributed Pareto optimal solutions
[48], however it cannot escape the deficiency that Pareto-
based methods face in many-objective problems [27]. Another
very interesting approach introduced in [49], termed coneε-
dominance, uses the union of anacute proper cone and the
setKε = Rk

++ε to define a relation that is a partial ordering.
Namely, they useε-dominance in combination with anacute

cone,Kα = {z :
∑k

i=1
θizi, θi ≥ 0} with zi forming an acute

angle withzj for all i 6= j. Therefore, coneε-dominance is
defined with the help of the setKc = Kε ∪Kα. The partial
ordering induced by anacute cone is shown inFig. (1). The
motivation for the introduction of this type of Pareto domi-
nance is that the diversity of produced Pareto optimal solutions
seems to be better. Namely, coneε-dominance promotes a
good spread of solutions across the entire Pareto front, and,
their distribution seems to be more uniform. However, the
problem reported in [27] persists for this type of dominance
as well. In fact, since the regions where solutions become
non-comparable are larger in coneε-dominance it is expected
that the number of non-dominated solutions increase more
rapidly, compared to the Pareto dominance usingK = Rk

+,
seeFig. (1).

B. Bias in the Objective Function

In the following sections of this work we assume that the
objective function isunbiased or that it is notbiased towards
the Pareto front. This term is related to what the authors
of the WFG10 toolkit [50] refer to asbias in the objective
function. An objective function is considered to beunbiased
when for decision vectors that are uniformly distributed inS
the resulting distribution in objective space is also uniform,
or close to uniform [50]. In this work we employ the same
notion of bias, however we also provide a definition which
should clarify the underlying assumptions of the statements:
“an objective function has no bias”, or “an objective function
is biased toward the Pareto front” etc. Specifically, letX be
an independent random deviate distributed according to,U(S),
namely a uniform distribution in the feasible decision space,
then we say that the objective function,F, has no bias if,

F(U(S)) = Z ∼ U(Z). (6)

10Walking Fish Group. The WFG toolkit can be used to create scalable test
problems in objective and decision space.
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In other words, a uniformly sampled decision space maps to a
uniformly sampled objective space, or at least approximately
so. In some fortunate cases, the objective function is biased
towards the Pareto front, namely,

∫

. . .

︸ ︷︷ ︸

k

∫

B

h(z1, . . . , zk)dz1 . . . dzk > PU (Z ∈ B),

B = {z : inf{‖z− zp‖} ≤ r, zp ∈ P , z ∈ Z},

(7)

where h, is the probability density function (pdf) of the
objective space andB is the set of all feasible objective
vectors with distancer or less from the Pareto front. So if
the probability (the integral in (7)) to obtain a solution inB
is larger for,h, than the uniform distribution then we say that
the objective function is biased towards the Pareto front. If
(7) holds forBc, the complement ofB, then we say that the
objective function is biased away from the Pareto front. Similar
definitions for bias toward any other region in objective space
are trivial to define by simply changing the definition of the
setB.

C. Pareto Dominance for Many-Objective Problems

In [27] the authors provide empirical results in an attempt
to explain the reason for thepoor performance of Pareto
dominance-based algorithms applied to many-objective prob-
lems. The main argument is that the ratio of non-dominated
(incomparable) individuals to the size of the population is
approaching1, meaning that almost the entire population is
non-dominated, therefore the algorithms’ selection mechanism
is provided with no useful information. In what follows we
elaborate further on this argument and prove that this be-
haviour is to be expected in many-objective problems and we
reveal, to an extent, the underlying cause for such difficulties.

Consider the simplest multi-objective case, namely a2-
objective problem. Every point in objective space defines4
regions shown inFig. (1), (i) a region that contains solutions
that are clearly better denoted asS, (ii) a region that contains
solutions that are clearly worse,I, and (iii, iv) two regions
where the solutions are incomparable to the point in question,
D. For 3-objective problems there are8 such regions (23),
however there is only1 region which contains clearly better
solutions and1 region with clearly worse solutions. So, there
are 23 − 2 = 6 regions that contain solutions incomparable
to the point in question. In general the following is true, for
k-dimensional problems, there is always1 region with clearly
better solutions,1 region with clearly worse solutions and
2k−2 regions containing incomparable solutions. Furthermore,
assuming that there is no bias towards any of these regions in
the problem (objective function), the probability that a solution
is generated in any one of these regions by a stochastic process
(algorithm) is proportional to the volume of these regions
divided by the volume of the entire feasible set in objective
space11, Z. However, for increasing number of dimensions, the
likelihood that a solution will be generated within the region
S, becomes almost insignificant the closer the point is to the

11We assume that the feasible objective set is bounded.

Pareto front. For example, for10 dimensions there are1 024
regions, hence for the above problem, the probability for a
solution to be generated, that dominates the current point,is
approximatelyp = 1/1 024 = 9.76−4 if the point in question
is exactly in themiddle of a feasible objective space. To
contrast this, the probability that a non-comparable solution
is generated is1 022/1 024 ≈ 0.99.

Although the assumption that the problem has no bias seems
to limit the generality of the above argument, this is not
entirely true. To illustrate this let us consider the relative
directions of bias in the objective function in the context of
optimization. These bias can be: (i) towards the Pareto front,
namely it is easier to obtain solutions near the PF than in
any other region, (ii) towards the region containing clearly
worse solutions, and (iii) towards any region or regions con-
taining incomparable solutions. Only in case (i) the solution
of the optimisation problem becomeseasier compared with
the unbiased version. However this favourable scenario is
seldom encountered in practice. So by assuming no bias in the
objective function, all the probabilities that we calculate are in
the worst case upper bounds on the probabilities of obtaining
solutions in the setS. In other words, the probabilities reported
in this work represent thebest attainable probability with
respect to the location of an objective vector. We elaborate
further on this point in Section VI.

To better appreciate and understand the reasons for the
apparent difficulties that many-objective optimization algo-
rithms face with such problems, we frame the aforementioned
example on a more concrete basis. Assume that the objective
space,Z, is bounded from above by a hyperplane as shown
in Fig. (2), specifically the upper bound is the set of points
MP = {z :

∑k

i=1
zi =M, zi ≥ 0}. The reasons for selecting

a feasible objective region with this particular geometry will
become clear in what follows. Also, let the Pareto front be
a (k − 1)-simplex, namely Pareto optimal objective vectors
are part of the setLP = {z :

∑k

i=1
zi = L, zi ≥ 0},

obviously we have to selectL < M for minimization problems
asL > M would imply Z = {∅}. If we also assume that the
problem has no bias, then given an objective vector,zc ∈ Z,
it would be possible to calculate the probability of obtaining
a better solution for any point in the objective space. This
information can be useful in many ways, we elaborate on those
in Section VI.

Now, given a point in objective space,zc where the subscript
is an abbreviation forcurrent point, we can calculate the
probability of obtaining a better solution using the following
relation,

P(z ∈ S | zc) =
VS(zc)

VZ

, (8)

where,VS(zc) = VP(zc), for Pareto-based methods,VZ is the
volume of the feasible objective space which is equal to the
volume of the slab in betweenMP ,LP and the positive orthant
Rk

+, seeFig. (2). Additionally,P(z ∈ S | zc), is the probability
of finding a better objective vector,zn, given the objective
vector zc. The expression in (8) is valid only for problems
whose objective function would produce objective vectors
uniformly distributed, or nearly so, given a set of uniformly
distributed decision vectors. For biased problems knowledge of
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Fig. 2. Trajectory for the experiment described in Section III-D comparing decomposition and Pareto-based methods.MP is the upper bound of the feasible
objective space whileLP is the Pareto front and the lower bound of the feasible objective space. AlsoVF is the volume below the Pareto front andVZ is
the volume of the feasible objective space, whileVP is the volume of the region containing superior solutions tothe current solutionzc. Lastly, zs andze
are the starting and target objective vectors, withze being Pareto optimal. Theleft figure illustrates the aforementioned quantities forzc = zs and theright
figure illustrates how the above quantities change aszc moves towardsze along the(ze − zs) direction. The results can be seen inFig. (3).

the exact probability density function in objective space would
be necessary so that we canweigh the integrals. However, as
we mentioned above, in all but the most trivial problems the
bias will be towards the Pareto front, otherwise it will be away
from it, and so (8) will still describe a useful quantity, namely
the upper bound of the probability of finding a better solution,
assuming that there is no bias towards the Pareto front.

The volume of the region containing clearly better solutions,
VP(zc), for Pareto dominance or cone dominance using an
ordering coneK = Rk

+ is,

VP(z) =
k∏

i=1

zi − VF , (9)

whereVF is the volume of the non-dominated region beneath
the Pareto front, which is the volume beneath the simplex,LP .
The (k− 1)-simplex corresponds to a Pareto front with affine
geometry andVF is calculated as,

VL =
det
[
v1 · · · vk

]

Γ(k + 1)
. (10)

Here,vi, are the vertices that the Pareto front intersects with
the axes. The vectors,vi for the Pareto front are equal to
vi = L ·ei, whereei is a vector of zeros and itsith element is
equal to one. Furthermore, the volume beneath the hyperplane
MP , VM , is calculated using (10) andvi =M · ei. OnceVM

andVL have been evaluated, the volume of the entire feasible
objective space is calculated as,

VZ = VM − VL. (11)

Also the volume of the non-dominated region forε-dominance
is simply,

VPε
(z) =

k∏

i=1

(zi − ε)− VF , (12)

assuming that the sameε value is used for every objective. If
different values forε are used it is trivial to modify (12). The
volume of the non-dominated region for coneε-dominance
[49] is much more involved to calculate exactly, however,
given that its defining set is the intersection of a proper cone
and the setRk + ε it stands to reason that its volume,VKε

,
will be within,

VPε
≤ VKε

≤ VP , (13)

depending on the selected acute cone.

D. Experiment

Using (8)-(10) and a trajectory in objective space we can
explore the change in the probability to obtain a solution
in S from a current point,zc. So, assume we start from
a point that is on the upper bound of the objective space,
zs ∈ MP , and a target point on the Pareto frontze, the
question is how likely is to find abetter solution with respect
to any point on the trajectory with directionze − zs, see
Fig. (2). The trajectory that the pointzc follows can be seen
in Fig. (2) is simply the line segment betweenzs and ze.
This information for Pareto dominance methods will give us
a basis for comparison with other methods for inducing a
partial order in the objective space and should illuminate any
differences. The steps involved, for this and for decomposition-
based methods described in Section IV, as follows:

• Set zc = zs. Subsequently we divide the line segment
from zs to ze into N − 1 segments, thus from start to
end there areN points zc[i] = zs + (ze − zs)

i
N

and
i = 0, . . . , N − 1, seeFig. (2).

• For everyzc[i] we calculate (8). The results are shown
in Fig. (3)-(a) for Pareto-dominance.
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Fig. 3. Probability to find a better solution tozc, P(z ∈ S | zc), as a function of the Euclidean distance of the solutionzc to ze, denoted bydist(ze, zc),
for different number of objectives (seeFig. (2)). Here{�, ◦, ⋄,×, •} correspond tok = {2, 5, 10, 15, 20} objectives respectively.

IV. D ECOMPOSITIONMETHODS

A. Overview

An alternative for defining a partial order in objective space,
and of course an implicit partial order in decision space, can be
found in decomposition methods. As mentioned in Section I,
these methods employ a scalarizing function to aggregate all
the objectives into a single scalar objective function. To obtain
different Pareto optimal points, a set of weighting vectors
can be used which would result in a set of single objective
subproblems. This is the reason why such methods are called
decomposition-based, it is because the employed strategy is
to decompose a complex problem into a set ofsimpler ones.
Simpler in this context does not necessarily mean easier to
solve, it means that it is straightforward to apply standard
EAs to the resulting subproblems.

The family of scalarizing functions that we focus our
attention in this work, is the weighted metrics method [1, pp.

97] defined as:

min
x

(
k∑

i=1

wi|fi(x)− z⋆i |
p

) 1
p

, (14)

where,wi are the weighting coefficients,wi ≥ 0 for all i =
1, . . . , k, and

∑k

i=1
wi = 1, alsop ∈ (0,∞). The vectorz⋆ =

(z1, . . . , zk), is called theideal vector and is defined asz⋆ =
(inf

x
{f1(x)}, . . . , inf

x
{fk(x)}). For the purpose of this work

we will assume thatz⋆ = (0, . . . , 0), which means that (14)
can be rewritten as,

min
x

(
k∑

i=1

wifi(x)
p

) 1
p

. (15)

Notice that we are allowed to remove the absolute value while
maintaining the equivalency relation between (14) and (15),
since,z⋆ = (0, . . . , 0), implies thatz ∈ Rk

+. The formulation
shown in (15) obviates the relationship of the weighted met-
rics scalarizing function with the weighting method and the
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Fig. 4. Thecurves in the left figure represent the boundary of solutions that
will be perceived as clearly better with respect to the correspondingp-norm. A
geometric (although not entirely true) explanation as to why the Chebyshev
scalarising function (p = ∞) guarantees the generation of Pareto optimal
solutions is seen to the right. In effect Chebyshev scalarising function creates
something that resembles aasymptotically stable equilibrium. This seems to
be the case for anyp-norm with p > 1.

Chebyshev decomposition. Namely, forp = 1 we obtain the
weighting method [1, pp. 78],

min
x

k∑

i=1

wifi(x), (16)

while for p = ∞ we obtain the Chebyshev scalarizing
function,

min
x

(max{w1f1(x), . . . , wkfk(x)}) . (17)

A derivation of (17) from (15), is included in Appendix A for
completeness. It should be noted that the assumption that the
ideal vector is equal to the zero vector also implies that the
objective function is bounded from below. In extension if the
ideal vector is known and is not zero a change ofvariables in
the objective function would be sufficient to meet our assump-
tion. For example, forz⋆ = (−2, 4), it suffices to change the
objective function,F, with F̃ (x) = (f1(x) + 2, f2(x)− 4).

Although all norms areequivalent, in the sense that for
every norm in a finite dimensional space multiplicative con-
stants can be found relating two norms [2, pp. 636], their
effect in an optimization problem can be significantly different,
depending on the intricacies of the problem. For example, for
p = ∞, namely the Chebyshev scalarizing function, there
exist theoretical results stating that the solutions of (17) will
be at least weakly Pareto optimal for any weighting vector
w ∈ Rk

+ and that any Pareto optimal solution can obtained
for some weighting vector [1, pp. 99]. The interest of the
MOEA community with respect to this particular norm is that
the previous statement holds for nonconvex problems as well.
Note that this does not imply that there is a guarantee that
the algorithm will be able to find a Pareto optimal solution
for a nonconvex problem, rather the statement refers to the
equivalency of the two problems. In other words, assuming

that the selected algorithm is able to solve the problem defined
in (17) then the solution will be at least a weakly Pareto
optimal, and that all the Pareto optimal solutions can be
obtained for some weighting vector. Such a result does not
exist forp <∞. In Section V we show that, given some prior
information, it is possible to find a norm other than infinity
with the same properties mentioned above. Namely, the ability
of the a scalarized problem to converge to a weakly Pareto
optimal solution for every weighting vectorw ≻ 0 and that
all Pareto optimal solutions can be reached.

However, it is not obvious as to why a norm, other than
the ℓ∞-norm that is employed in the Chebyshev scalarizing
function, would be more useful for decomposing a many-
objective problem. For this reason we extend the experiment
conducted for Pareto-based methods to decomposition-based
methods that employ (15) as the scalarizing function to de-
compose a many-objective problem and study the effects that
different values ofp have on the resulting subproblems, see
Section IV-B.

B. Decomposition Methods for Many-Objective Problems

The difference between scalarizing functions and the various
forms of dominance relations discussed in Section III, is that
the former define a complete ordering in the objective space,
namely for a subproblem defined as,

gp(x) =

(
k∑

i=1

wi|fi(x)− z⋆i |
p

) 1
p

, (18)

then for any two decision vectorsx, x̃ ∈ Z, only one of the
following relations obtains,

gp(x̃) < gp(x), or gp(x̃) = gp(x), or gp(x̃) > gp(x),

given that the two decision vectors are applied to the same
subproblem. Namely, regions containing incomparable solu-
tions (regionsD in Fig. (1)) are eliminated, and depending on
the ℓp-norm used in (15), parts of theD regions are absorbed
by the region containing inferior solutions,I, and the region
containing clearly better solutions,S. This phenomenon has
the potential to reduce the rate of decrease of the probability
that a better solution is generated as the current solution
approaches the optimal point, seeFig. (3)-(b-d). A better
solution in this context is a solution that yields a lower value
for the selected scalarizing function. In turn, this can reduce
algorithm stagnation due to large number of non-dominated
solutions as is the case in Pareto-based methods [27]. To see
this consider a scenario in which the weighted sum method
is used. In this scenario the weighting vector represents the
normal of a hyperplane that divides the feasible objective space
in two partitions. One, a region containing better solutions,
Sℓ1 , and one with worse solutions,Iℓ1 , shown in Fig. (4).
Solutions above the hyperplane are considered to beworse
while solutions below the hyperplane are taken to be better
with respect to the particular subproblem. Therefore, since the
volume of theS region is larger comparatively to dominance-
based methods, it would be easier for the algorithm to identify
solutions that are somewhat closer to the front with respectto
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the currently best objective vector. However we have made a
concession here, as the new solution may not Pareto-dominate
the previous best solution. We will return to this issue in
Section V and Section VI.

To explore how decomposition-based methods relate to
Pareto-based methods, we must be able to calculate (8) for
everyp = (0,∞]. The volume of the feasible objective space
is calculated in the same way as in (11), while the volume of
the S region forp = (0,∞) is calculated as:

VSℓp
(z) =

(

Γ
(

1 + 1

p

))k

Γ
(

k
p
+ 1
) ·

k∏

i=1

αi(z)− VF , (19)

which is essentially the volume of the positive orthant of a
hyperellipsoid calculated as seen in [51]. The factorsai(z)
represent the distance of the ideal vector from the intersection
of the ellipsoid with the positive axis of theith objective,
shown inFig. (4) and are calculated as,

αi(z) =

(∑k
m=1

wmz
p
m

wi

) 1
p

, (20)

see [51]. Since for the special case thatp = ∞,

lim
p→∞

(

Γ
(

1 + 1

p

))k

Γ
(

k
p
+ 1
) = 1, (21)

the volume of theS region becomes,

VSℓ∞
(z) = α1(z) . . . αk(z) − VF , (22)

and,

αi(z) =
max{w1z1, . . . , wkzk}

wi

. (23)

Furthermore, to replicate the selected trajectory described in
Section III-C and shown inFig. (2), the weighting vector is
set tow = 1

k
· (1, . . . , 1) ascribing equal importance to all

objectives so the resulting subproblem will tend to follow this
trajectory and converge to the pointze. For this particular
weighting vector (22) becomes,

max{w1z1, . . . , wkzk} = wmzm,

VSℓ∞
(z) =

( 1
k
)kzkm
( 1
k
)k

− VF = zkm − VF .
(24)

However, as can be seen inFig. (2), all points in the trajectory
from zs to ze havez1 = z2 = · · · = zk, hencezm = zi for
all i = 1, . . . , k, thus (24) can be calculated for any point on
the trajectory.

As seen inFig. (3)-(a-d), the probability to find a better
solution aszc approaches the optimal solutionze decreases
more rapidly for the Chebyshev scalarizing function and
Pareto-based methods when compared to scalarizing functions
employing the ℓ1-, ℓ2-norm. However, the results for the
Chebyshev scalarizing function are remarkably similar to the
Pareto-based method. In fact, for this trajectory, the two are
identical, see (9) and (24). This interesting result means that
Pareto-based methods and decomposition-based methods using

the Chebyshev scalarizing function are identical in the sense
that,

VSℓ∞
= VP . (25)

This result is quite intriguing given the increased number
of reports showing decomposition-based algorithms outper-
forming their Pareto-based counterparts for many-objective
problems (cite some). However, we have only shown that
the above equality holds for one particular trajectory and not
necessarily for every possible trajectory towards any point on
the Pareto front. We claim that (25) holds for an entire family
of trajectories and that these particular trajectories arethe
ones that both decomposition and dominance-based algorithms
attempt to follow in their approach towards the PF.

Before the general case is examined, consider a subproblem
defined by the following weighting vector,

wi =
2i

k(k + 1)
,

w =

(
2

k(k + 1)
, . . . ,

2k

k(k + 1)

) (26)

furthermore the selected starting pointzs, is,

zs =M ·

(
k(k + 1)

2
, . . . ,

k(k + 1)

2k

)

(27)

and the end solution,ze, that is the target Pareto optimal
solution is,

ze = L ·

(
k(k + 1)

2
, . . . ,

k(k + 1)

2k

)

. (28)

Therefore any solution on the trajectory will be,

C ∈ [L,M ],

zc = C ·

(
k(k + 1)

2
, . . . ,

k(k + 1)

2k

)

.
(29)

Given (26)-(29),

VP(zc) =

k∏

i=1

zi − VF =
(Ck(k + 1))k

2kk!
− VF . (30)

To calculate the volume ofS for the Chebyshev scalarizing
function we need to find what is the maximum element.
However, a closer look at (26) and (29) will reveal that this
element is simplyC, hence,

VSℓ∞
(zc) =

k∏

i=1

αi − VF =
(Ck(k + 1))k

2kk!
− VF , (31)

so the relationVSℓ∞
(zc) = VP(zc) holds for this weighting

vector as well. At this point we need to justify the assumption
that a solution will attempt to follow the trajectory definedby
the weighting vector in (26), since it appears to be artificial.
For this we refer to the work by Ballestero [52] where he
refers to this trajectory aswell-balanced baskets due to the
relation,

w1z1 = w2z2 = · · · = wkzk, (32)

for a solutionz ∈ Z. This essentially describes theaction of
the scalarizing function on the objective vector, which is to
minimize the largest deviation in the givenℓp-norm. This is
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most easily observed in theℓ∞-norm used by the Chebyshev
decomposition whereby only the largest deviation is taken into
account thus reeling the solution toward thebalanced trajec-
tory. For example given an objective vectorz = (1, 1.1, 1)
and a weighting vector12 w = (0.33, 0.33, 0.33), the ℓ∞-
norm will attempt to minimize the second component of,z,
simply becausemax{0.33 ·1, 0.33 ·1.1, 0.33 ·1}= 0.3667. By
this reasoning, when theℓ∞-norm is used in a minimization
problem, thefocus of the algorithm will be to maintain the
Hadamard productw◦z as close as possible to the vectorM ·1
while attempting to reduceM . By changing the weighting vec-
tor, this equilibrium that the Chebyshev scalarizing function
is attempting to maintain, changes, so a different trajectory
is followed, which of course converges to a different Pareto
optimal point if the optimization algorithm is successful.Well
that trajectory is found by finding the objective vector that
sends the weighting vectorw to the unit vector.

Therefore for any given weighting vector,

w =
(c1
s
, . . . ,

ck
s

)

,

s =

k∑

i=1

ci,
(33)

the balanced trajectory for theℓp-norm withp = (0,∞) is the
set of points given by,

zc = C ·

((
s

c1

) 1
p

, . . . ,

(
s

ck

) 1
p

)

,

s =

k∑

i=1

ci, ci ∈ R+,

(34)

and for theℓ∞-norm by,

zc = C ·

(
s

c1
, . . . ,

s

ck

)

,

s =

k∑

i=1

ci, ci ∈ R+,

(35)

and therefore since,

VSℓ∞
(zc) =

(max{w1zc,1, . . . , wkzc,k})k
∏k

i=1
wi

− VF

=
Ck

∏
k
i=1

ci
sk

− VF =
(Cs)k
∏k

i=1
ci

− VF

(36)

and,

VP(zc) =
∏

i=1

kzc,i − VF =
(Cs)k
∏k

i=1
ci

− VF , (37)

meaning thatVP(zc) = VSℓ∞
(zc) whenever the objective

vectors are allowed to follow the balanced trajectory that the
Chebyshev scalarizing function attempts to follow. Noticethat
this results also hold for for biased objective functions.

12An over-line a number denotes infinite repetition of the digits below, e.g.
0.33 = 0.33....

It follows that for objective vectors following a balanced
trajectory,

VSℓ1
> VSℓ2

> · · · > VSℓ∞
= VP . (38)

A proof for (38) is given in Appendix A-A. Meaning that,

Pℓ1(z ∈ Sℓ1 | zc) > Pℓ2(z ∈ Sℓ2 | zc) > . . .

> Pℓ∞(z ∈ Sℓ∞ | zc) = PP(z ∈ S | zc),
(39)

wherez ∈ Z andSℓp is the region containingbetter solutions
according to theℓp-norm version of the scalarizing function
andPℓp(z ∈ Sℓp) is the probability of finding a better solution
in Sℓp given that the current best solution iszc. The result in
(39) can be read directly fromFig. (4).

V. SCALARIZATION AND STABILITY OF THE EQUIVALENT

PROBLEM

The results in the previous section must be interpreted with
care since (39) does not imply in any way that by using a
scalarizing function based on a norm withp < ∞, all the
Pareto optimal solutions will bereachable. However it does
imply that by using a scalarizing function withp small, there is
a better chance in finding better solutions with respect to that
norm. Nevertheless, we require Pareto optimal solutions and
not just any solutions that are closer to the front in someℓp-
norm, which means that if we cannot ensure that the subprob-
lems are able to converge to Pareto optimal solutions and that
all Pareto optimal solutions will be obtainable, the importance
of (39) would be limited to the fact that Pareto-dominance
methods areequivalent to decomposition-based methods that
employ the Chebyshev scalarizing function. Equivalent in the
sense that for an objective vector following a well balanced
trajectory the probability to obtain a solution dominatingthe
current solution is the same in both methods.

To understand the tradeoff between using a dominance-
based method versus a decomposition-based method let us
consider the effect of a scalarizing function to the objective
space. A scalarizing function projects the entire objective
space onto a line13, therefore some regions that contain incom-
parable solutions in the Pareto sense, now become solutions
that are either better or worse for the particular subprob-
lem. Therefore, a major difference between decomposition-
based and Pareto-based algorithms is that the former provide
unambiguous information about the quality of the produced
solutions at every iteration while the latter cannot always
guarantee such information because the likelihood of gen-
erating incomparable solutions is high for problems with
many objectives [27]. However it is easy to reduce the above
argument into azugzwang14 between Pareto-based methods
and decomposition-based methods. This is accomplished by
the simple observation that theclearly better regions in the
Chebyshev scalarizing function (p = ∞ in Fig. (4)) are

13In this work a segment of a ray, since the objective space is bounded.
14A chess terminology whereby the player whose turn is to play will be at a

disadvantage, while had it not been his turn the outcome of the game would be
unknown. The parallel in the context of this work is that bothdecomposition
and Pareto-based methods are accompanied by a disadvantage, hence choice
(a move) by the analyst leads to, different, but unfavorable results in both
cases.
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Fig. 5. Stable and unstable scalarizing functions.

identical to the regions generated by Pareto dominance based
methods (Fig. (1)), while the incomparable and clearly worse
regions in Pareto-based methods are mapped toclearly worse
regions by the Chebyshev scalarizing function. Namely, if
we require a decomposition method that can guarantee the
generation of Pareto optimal solutions, then, we have to use
the Chebyshev scalarizing function but in so doing we give up
the favourable convergence rates15 achieved when using, for
example the weighted sum method, and vice versa. In general
there are two competing trends:

• As p→ 0, the probability of finding a better solution with
respect to theℓp-norm increases, hence it is less likely
that the algorithm stagnates due to its inability to find
direction of search. Additionally, it becomes increasingly
more difficult to obtain all Pareto optimal solutions.

• However, asp→ ∞, we can obtain more Pareto optimal
solutions on the Pareto front, but the probability to find
a better solution with respect to the norm defined byp
is also decreasing. In the limit, namely forp = ∞, we
obtain the Chebyshev scalarizing function that guarantees
that we will be able to find all Pareto optimal solutions
for some weighting vectorw but this scalarizing function
is equivalent with Pareto-dominance methods.

So the question is: is there a way that a scalarizing function
can be used withp relatively small while preserving the
guarantees that the Chebyshev function provides? The answer
is affirmative for many-objective problems whose Pareto front
geometry is continuous (see Section II). Specifically, a Pareto
front can be described with the following parametrization,

fp1

1 + fp2

2 + · · ·+ fpk

k = C, (40)

where pi > 0 for all i and C is a positive constant.
For simplicity we assume thatfi ≥ 0. We claim that if
the weighted metrics scalarizing function is used withp =
max{p1, . . . , pk}, then this scalarization will have the same
guarantees as the Chebyshev function, given that our estimate
of max{p1, . . . , pk} is correct and that the objective function is

15Or more correctly the potential for favourable convergencerates.

continuous. The reason for this is illustrated inFig. (5). To see
this, consider that whenzc reachesze in Fig. (5), the volume
of the regionSℓ1 is still positive, meaning that according to the
ℓ1-norm there are still better solutions to the current solution.
Continuing on the same line of reasoning, the solutionzc will
either converge tozA or zB since at these two locations there
is no way that theℓ1-norm to be improved. This result follows
directly from (38) and the results in [51] for calculating the
volume in (40), it follows that,

lim
zc→ze

(
VPz

− Vℓp

)
≤ 0, (41)

when p > max{pi}. In which case we say that the scalar-
ization is stable while if p < max{pi} the scalarization is
unstable and we have,

lim
zc→ze

(
Vℓp − VPz

)
> 0. (42)

Stability in terms of sclarizations is taken to mean the follow-
ing:

• A subproblem of a many-objective problem is astable
scalarization if for a given weighting vectorw ≻ 0, it
is able to converge to a Pareto optimal solutionze =
(z1, . . . , zk), with zi > 0 for every i = 1, . . . , k.

• Conversely, a subproblem is anunstable scalarization
if for a given weighting vectorw ≻ 0, it converges to a
Pareto optimal solutionze with zi = 0 for at least one
i ∈ {1, . . . , k}.

Therefore if the Pareto front geometry is known and it
can be expressed in terms of (40), then we can select the
ℓp-norm that will have the maximum probability to produce
better solutions while preserving the guarantee that the final
population will be (weakly) Pareto optimal and that all the
Pareto optimal solutions will be obtainable for some weighting
vector.

VI. D ISCUSSION

By calculating the probability to find a better solution, we
have essentially turned the problem of extending a many-
objective optimization algorithm into a functional optimization
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problem. Namely, the question that can now be posed is: “what
is the optimal ℓp-norm for the scalarization and trajectory
for an objective vector?”. By optimal trajectory we mean
the trajectory in objective space that will present the least
resistance to our optimization algorithm while simultaneously
moving towards a Pareto optimal solutions as fast as possible.
This question although very interesting, it has either a trivial
answer: a straight line, or for biased problems we would
need to have knowledge of the probability density function
in objective space, something which in general is unavailable
even for test problems. Therefore, we use a balanced trajectory,
since this is in accord with the scalarizing functions, in the
sense that this is the path that they tend to follow. Using this
we investigated how the probability to obtain better solutions
varies as a function of the distance of the current best solution
and the sought for Pareto optimal solution. We found that this
probability is largest the smaller theℓp-norm is, with respect
to p. This information can be used to reduce the difficulty of
many-objective problems, to some extent.

However, we cannot simply use the smallest norm that is
numerically feasible since with decreasingp the ability of a
scalarizing function to converge to a particular point of the
Pareto front is also reduced, hence, a concession must be
made. Although, if the Pareto front is continuous and can be
described in a parametric way (see (40)), an optimal value,
p⋆, can be obtained for which the decrease of the probability
of finding a better solution is minimal while the ability of the
scalarizing function of finding every Pareto optimal solution
is retained. The optimal value ofp, separates the family
of scalarizing functions into two subclasses. First, values of
p < p⋆ produceunstable scalarizing functions andp > p⋆

result in stable scalarizing functions. Here stability refers to
the ability of the scalarizing function to converge to any point
on the Pareto front, while instability refers to the opposite.

A way to convexify the Pareto front, and thus allowing for
an arbitrarilysmall16 ℓp-norm to be used, has been proposed
in [53]. Essentially, what the author of the aforementioned
work suggested is that the objective function is raised to a
power until the Pareto front becomes convex. Although this
suggestion may seem intriguing, the effect of such a non-
linear operation to the objective function would be, among
other things, introducing bias in the objective function and
potentially making the problem more difficult to solve in the
case that the initial set of scalar objective functions are non-
convex.

VII. C ONCLUSION

Based on the results in Section III and Section IV we
have seen that under mild conditions the Chebyshev function
is identical to Pareto-dominance methods. Identical in the
sense that, for a solution following a balanced trajectory,
the reduction of probability to find a better solution is iden-
tical for both methods. This curious fact suggests that the
decomposition-based methods are actually notbetter com-
pared with Pareto-based methods. But if that is so, how can
the results observed by several researchers for many-objective

16Small here refers top.

problems be justified? Given the fact that the reported results
are onlyslightly better in [30]–[33] our hypothesis is that the
difference is simply due to the ease with which a constant
direction of search in objective space can be maintained in
decomposition-based methods, while the same is very difficult
to achieve with Pareto-based methods. A good example of
this behaviour is seen in MOGLS17 [54] when compared
with MOEA/D in [34]. In the aforementioned work MOGLS
was outperformed by MOEA/D, and as the authors note, one
reason was that MOGLS generated different weighting vectors
on every iteration. This amounts to an attempt to identify
the entire Pareto front, but also means that the direction
of search in objective space is not constant as is the case
for MOEA/D. The same problem is present in Pareto-based
methods, however there is no clear way for this situation to
be remedied.

The results in this work show that:
• Pareto-dominance methods and the Chebyshev scalar-

izing function are equivalent, in the sense that neither
method in itself, has better probability to findsuperior
solutions. In fact the aforementioned probabilities are the
same.

• Given some prior information about the problem, namely
the geometry of the Pareto front, we can find theoptimal
scalarizing function. Optimal in this context means that
using the above scalarizing function all Pareto optimal so-
lutions will be obtainable for some weighting vector, and
that, the probability of obtaining a better solution, with
respect to the particular scalarizing function, decreases
more slowly compared to all other scalarizing functions
(and Pareto-dominance methods) that can provide the
same guarantee of finding all Pareto optimal solutions.

• Using generalized decomposition (gD) [55], [56] in
conjunction with the results in this work, the required
weighting vectors for obtaining Pareto optimal solutions
in specific locations on the Pareto front, can be identified
for any ℓp-norm.

Some of the mentioned benefits apply only when we are able
to identify the Pareto front geometry prior to obtaining Pareto
optimal solutions. We have identified a solution to this problem
and preliminary results seem very promising.

APPENDIX A
GAMMA FUNCTION DEFINITION AND NORM VOLUMES

TheΓ function18 is defined as:

Γ(x) =

∫ ∞

0

tx−1e−xdt. (43)

For x ∈ N,
Γ(x+ 1) = x!. (44)

The psi or digamma function is [57],

ψ(x) =
d

dx
((ln (Γ(x)))

= −γ −
1

x
+

∞∑

n=1

(
1

n
−

1

x+ n

)

.
(45)

17Multi-Objective Genetic Local Search.
18Pronouncedgamma.
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The termγ is Euler’s constant, see [57] for its definition.

Lemma A.1. For a vector, x ∈ Rn,

lim
p→∞

‖x‖p = max{|x1|, . . . , |xn|}.

Proof: Let, |xi| = max{|x1|, . . . , |xn|} andxi 6= 0, then

(|xi|
p)

1
p ≤ (|x1|

p + · · ·+ |xn|
p)

1
p ≤ (n|xi|

p)
1
p ⇒

1 ≤

(
|x1|p

|xi|p
+ · · ·+

|xn|p

|xi|p

) 1
p

≤ n
1
p

and since lim
p→∞

n
1
p = 1, it follows that,

lim
p→∞

(
|x1|p

|xi|p
+ · · ·+

|xn|p

|xi|p

) 1
p

= 1 ⇒

lim
p→∞

(|x1|
p + · · ·+ |xn|

p)
1
p = |xi|.

In the case that|xi| = 0 it follows that the vectorx = 0,
hence, by the very definition of norms‖x‖ = 0.

A. Norm Volumes

We want to show that,

VSℓ1
> VSℓ2

> · · · > VSℓ∞
= VP , (46)

for a balanced trajectory. The termVF is omitted as it is
constant and independent of the scalarizing function or the
dominance method employed.

Proof: To show that (46) obtains, it would suffice to show
that,

VSℓp
> VSℓp+h

, (47)

for h > 0 and that,

VSℓp
> VSℓ∞

= VP , (48)

for any p ∈ (1,∞). We have from (33), (34) and (35) that
(19) expands to,

VSℓp
(z) =

(
∑k

i=1
wiz

p
i

)k
p

(
∏k

i=1
wi

) 1
p

(

Γ
(

1 + 1

p

))k

Γ
(

k
p
+ 1
)

=
(k)

k
p

(
∏k

i=1
wi

) 1
p

(

Γ
(

1 + 1

p

))k

Γ
(

k
p
+ 1
)

(49)

furthermore forM = 1∏
k
i=1

wi
with wi > 0 for all i = 1, . . . , k

we have,

g(p) = ln






(k)
k
p

(
∏k

i=1
wi

) 1
p

(

Γ
(

1 + 1

p

))k

Γ
(

k
p
+ 1
)




 (50)

whose partial derivative with respect top is,

g′(p) = −
1

p2
ln(M)−

k

p2
ln(k)

−
k

p2
ψ

(

1 +
1

p

)

+
k

p2
ψ

(

1 +
k

p

) (51)

whereψ(·) is the digamma function [57]. Since (51) is strictly
negative it follows thatVSℓp

is a monotone decreasing function
of p.
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