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Abstract—Decomposition-based methods are often cited as the For nonconvex problems, guarantees about the obtained
solution to problems related with many-objective optimizdion.  solution can only be given when an exhaustive search is
Decomposition-based methods employ a scalarizing functioto  yerformed. That is, only if the entire domain of definition

reduce a many-objective problem into a set of single objeate L LT
problems, which upon solution yields a good approximation b of the objective function is explored. Naturally such a task

the set of optimal solutions. This set is commonly referredd as €an very easily become unmanageable. However once the
Pareto front. In this work we explore the implications of using fact that a problem is nonconvex is established, there are
decomposition-based methods over Pareto-based method®in  several metaheuristitsthat can be employed to obtain a
a probabilistic point of view. Namely, we investigate whetBr 4 4i5n  Some examples of metaheuristics, often referred
there is an advantage of using a decomposition-based methdadr . . . .

to as evolutionary algorithms (EAs) in the literature are,

example using the Chebyshev scalarizing function, over Pato- . ) . ;
based methods. genetic algorithms (GAs) [3], [4], evolution strategiesS{E

Index Terms—Many-Obijective optimization, Chebychev de- [5], differential evolution (DE) [6] particle swarm optisation

composition, Pareto-based methods, Decomposition-basetketh- (PSO) [7], [8] and _others [91-{11]. .
ods Although a solution produced by any of the aforementioned

methods will most likely be suboptimal, metaheuristics- per
formwell in practice. Meaning that compared to the alternative
. INTRODUCTION of using random search [12], [13], which has the property
traditional classification of optimisation problems haef asymptotical convergence [14], EAs in practice, coneerg
been their separation into linear and nonlinear problerfaster to the neighbourhood of optimal solutions for a number
[1]. However, this ignores a large body of research in convé% problems [15]-[18]. Of course, this does not imply that
programming, which is a special class of methods that apghAs are superior to random search for all problems. The
to a subclass of nonlinear optimisation problems, for whichimplication is that if domain knowledge is exploited then
solution can be obtained with relative ease, even for xalgti EAs can be a very effective [19], especially in light of the
large scale problems [2]. Therefore a more relevant distinc fact that even convex problems turn into nonconvex at the
of optimisation problems would be their classification lshseslightestprovocation. An example of this phenomenon is seen
on convexity. This is so because this distinction will radlie in machine learning, where kernel-based learning algmsth
impact the approach used in solving such problems and that have ashallow architecture, namely a single layer of
expected quality of the produced solutions. In the fortanakernels for which the weights are to be determined, are finea
case that a problem can be expressed in a convex foim,the parameters and produce convex problems. However,
then for all practical purposes it can almost be considesed such architectures seem to be inefficient for certain tasktew
solved. Furthermore the solution obtained for convex motsi deep architectures, namely architectures with several layers
is guaranteed to be the global optimum, however it is nof kernels, can learn more complex tasks more efficiently,
necessarily unique. Namely, a solution obtained for a convBowever the estimation of their parameters (learning) is-no
program is the global minimum (maximum) for a minimi-<convex [20]. Such examples serve as feedback to practitone
sation (maximisation) problem. Also such a solution can Wt to become overly dependent on a particular method, but
obtained quite efficiently [2]. These facts strongly matéva instead, carefully investigate the nature of the problenaso
the additional effort required to attempt to identify whath to select theoptimal approach for its solution, a process that
a problem is convex. However the process of identifying i& nonconvex in itself.
convex problem is non-trivial and is further complicated by Another important classification is the separation of optim
the fact that different formulations can be more difficult t&ation problems into single-objective, that is problemsmeh
solve [2]. the objective function is a mapping of the tyge C™ — C,

and, multi-objective whereby the objective function maggpi
The authors are with the Department of Automatic Control Sydtems
Engineering, University of Sheffield, Sheffield, UK, S1 3JD. 1An algorithmic framework of heuristic optimisation algwins. Heuristic
E-mail: i.giagkiozis@sheffield.ac.uk is the Greek word forsearch. Metaheuristic algorithms commonly have a
URL: http://ioannis-giagkiozis.staff.shef.ac.uk stochastic (Greek word farandom) component.
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has the following form f : C* — C*. This classification is option. Another problem that Pareto-based methods face for
important because in the latter case, there is no obviousmany objectives is that it is unclear how to preserve ditgisi
unigue way to induce a complete ordering for nonconvex [2the solutions. This problem hints toward the fact that ppsha
pp. 113], [1, pp. 61] as well as for convex problems [2, ppn many-objective problems we should redefine the objestive
174]. Without order a direction of search cannot be estabtls of a posteriori preference articulation based algorithms to a
This is a well known issue in multi-objective optimisatiorsmaller region of the Pareto front.
and has been addressed to varying degrees of success [Some authors allege that the solution is to use
several researchers in the field of mathematical progragmitiecomposition-based algorithms since they scale welbige
[21]-[23] and more recently in evolutionary computation, [4 population sizes and seem to have better convergence rate
[24], [25]. In general there are two approaches employedmpared with Pareto-based algorithms [28], a view that
to resolve this issue: Pareto-based and decompositidbaseems to be adopted by several authors [30]-[33] and as
methods. In both methodologies and assumingatbesteriori can be seen by the number of publications based on the
preference articulation paradigm [1, pp. 63] is employé&é, t MOEA/D algorithm introduced in [34]. However, although the
relative importance of the objectives is unknown. In theecagxperimental results seem to support this view, the diffeee
that preference information is given by the decision makef decomposition-based with Pareto-based algorithms fs no
(DM), then using a decomposition method to combine thimpressive if relative performance is to be considered.iAdd
scalar objective functions can be used, see Section IV. Aonally, decomposition-based methods have their faireslo&
alternative is to distill the preference information givby difficulties. For instance, a straightforward method tdritisite
the decision maker in a utility function, however this regsi the solutions on the Pareto front seems elusive to obtain
extensive knowledge of the problem structure and does rot decomposition-based methods. This deficiency stenm fro
guarantee that its solutions will be Pareto optimal [21,@2]. the fact that it is not straightforward to select the weigpti
Pareto-based methods use the Pareto-dominance relatipns/gctors and the scalarizing function as most results daila
to induce partial ordering in the objective space. in the literature apply only to convex optimization probkem
Decomposition-based methods have been predominarily, [21], [35]. There is however one scalarizing function,
used in mathematical programming [1], [2]. These methodsmely the Chebyshev scalarizing function, that can be used
use scalarising functions to decompose a multi-objectisbp for nonconvex problems as well since the produced solutions
lem into several single objective subproblems. These sibprwill at least be weakly Pareto optinfadnd there is a theorem
lems are defined with the help of weighting vectors. Thihat states that all Pareto optimal solutions can be oldaine
weighting vectors aré:-dimensional vectors with positive for some weighting vector [1, pp. 99]. Perhaps this is the
components whose sum is equal to one. Theation on reason for the increased use of this scalarizing function in
the Pareto front that each subproblem tends to convergee literature, see for example [34], [36]-[38].
depends on the choice of weighting vectors and the scalgrizi To date there is no theoretical evidence to support the above
function of choice. Therefore, to control the final disttibm mentioned view. Namely, that decomposition-based methods
of solutions on the Pareto front the set of weighting vectoese superior to Pareto-based methods for many-objectdk pr
must be carefully selected for the entire Pareto front to bems. Some studies have appeared in the literature, forgeam
covered. [29], [39] but the assumption is that the objective function
Many-objective problems are an important subclass @f unimodal, i.e. convex or quasi-convex. This assumption
multi-objective problems that have more thanobjectives, limits the scope of these works since evolutionary algarih
with applications in control and aerospace [9], [26]. Hoemev (EAs) are applied to nonconvex problems, that is problems
as many authors point out, Pareto-based evolutionary algoat classical optimization methods fail or are inefficieimnt
rithms are facing difficulties for many-objective problefios this work we study the difficulties that EAs face in many-
a number of reasons. For example, for increasing numberalfjective problems and explore the difference of Paresebtia
dimensions the number of incomparable solutions dominat&sd dominance-based methods for this class of problems. Our
the population, hence the selection pressure is massivpljor assumptions about the problem structure are much more
reduced which leads to poor convergence rate to the Parmdtaxed and realistic compared with [29].
front [27]. A proposed solution is to increase the populatio The main contributions of this work can be summarized as
size [28], however this approach is of limited use since it ®llows:
easy to overrun the available computational resourcesviame | The effect of Pareto dominance methods is studied from

a 10 objective problem. To see this consider the fact that to 5 theoretical perspective and an explanation of the diffi-

obtain a Pareto optimal set for K-objective problem, that culties experienced by several Pareto-based algorithms is
has comparable quality with the resulting Pareto set af a presented.

objective problem and a populalt(lJon size f0, the size of , pecomposition-based methods are also studied and their
the set must be approximately)™ [29]. This obviates the relation to dominance methods is clarified. A major

fact thatthrowing more resources at the problem is not an  regylt is that methods based on the Chebyshev scalarizing
P _ _ function are equivalent to methods based on Pareto-
In this work we can assumé€ = R, since we only consider problems . . .

with real variables. dominance under certain assumptions that are usually

30n some occasions this constraint is relaxed to allow for-megative
weighting vector components, i.e. zeros are allowed in te&hting vector. 4See Section |l for definition.
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trivially met in decomposition-based algorithms. common for problems with more than one objective that a
« Lastly, given some prior information about the Parettamily of solutions are generated. This family of solutipims

front geometry theoptimal scalarizing function is iden- the absence of prior information, should be representative

tified. Optimal in the sense that with this scalarizinghe entire Pareto front, whenever possible. The Paretd fson

function the probability of finding a better solutionthe minimal set of the set of feasible solutions in objective

given a starting pointz., will have a slower rate of space.

decrease compared to other scalarizing functions andA binary relationR (<, <) on a set”' is said to be gartial

at the same time similar guarantees provided by tleedering [40, pp. 7] if,

Chebyshev scalarizing functions can be given. i. R is reflexive:zRx for everyz € C.
The remainder of this paper is structured as follows. In ii. R is transitive: iftRy andyRz —> xzRz.
Section Il fundamental concepts pertaining to many-object iii. R is antisymmetric, namely ik Ry andyRz =
problems and set ordering relations are introduced. In Sec- T =y.

tion Ill we discuss Pareto-based methods and explore tiea partial ordering is defined on a s€t then this set is said
effect of dominance relations in many-objective problems be partially ordered or a poset For a partially ordered
Furthermore in Section IV we perform a similar analysis aset, it may happen that the relatidh does not hold for all
was conducted for Pareto-based methods, for a popularafiaselements of the set, so for a binary relaticn the following
decomposition methods based on the weighted metrics scaigra possibility: forz,y € C, = £ y andz £ y, in which
izing functions. In Section V we show that similar assurancease the elements, y are incomparable - this is exactly the
as the ones provided by the Chebyshev scalarizing functimmason why such a relation is callgdrtial ordering for the
can be given for arf,-norm based decomposition functiorset C. For example one way to extend the relation from
with p < oo. Furthermore, in Section VI we reflect on theR to R? is to define it as the application of the common
consequences of the presented results in this work andrpgrese relation to the elements of the vectors k¥, namely,
contexts in which our results can be used constructively {@,,z5) < (y1,y2) <= =1 < y1 andzs < yo. Then this
improve algorithms tackling many-objective problems.thas relation is a partial ordering for the sét = R2, that is for
in Section VII, this work is summarized and concluded. 2 = (2,2),y = (3,4),z = (6,5), = < x, also sincer < y and
y<z = (2,2) < (6,5) =z < z. Furthermore, a binary

Il. FUNDAMENTAL CONCEPTS ANDDEEINITIONS relation R (<, <) on a setC is said to be astrict partial

ordering [41] if,
i. R is irreflexive: —(zRzx) for everyz € C.

min F(x) = (f1(x), f2(x), ..., fx(x)) ii. R is transitive: iftRy andyRz = zRz.
* 1) iii. R is asymmetric, namely i£Ry — —(yRx).

If there exist no incomparable elements in a g&tunder the
where k is the number of scalar objective functions ard binary relationR, thenC is said to beordered (equivalently,
is the decision vector with a domain of definitiéhC R", linearly or simply ordered) andR is said to be acomplete

while Z is the objective space and is the forward infagé ordering on the setC, or equivalentlylinear or simple
S under the mappin@'. When the number of objectives, ordering.

is more thar3 then the problem defined by (1) is referred to A set C C R” is convex if for any x,y € C and any
as many-objective. The issue with many-objective probfemg [0,1],

is that a complete ordering cannot be defined without the help Ox + (1 —0)y € C. 2

of a decision maker (DM). This in turn creates difficulties ) )

for evolutionary algorithms (EAs) that use Pareto-domgean” S€tC Is a cone if ox € C for all x _E_C andé > 0. A
methods for fitness assignment. Pareto-dominance resatiG@N€C C R™ is called aproper cone if it is convex, closed,
define a partial ordering in objective space, therefore kmgb POINted and has nonempty interior. A cone is pointed if it
the comparison of solutions. Pareto-dominance relatigns £9ains no line, for example the con€, = {(z, f(z)) €
usually denoted by the& binary relation. Also, for any two : f(@) > 0}, is not pointed since it contains an infinite
vectorsa, b € Z, the expression < b is interpreted as: solu- "UmMber of lines:f(z) = ¢,Vz € R, foranyc € Ri. An
tion a dominatesb in the context of a minimization problem.€X@mple of a pointed cone is the nonnegative ortriafi

The aforementioned relation holds when all the elements ¥§pich is also a proper cone. Proper cones play a significant
a are smaller or equal to the corresponding elements in role in inducing partial ordering and are strongly relatedhe

and at least one element is strictly smaller. Another farafly CONCept of Pareto optimality as will become clear in the next
methods used for fitness assignment is based on scalarizifglion- o , .
functions, usually referred to as decomposition methods. | fu.n.ct_lon f:R" = Ris said to be .convex if the domain
decomposition-based fitness assignment, the objectiieum Of definition of f, denoted aslom f, is a convex set and
is weighted and aggregated using a scalarising functiars th’ X:¥ € dom f andé € [0,1] we have,

transforming (1) to a single-objective problem. Howeveisi fOx+ (1 -0)y) <Of(x)+ (1 —-0)f(y). (3)

A multi-objective optimisation problem is defined as:

subject tox € S,

SNamely,F : S — Z. “Note that the relationg, has a more abstract meaning and is not its usual
6As well as multi-objective problems definition. It is after all only a symbol.
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A function is strictly convex if the inequality in (3) is [1l. PARETO METHODS AND DERIVATIVES

strict. Accordingly a function is concave i f is convex. A A overview

more interesting definition of convex and concave functions ) ) )

is formulated with the aid of thepigraph of a function, M mathematical programming, the Pareto dominance re-
see Appendix II-A. For an applications driven exposition oftions are mainly used for theoretical purposes. However,
convex analysis and optimization the reader is referre@}o [|n evolutionary computation they are heavily used in fitness

while a more theoretical perspective can be found in [423] [4@SSINMent. Fitness assignment has a similar functioneto th
and of course [44]. negative gradient in gradient search - it indicates a priomis

direction of search. Therefore if such a direction is unavai
able to the EA, then continuation of the search becomes
A. Epigraph increasingly more difficult as there is no indication thetter
solutions are being generated. This type of difficulty that
EAs face in many-objective problems is describedass of
epif ={(x,t):xedomf,teR, f(x) <t}, (4) Selectivepressurein the EA literature [45].
If the relative importance of the objectives is unspecified,
consequentlyepi f ¢ R*1, If the epigraph of a function is one way to partially order the objective vectorsg Z, is to
a convex set then the function is convex and vice versa. Thse the Parefodominance relations, originally introduced by
hypograph of a function f : R® — R, meaningbelow the Edgeworth [46] and further studied by the economist Vilfred
graph, is defined as, Pareto [47]. A more general way to define dominance relations
is by using generalised inequalities (<) and the help of a
hypo f = {(x,t) : x edom f,t € R, f(x) = t}. (5) proper conek. A commonly used cone for this is the non-

i k _ Tk k
If a function is concave, its hypograph is a convex set. lrr1]egat|ve orthanRy.. So, fork’ = Ry anda, b € R*, a <x b

i . . is true whefl b —a € int K, and,a <x b whenb —a € K.
general a functionf : R® — R with a convex domain of , . .
definition is: However, since the non-negative orthant is almost alwagd us

to define generalised inequalities the subscript,is usually

« Convex, if and only ifepi f is a convex set. If in addition omitted. This notational convention is adopted in this wadk
hypo f is nonconvex thenf is strictly convex. a subscript in generalised inequalities will be used onlgmh

« Concave, if and only ifhypo f is a convex set. If in the proper conek, is other than the non-negative orthant or
addltlonepif iS nonconvex thenf iS Stl’iCt|y concave. the meaning is unclear from the context.

« Convex and concave, if botepif and hypo f are  gpecifically, in a minimisation context, a decision vector

The epigraph of a functionf : R™ — R is defined as:

convex. A concave af‘d convex function is affine. x € S is said to bePareto optimal if there is no other
« Nonconvex, if bothepi f andhypo f are nonconvex.  decision vectox € S such thatf;(x) < f;(x), for all i, and,
fi(x) < fi(x) for at least onei = 1,...,k. Namely there

B. Pareto Front Geometry exi.sts no other degis!on vector thqt maps 'Eo a cllearly. saperi
objective vector. Similarly, a decision vect&re S is said to

Assuming that the Pareto front can be represented bybaweakly Pareto optimal if there is no other decision vector
piecewise continuous function; : R*~' — R and k the x e S such thatf;(x) < f;(x) for all i = 1,..., k. Further-
number of objectives, then there are three typegeofmetries more, a decision vectat € S is said toPareto-dominatea
and combinations thereof, that the PF can have. Namely #ecision vectorx iff f;(x) < fi(x), Vi € {1,2,...,k} and

function, g, can have parts that are convex, concave, of affing(x) < f;(x), for at least one € {1,2,...,k} thenx < x.
We refer to a Pareto front as, So, in terms of generalised inequalities Fifx) < F(x) and
. Convex, ifepig is a convex set. F(x) # F(x), thenx < x. Also, a decision vectog € S is
. Concave, ifhypo g is a convex set. said tostricly dominate, in the Pareto sense, a decision vector
« Affine, if both epig andhypo g are convex. x iff f;(x) < fi(x), Vi € {1,2,...,k} thenx < x. That is,
« Discontinuous, ifdom ¢ is nonconvex o is discontin- if F(X) < F(x), thenx < x. It should be noted at this point,
uous. that when<, < are used in decision space, their meaning is
. Partially convex, ifg is convex over a convex subset ofnostly symbolic and is used to reflect the dominance relation
domg. in the objective space. For example,3gt= (0,0,0,0),xo =
« Partially concave, ify is concave over a convex subset of3, 3,3,3) and f(x1) = (4,4), f(x2) = (1,1). Clearly, for
dom g. K, = Ri, x1 <k, X2, however according to the above
. Partially affine, ifg is convex and concave over a conveslefinition of strict dominance it should be, < x;, because
subset ofdom g. F(x2) <k, F(x1) for K. = R2. This can happen because
. Piecewise convex, ify partially convex over all convex the decision vectors are implicitly ordered according teirth
subsets oflom g. forward image in objective space, where the usual partial

. Piecewise concave, if partially concave over all convex ordering, induced by the con&. is employed. Lastly, the

subsets otlom g. 8Referred t Ed th-Pareto domi lations bye sarth
. . . . . - eferred to as Edgeworth-Pareto dominance relations by ors.
« Piecewise affine, Ifg part|aIIy affine over all convex 9The notationint K is used to denote thiterior of the setk, in this

subsets oflom g. case the conés.
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Fig. 1. Left: Dominance relations defined by a cohe = R’j, in this instanceK = Ri. Right: Dominance relations defined by aaute proper cone

K={z: Zle 0;z;,0; > 0} with z; forming an acute angle with; for all ¢ # j. The region,S contains superior solutions tq. and the regior inferior
solutions, whileD is the union of all the regions irZ, that contain incomparable solutions#e. A mnemonic for the notation of the regions in the above
figures isSuperior for S, Inferior for I and non-Dominated for the D regions respectively.

ordering induced by the binary relatiors < is calledpartial cone, K, = {z: Ele 0:z;,0; > 0} with z; forming an acute
because of the following possibilityt,y € Z butx £ y angle withz; for all ¢ # j. Therefore, cone-dominance is
andy Z x, in which case the vectors,y are said to be defined with the help of the sdt. = K. U K,,. The partial
incomparable. For example, the vectors = (3,2,1) and ordering induced by aacute cone is shown inFig. (1). The
y = (1,2,3) are incomparable. Dominance relations inducemotivation for the introduction of this type of Pareto domi-
by two different proper cones are depictedHig. (1). Pareto- nance is that the diversity of produced Pareto optimal nigt
dominance relations and dominance relations imposed by ge=ms to be better. Namely, coaglominance promotes a
set K =R’ \ 0 are equivalent [1, pp. 24]. Notice that the good spread of solutions across the entire Pareto front, and
element is removed frorf(, this means that Pareto-dominancéheir distribution seems to be more uniform. However, the
relations are not reflexive, i.ex <g x does not hold as, problem reported in [27] persists for this type of dominance
x—x=0¢K. as well. In fact, since the regions where solutions become
Most multi-objective problem solvers attempt to identify &on-comparable are larger in conglominance it is expected
set of Pareto optimal solutions, this set is a subset oPtiveto  that the number of non-dominated solutions increase more
optimal set (PS) which is also referred to dareto front rapidly, compared to the Pareto dominance uslig= R,
(PF). The Pareto optimal set is defined as folloWws= {z : seeFig. (1).
3z < z,VZ € Z}, namely, it is the set of objective vectors
that are not dominated by any objective vector in the feasibé
objective space. The decision vectors whose forward image

under the objective function is the s@, are also referred to  In the following sections of this work we assume that the
as the Pareto set and are denotedasiamelyF : D — P. objective function isunbiased or that it is notbiased towards

That is, the decision space is implicitly ordered accordimg the Pareto fgont. This term is related to what the authors
the partia| ordering apphed to the objective space. of the WFG? toolkit [50] refer to asbias in the objectlve

Algorithms based on Pareto dominance based methods f¢rction. An objective function is considered to bebiased
tackling multi-objective (and many-objective) problemava when for decision vectors that are uniformly distributedSin
several difficulties to overcome. For instance a well distred (e resulting distribution in objective space is also umifp
Pareto front is not guaranteed simply by using dominan@é €lose to uniform [S0]. In this work we employ the same

relations. One answer to this problem has been presented'iiion of bias, however we also provide a definition which
[48], where the authors introducedominance. In essence,ShOUId clarify the underlying assumptions of the statesient

c-dominance creates a strict partial ordering based on @ OPjective function has no bias”, or “an objective funci

set K. = R + e This type of dominance relation isis biased toward the Pareto front” etc. Specifically, Aetbe
e = .
useful to maintain well distributed Pareto optimal solnto

an independent random deviate distributed according ¢§),
[48], however it cannot escape the deficiency that Paref@Mely a uniform distribution in the feasible decision spac
based methods face in many-objective problems [27]. AmotHE€n We say that the objective functidi, has no bias if,
very_lnterestlng approach introduced in [49], termed cene FU(S)) = Z ~ U(Z). (6)
dominance, uses the union of aoute proper cone and the

T . i ) . .
setk. = R} +¢to def”?e a relqtlon tha.t IS a parfclal ordering. 10walking Fish Group. The WFG toolkit can be used to createasialtest
Namely, they use-dominance in combination with aacute problems in objective and decision space.

Bias in the Objective Function
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In other words, a uniformly sampled decision space maps td?areto front. For example, fdi0 dimensions there are024
uniformly sampled objective space, or at least approxiipateegions, hence for the above problem, the probability for a
so. In some fortunate cases, the objective function is Hiassolution to be generated, that dominates the current pisint,

towards the Pareto front, namely, approximatelyp = 1/1024 = 9.76=* if the point in question
is exactly in themiddle of a feasible objective space. To
// h(z1,...,2k)dz1 ... dz > Py(Z € B), contrast this, the probability that a non-comparable smhut
NS (7) s generated ig 022/1024 ~ 0.99.
k

Although the assumption that the problem has no bias seems
B ={z:inf{||z —2,||} < 1,2, € P,z € Z}, to limit the generality of the above argument, this is not
entirely true. To illustrate this let us consider the refati
directions of bias in the objective function in the context of
vectors with distance or less from the Pareto front. So ifoptimization. These bias can be: (i) towards the Paretot,fron
namely it is easier to obtain solutions near the PF than in

the probability (the integral in (7)) to obtain a solution h h . . ds th . - |
is larger for,h, than the uniform distribution then we say thaf"y Other region, (ii) towards the region containing clgar

the objective function is biased towards the Pareto fraint. yorse s_olutions, and (iif) tqwards any region or regions-cpn
(7) holds for B¢, the complement of3, then we say that the taining |nc_orr_1pa_rable solutions. Only In case (i) the sohtl
objective function is biased away from the Pareto front.iBim of the optimisation problem becomeasier compared with

definitions for bias toward any other region in objectivecmath‘? dunb|ased \;ers'gn' Hovvaersthls favoura_\ble scl;a.nar}o t;]s
are trivial to define by simply changing the definition of thg®'00M encountered In practice. S0 by assuming no bias in the
setB. objective function, all the probabilities that we calcelatre in

the worst case upper bounds on the probabilities of obtginin
solutions in the se$. In other words, the probabilities reported
C. Pareto Dominance for Many-Objective Problems in this work represent thdoest attainable probability with

In [27] the authors provide empirical results in an attemp@Spect to the location of an objective vector. We elaborate
to explain the reason for thpoor performance of Pareto further on this point in Section VI.
dominance-based algorithms applied to many-objectivepro 10 better appreciate and understand the reasons for the
lems. The main argument is that the ratio of non-dominaté@parent difficulties that many-objective optimizatioy|
(incomparable) individuals to the size of the population {thms face with such problems, we frame the aforementioned
approachingl, meaning that almost the entire population igxample on a more concrete basis. Assume that the objective
non-dominated, therefore the algorithms’ selection meisima  SPace.Z, is bounded from above by a hyperplane as shown
is provided with no useful information. In what follows wein Fig. (2), spkecmcally the upper bound is the set of points
elaborate further on this argument and prove that this bdlr = {z:>_;_, z = M, z; > 0}. The reasons for selecting
haviour is to be expected in many-objective problems and \@ef€asible objective region with this particular geometrjt w
reveal, to an extent, the underlying cause for such difiesiit Pecome clear in what follows. Also, let the Pareto front be
Consider the simplest multi-objective case, namelg-a @ (k — 1)-simplex, namely Pareto I?ptlmal objective vectors
objective problem. Every point in objective space defitesare part of the selp = {z : }°; 2 = L,z = 0},
regions shown irFig. (1), (i) a region that contains solutionsObviously we have to select < M for minimization problems
that are clearly better denoted 8s(ii) a region that contains @sL > M would imply Z = {0}. If we also assume that the
solutions that are clearly worsé, and (i, iv) two regions Problem has no bias, then given an objective vedpr: Z,
where the solutions are incomparable to the point in questidt would be possible to calculate the probability of obtagi
D. For 3-objective problems there ar® such regions ), @ better solution for any point in the objective space. This
however there is onlyl region which contains clearly betterinformation can be useful in many ways, we elaborate on those
solutions and! region with clearly worse solutions. So, therd? Sécton VL. _
are 23 — 2 = 6 regions that contain solutions incomparable NOW, given a point in objective space, where the subscript
to the point in question. In general the following is trueg folS an abbreviation forcurrent point, we can calculate the
k-dimensional problems, there is alwaysegion with clearly prob_ablhty of obtaining a better solution using the foliogy
better solutions,1 region with clearly worse solutions andrelation, v
2k _2 regions containing incomparable solutions. Furthermore, P(zeS|z.) = S(ZC), (8)
assuming that there is no bias towards any of these regions in Vz
the problem (objective function), the probability that &gion  Where,Vs(zc) = Vp(z.), for Pareto-based methodgy is the
is generated in any one of these regions by a stochasticgwroc&lume of the feasible objective space which is equal to the
(algorithm) is proportional to the volume of these regionéolume of the slab in betweellp, Ly and the positive orthant
divided by the volume of the entire feasible set in objecti%. SeeFig. (2). Additionally, P(z € S|z.), is the probability
spacél, Z. However, for increasing number of dimensions, th@f finding a better objective vectog,,, given the objective
likelihood that a solution will be generated within the regi Vectorz.. The expression in (8) is valid only for problems

S, becomes almost insignificant the closer the point is to thé10se objective function would produce objective vectors
uniformly distributed, or nearly so, given a set of unifoyml

1we assume that the feasible objective set is bounded. distributed decision vectors. For biased problems knogéeaf

where h, is the probability density function (pdf) of the
objective space and3 is the set of all feasible objective
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Fig. 2. Trajectory for the experiment described in SectitiDl comparing decomposition and Pareto-based methbfis.is the upper bound of the feasible
objective space whild.p is the Pareto front and the lower bound of the feasible obgdpace. AlsoVr is the volume below the Pareto front anif; is
the volume of the feasible objective space, whilg is the volume of the region containing superior solutionshi® current solutiorz.. Lastly, zs and z.
are the starting and target objective vectors, withbeing Pareto optimal. Thieft figure illustrates the aforementioned quantities Zer= zs and theright
figure illustrates how the above quantities changeasoves towardz. along the(z. — zs) direction. The results can be seenFiy. (3).

the exact probability density function in objective spacaid assuming that the samevalue is used for every objective. If

be necessary so that we carigh the integrals. However, asdifferent values foe are used it is trivial to modify (12). The

we mentioned above, in all but the most trivial problems theolume of the non-dominated region for conaedominance

bias will be towards the Pareto front, otherwise it will beagw [49] is much more involved to calculate exactly, however,

from it, and so (8) will still describe a useful quantity, n@lyn  given that its defining set is the intersection of a properecon

the upper bound of the probability of finding a better solutio and the sefR* + ¢ it stands to reason that its volumgy_,

assuming that there is no bias towards the Pareto front.  will be within,
The volume of the region containing clearly better soluion

Vp(z.), for Pareto dominance or cone dominance using an

ordering conek = R s,

Vp, < Vi, < Vp, (13)

depending on the selected acute cone.
k
Vp(z) =[]z — Ve, ©)
=l D. Experiment
whereVr is the volume of the non-dominated region beneath

the Pareto front, which is the volume beneath the simplgx, ~ Using (8)-(10) and a trajectory in objective space we can

The (k — 1)-simplex corresponds to a Pareto front with affin@xplore the change in the probability to obtain a solution
geometry and/r is calculated as, in S from a current point,z.. So, assume we start from

a point that is on the upper bound of the objective space,
(10) zs € Mp, and a target point on the Pareto frant, the
I'(k+1) ' guestion is how likely is to find &etter solution with respect

Here,v;, are the vertices that the Pareto front intersects wif._B any point on the trajectory W'.th direction, — z,, see
19. (2). The trajectory that the poirt. follows can be seen

the axes. The vectors;; for the Pareto front are equal toin Fig. (2) is simply the line segment betwe and

v, = L-e;, wheree; is a vector of zeros and it¢" element is 9 Py 9 e Ze:

equal to one. Furthermore, the volume beneath the hyperpléwls information for Pareto dominance methods will give us

Mp, Vay, is calculated using (10) and = M -e;. OnceVy, & basis for comparison with other methods for inducing a

andV;, have been evaluated, the volume of the entire feasitﬁ%rtlal order in the obpctwe space apd should |IIum|pa{lye_ a
L ! Ifferences. The steps involved, for this and for decontmsi
objective space is calculated as,

based methods described in Section 1V, as follows:

det[vl vk}
L:

Vz=Vu— VL. (11) . Setz, = z,. Subsequently we divide the line segment
from z4 to z. into N — 1 segments, thus from_ start to
end there areV points z.[i] = z, + (z. — zs)x; and
. 1=20,...,N —1, seeFig. (2).
« For everyz.[i] we calculate (8). The results are shown
= ;—€) — 1 L N
Vr.(2) H( &)= Vr, (12) in Fig. (3)-(a) for Pareto-dominance.

Also the volume of the non-dominated region fedominance
is simply,

i=1
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Fig. 3. Probability to find a better solution to., P(z € S|z.), as a function of the Euclidean distance of the solutigrto z., denoted bydist(ze, z.),
for different number of objectives (sé@g. (2)). Here {0, o, ¢, X, } correspond tdc = {2, 5,10, 15, 20} objectives respectively.

IV. DECOMPOSITIONMETHODS 97] defined as:
| . 3

A. Overview min (z wil fi(x) — zﬂP) . (14)

An alternative for defining a partial order in objective spac !
%nudn(()jfizog;is]n |m_p_I|C|t partial order in dec_|3|0n space,hn_a ]]’ ok andezl w; = 1, alsop € (0, 00). The vectorz*

position methods. As mentioned in Section J; ; . . ) N

these methods employ a scalarizing function to aggreghte &’ ) 2k), 1 C"fl"ed theideal vector and is defined as’ =
the objectives into a single scalar objective function. Btam 12f{f1 COLR ’12f{f’“(x)})' For the p_urpose of this work
different Pareto optimal points, a set of weighting vectode Will assume thak* = (0,...,0), which means that (14)
can be used which would result in a set of single objectif@n be rewritten as,
subproblems. This is the reason why such methods are called k »
decomposition-based, it is because the employed strategy is min (Z w; Mx)p) ) (15)
to decompose a complex problem into a sesiofpler ones. * iz
Simpler in this context does not necessarily mean easierNetice that we are allowed to remove the absolute value while
solve, it means that it is straightforward to apply standafflaintaining the equivalency relation between (14) and,(15)
EAs to the resulting subproblems. since,z* = (0,...,0), implies thatz € R . The formulation

The family of scalarizing functions that we focus oushown in (15) obviates the relationship of the weighted met-
attention in this work, is the weighted metrics method [1, ppics scalarizing function with the weighting method and the

where,w; are the weighting coefficientsy; > 0 for all i =
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s p=i(ze)

that the selected algorithm is able to solve the problem ddfin
in (17) then the solution will be at least a weakly Pareto
optimal, and that all the Pareto optimal solutions can be
obtained for some weighting vector. Such a result does not
exist forp < oo. In Section V we show that, given some prior
information, it is possible to find a norm other than infinity
with the same properties mentioned above. Namely, theyabili
7 of the a scalarized problem to converge to a weakly Pareto
optimal solution for every weighting vectar > 0 and that
all Pareto optimal solutions can be reached.
However, it is not obvious as to why a norm, other than
the ¢..-norm that is employed in the Chebyshev scalarizing
P=a function, would be more useful for decomposing a many-
: objective problem. For this reason we extend the experiment
pep=10y p=2) =t conducted for Pareto-based methods to decompositiordbase
Sngmala) Ongeifa) e onte) f1 methods that employ (15) as the scalarizing function to de-

compose a many-objective problem and study the effects that
Fig. 4. Thecurvesin the left figure represent the boundary of solutions that P y-0b) P Y

will be perceived as clearly better with respect to the gpoadingp-norm. A d'ﬁer.ent values ofp have on the resultlng SprrOblemS* see
geometric (although not entirely true) explanation as ty wie Chebyshev Section I1V-B.

scalarising function { = oo) guarantees the generation of Pareto optimal

solutions is seen to the right. In effect Chebyshev scatgrifunction creates

something that resemblesaaymptotically stable equilibrium. This seems to B, Decomposition Methods for Many-Obj ective Problems
be the case for any-norm withp > 1.

The difference between scalarizing functions and the uario
forms of dominance relations discussed in Section lll, & th
Chebyshev decomposition. Namely, for= 1 we obtain the the former define a complete ordering in the objective space,

weighting method [1, pp. 78], namely for a subproblem defined as,
k k o
m)gnZwifi(x), (16) gp(x) = (Z w;| fi(x) — z;|P> , (18)
i=1 i=1
while for p = oo we obtain the Chebyshev scalarizinghen for any two decision vectoss X € Z, only one of the
function, following relations obtains,
min (max{ws fi(x), . .., wk fx(x)}) - 17) 9p(X) < gp(X), OF gp(X) = g,(x), OF g(X) > g,(x),

A derivation of (17) from (15), is included in Appendix A for given that the two decision vectors are applied to the same
completeness. It should be noted that the assumption that snbproblem. Namely, regions containing incomparable-solu
ideal vector is equal to the zero vector also implies that thiens (regionsD in Fig. (1)) are eliminated, and depending on
objective function is bounded from below. In extension i ththe ¢,-norm used in (15), parts of tH regions are absorbed
ideal vector is known and is not zero a change/aiablesin by the region containing inferior solutionk, and the region
the objective function would be sufficient to meet our assumpontaining clearly better solution§, This phenomenon has
tion. For example, foe* = (—2,4), it suffices to change the the potential to reduce the rate of decrease of the probabili
objective functionF, with F(x) = (f1(x) + 2, f2(x) —4).  that a better solution is generated as the current solution
Although all norms areequivalent, in the sense that for approaches the optimal point, séég. (3)-(b-d). A better
every norm in a finite dimensional space multiplicative corsolution in this context is a solution that yields a lowerueal
stants can be found relating two norms [2, pp. 636], thefor the selected scalarizing function. In turn, this canucd
effect in an optimization problem can be significantly diffiet, algorithm stagnation due to large number of non-dominated
depending on the intricacies of the problem. For example, feolutions as is the case in Pareto-based methods [27]. To see
p = oo, namely the Chebyshev scalarizing function, thethis consider a scenario in which the weighted sum method
exist theoretical results stating that the solutions of) @ifl is used. In this scenario the weighting vector represergs th
be at least weakly Pareto optimal for any weighting vectarormal of a hyperplane that divides the feasible objecipaxe
w € R% and that any Pareto optimal solution can obtaindd two partitions. One, a region containing better solusion
for some weighting vector [1, pp. 99]. The interest of th8,,, and one with worse solutiond,,, shown inFig. (4).
MOEA community with respect to this particular norm is thaSolutions above the hyperplane are considered tavtese
the previous statement holds for nonconvex problems as welhile solutions below the hyperplane are taken to be better
Note that this does not imply that there is a guarantee thaith respect to the particular subproblem. Therefore,esthe
the algorithm will be able to find a Pareto optimal solutiorolume of theS region is larger comparatively to dominance-
for a nonconvex problem, rather the statement refers to thased methods, it would be easier for the algorithm to iflenti
equivalency of the two problems. In other words, assumirsplutions that are somewhat closer to the front with respmect
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the currently best objective vector. However we have maddte Chebyshev scalarizing function are identical in theseen
concession here, as the new solution may not Pareto-danirthat,

the previous best solution. We will return to this issue in Vs,.. = Vp. (25)
Section V and Section VI.

To explore how decomposition-based methods relate Tflfe r(e)ftiltsﬁov(\]/?nlte c;gtg:?;mgsiggfgggs d'gfrgﬁfﬁgsnggqbg
Pareto-based methods, we must be able to calculate (S)E epP their P gt b dp ¢ s 9 . 'i
everyp = (0, oc]. The volume of the feasible objective spac orming their Pareto-based counterparts for many-objecti

is calculated in the same way as in (11), while the volume thblims (cite Is'torr;le)la H]?wever, Wet. hellvetor_llytshowndthat
the S region forp — (0,00) is calculated as: e above equality holds for one particular trajectory antl n

necessarily for every possible trajectory towards any fpoim

(F (1 " 1))k i the Pgreto f_ront. We claim that (25) _holds for_an en_tire fgmil
Vs, (z) = P T e (2) — Ve, (19) of trajectories and that these particular trajectories thee
r T (k + 1) e ones that both decomposition and dominance-based algwrith
P attempt to follow in their approach towards the PF.

which is essentially the volume of the positive orthant of a Before the general case is examined, consider a subproblem
hyperellipsoid calculated as seen in [51]. The factes&) defined by the following weighting vector,

represent the distance of the ideal vector from the intéicsec 9%
of the ellipsoid with the positive axis of th&" objective, w; = m,
shown inFig. (4) and are calculated as, 5 o) (26)
SF w2 v WZ(k%+1Y“”Mk+U)
a;(z) = Lm=1 "MTm ’ (20) ) o
w; furthermore the selected starting po#at is,
see [51]. Since for the special case that oo, 2o = M- (k(k + 1)7”_’ k(k + 1)> 27)
Y 2 2k
. (F (1 + ;)) and the end solutionz., that is the target Pareto optimal
lim =——— =1, (21)  solution is,
P
P 7 k(k+1) k(k+1) 08
the volume of theS region becomes, Ze = & 2 T 9k ' (28)
Vs, (z)=ai(z)...on(z) — Ve, (22) Therefore any solution on the trajectory will be,
and, C e l[L,M],
~ max{wiz1, ..., W2k} B k(k+1) k(k+1) (29)
ai(z) = " . (23) z.=C ( 5 T ok .
Furthermore, to replicate the selected trajectory desdrin  Given (26)-(29),
Section IlI-C and shown irFig. (2), the weighting vector is k .
settow = (1., 1_) ascribing equal_ importance to all Vp(z.) = Hzi —Vp = w — Vr. (30)
objectives so the resulting subproblem will tend to folldvist =1 28k

trajectory and converge to the poiat. For this particular

weighting vector (22) becomes. To calculate the volume of for the Chebyshev scalarizing

function we need to find what is the maximum element.

max{w 21, ..., Wk2k} = Wi Zm, However, a closer look at (26) and (29) will reveal that this
(Lykzk (24) element is simplyC, hence,
Vs, (z) = klkm—szzfl—VF. .
(%) Ck(k +1))

k
Vs, (z) = [[ i = Ve = ( -V, (31)
i=1

However, as can be seenhig. (2), all points in the trajectory 2k k!
from z, to z. havez; = 29 = --- = z;, hencez,, = z; for

all i =1,...,k, thus (24) can be calculated for any point o

the trajectory. : : : .
A . _ that a solution will attempt to follow the trajectory definbg
,lAst seen inFig. (3)'(ﬁ'd)'t;he prt(_)ba:mhtyf tt(') fm(;j a better the weighting vector in (26), since it appears to be artificia
Solution asz. approaches the optimal Solutiol Aecreases g, s \ye refer to the work by Ballestero [52] where he

more rapidly for the Chebyshev scalarizing function and.. < {0 this trajectory awell-balanced baskets due to the
Pareto-based methods when compared to scalarizing fmai?elation

employing the/;-, /;-norm. However, the results for the D Wz — - — Wiz (32)
Chebyshev scalarizing function are remarkably similarhte t - 22 Rk

Pareto-based method. In fact, for this trajectory, the twe afor a solutionz € Z. This essentially describes tlaetion of
identical, see (9) and (24). This interesting result me&as t the scalarizing function on the objective vector, whichas t
Pareto-based methods and decomposition-based methads usiinimize the largest deviation in the givép-norm. This is

so the relationVs, (z.) = Vp(z.) holds for this weighting
Vector as well. At this point we need to justify the assumptio
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most easily observed in thg,-norm used by the Chebyshev

It follows that for objective vectors following a balanced

decomposition whereby only the largest deviation is takem i trajectory,

account thus reeling the solution toward thedanced trajec-
tory. For example given an objective vecter= (1,1.1,1)
and a weighting vectéf w = (0.33,0.33,0.33), the /.-

norm will attempt to minimize the second component of,

simply becausenax{0.33-1,0.33-1.1,0.33-1} = 0.3667. By

this reasoning, when thé, -norm is used in a minimization

Vsel > VS/ZQ > > Vs,zoo =Vp. (38)
A proof for (38) is given in Appendix A-A. Meaning that,
Pgl(z € Sgl |Zc) > ]P’gz(z € ng |Zc) > ..

39
>Py (z€Se, |2:) =Pp(z €S|z.), (39)

problem, thefocus of the algorithm will be to maintain the \ynare, ¢ 7 ands,, is the region containingetter solutions

Hadamard produat oz as close as possible to the vecidr 1

according to the/,-norm version of the scalarizing function

while attempting to reduc&/. By changing the weighting vec- andP,, (z € S, ) is the probability of finding a better solution

tor, this equilibrium that the Chebyshev scalarizing function, S, given that the current best solutionds. The result in
is attempting to maintain, changes, so a different trajgcto(39) ’i:an be read directly froig. (4).

is followed, which of course converges to a different Pareto

optimal point if the optimization algorithm is successhilell

that trajectory is found by finding the objective vector that

sends the weighting vectow to the unit vector.
Therefore for any given weighting vector,

C1 Ck
w=|—,...,— ),
S S
k
SZE Ci,
=1

the balanced trajectory for thg-norm withp = (0, oo) is the

set of points given by,
i %
3ttt Ck )

(33)

=

. (34)
s = Zci, c; € Ry,
=1
and for thel,-norm by,
—e (__>
C1 Ck
k (35)
s = ZC“ ¢ € Ry,
=1
and therefore since,
k
max{WiZel,---,Wkle
Vs, (2c) = (maxtuy i Kerl)” Vi
[Tiey wi (36)
ck (Cs)*
IS:kl ‘ Hz:l Ci
and,
Cs)k
Vp(ze) = szc,i —Vr = (k S Ve,  (37)
i=1 [Ticici

meaning thatVp(z.) = Vs,_(z.) whenever the objective
vectors are allowed to follow the balanced trajectory tiat t

Chebyshev scalarizing function attempts to follow. Noticat
this results also hold for for biased objective functions.

1_2An over-line a number denotes infinite repetition of the tdidielow, e.g.
0.33 =0.33....

V. SCALARIZATION AND STABILITY OF THE EQUIVALENT
PROBLEM

The results in the previous section must be interpreted with
care since (39) does not imply in any way that by using a
scalarizing function based on a norm with< oo, all the
Pareto optimal solutions will beeachable. However it does
imply that by using a scalarizing function withsmall, there is
a better chance in finding better solutions with respect & th
norm. Nevertheless, we require Pareto optimal solutiors an
not just any solutions that are closer to the front in saipe
norm, which means that if we cannot ensure that the subprob-
lems are able to converge to Pareto optimal solutions arnd tha
all Pareto optimal solutions will be obtainable, the impoxte
of (39) would be limited to the fact that Pareto-dominance
methods aresquivalent to decomposition-based methods that
employ the Chebyshev scalarizing function. Equivalentia t
sense that for an objective vector following a well balanced
trajectory the probability to obtain a solution dominatiting
current solution is the same in both methods.

To understand the tradeoff between using a dominance-
based method versus a decomposition-based method let us
consider the effect of a scalarizing function to the objexti
space. A scalarizing function projects the entire objectiv
space onto a lir€, therefore some regions that contain incom-
parable solutions in the Pareto sense, now become solutions
that are either better or worse for the particular subprob-
lem. Therefore, a major difference between decomposition-
based and Pareto-based algorithms is that the former grovid
unambiguous information about the quality of the produced
solutions at every iteration while the latter cannot always
guarantee such information because the likelihood of gen-
erating incomparable solutions is high for problems with
many objectives [27]. However it is easy to reduce the above
argument into azugzwang'* between Pareto-based methods
and decomposition-based methods. This is accomplished by
the simple observation that treearly better regions in the
Chebyshev scalarizing functiomw (= oo in Fig. (4)) are

13In this work a segment of a ray, since the objective space usdbed.

14A chess terminology whereby the player whose turn is to pliybe at a
disadvantage, while had it not been his turn the outcomeeogéime would be
unknown. The parallel in the context of this work is that bdécomposition
and Pareto-based methods are accompanied by a disadvaméage choice
(a move) by the analyst leads to, different, but unfavorable resisit both
cases.
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Fig. 5. Stable and unstable scalarizing functions.

identical to the regions generated by Pareto dominancealbasentinuous. The reason for this is illustratedHg. (5). To see
methods Fig. (1)), while the incomparable and clearly worsehis, consider that whes,. reaches. in Fig. (5), the volume
regions in Pareto-based methods are mappetketsly worse  of the regiorS,, is still positive, meaning that according to the
regions by the Chebyshev scalarizing function. Namely, #f-norm there are still better solutions to the current soluti
we require a decomposition method that can guarantee tentinuing on the same line of reasoning, the soludpmvill
generation of Pareto optimal solutions, then, we have to usiher converge ta4 or zp since at these two locations there
the Chebyshev scalarizing function but in so doing we give up no way that the; -norm to be improved. This result follows
the favourable convergence rdfeschieved when using, for directly from (38) and the results in [51] for calculatingeth
example the weighted sum method, and vice versa. In genemlume in (40), it follows that,

there are two competing trends: lim (VPZ B Vgp) <0, (41)

« Asp — 0, the probability of finding a better solution with Ze—Ze

respect to the/,-norm increases, hence it is less likelyyhenp > max{p;}. In which case we say that the scalar-

that the algorithm stagnates due to its inability to fingzation is stable while if p < max{p;} the scalarization is
direction of search. Additionally, it becomes increasynglynstaple and we have,

more difficult to obtain all Pareto optimal solutions. .

« However, agp — oo, we can obtain more Pareto optimal Zchgie (Ve, =Vp.) > 0. (42)
solutions on the Pareto front, but the probability to fin A — .
a better solution with respect to the nF())rm defir?ed;doy%tab'“ty in terms of sclarizations is taken to mean thedioH
is also decreasing. In the limit, namely fpr= oo, we n o _
obtain the Chebyshev scalarizing function that guarantees A Subproblem of a many-objective problem isstable
that we will be able to find all Pareto optimal solutions ~ Scalarization if for a given weighting vectow - 0, it
for some weighting vectow but this scalarizing function is able to converge to a Pareto optimal solutian =
is equivalent with Pareto-dominance methods. (21, -, 2k), With z; > 0 for everyi =1,..., k.

So the question is: is there a way that a scalarizing function® i:(f)nverse_zly, a sgbrﬁ{[r_oblem tls ams;[)ab_le scalarlzat;on
can be used withp relatively small while preserving the 1 Tor a given V\I/e|g| N9 vec_(;:w >7' |fconve|rges oa
guarantees that the Chebyshev function provides? The answe Pareto optimal solutiom. with z; = 0 for at least one
is affirmative for many-objective problems whose Paretatfro 1€{L,....k}

geometry is continuous (see Section II). Specifically, zfear | nerefore if the Pareto front geometry is known and it
front can be described with the following parametrization, €a&n be expressed in terms of (40), then we can select the
¢,-norm that will have the maximum probability to produce

P+ =0, (40) better solutions while preserving the guarantee that tra fin
population will be (weakly) Pareto optimal and that all the
Pareto optimal solutions will be obtainable for some waigt
vector.

where p;, > 0 for all ¢ and C is a positive constant.
For simplicity we assume thaf; > 0. We claim that if
the weighted metrics scalarizing function is used with=

max{p1,...,pr}, then this scalarization will have the same
guarantees as the Chebyshev function, given that our dstima

of max{pi,...,px} is correct and that the objective functionis BY calculating the probability to find a better solution, we
have essentially turned the problem of extending a many-

150r more correctly the potential for favourable convergerates. objective optimization algorithm into a functional optiration

VI. DISCUSSION
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problem. Namely, the question that can now be posed is: “whabblems be justified? Given the fact that the reported tesul
is the optimal ¢,-norm for the scalarization and trajectoryare onlyslightly better in [30]-[33] our hypothesis is that the
for an objective vector?”. By optimal trajectory we meauwlifference is simply due to the ease with which a constant
the trajectory in objective space that will present the tleadirection of search in objective space can be maintained in
resistance to our optimization algorithm while simultaneouslydecomposition-based methods, while the same is very difficu
moving towards a Pareto optimal solutions as fast as pessilib achieve with Pareto-based methods. A good example of
This question although very interesting, it has either aati this behaviour is seen in MOGLES [54] when compared
answer: a straight line, or for biased problems we wouldith MOEA/D in [34]. In the aforementioned work MOGLS
need to have knowledge of the probability density functiowas outperformed by MOEA/D, and as the authors note, one
in objective space, something which in general is unavilalreason was that MOGLS generated different weighting vector
even for test problems. Therefore, we use a balanced toajecton every iteration. This amounts to an attempt to identify
since this is in accord with the scalarizing functions, ie ththe entire Pareto front, but also means that the direction
sense that this is the path that they tend to follow. Using thof search in objective space is not constant as is the case
we investigated how the probability to obtain better solusi for MOEA/D. The same problem is present in Pareto-based
varies as a function of the distance of the current bestisolut methods, however there is no clear way for this situation to
and the sought for Pareto optimal solution. We found that thbe remedied.
probability is largest the smaller thig-norm is, with respect  The results in this work show that:
to p. This information can be used to reduce the difficulty of « Pareto-dominance methods and the Chebyshev scalar-
many-objective problems, to some extent. izing function are equivalent, in the sense that neither
However, we cannot simply use the smallest norm that is method in itself, has better probability to firstiperior
numerically feasible since with decreasipghe ability of a solutions. In fact the aforementioned probabilities aee th
scalarizing function to converge to a particular point oé th same.
Pareto front is also reduced, hence, a concession must be Given some prior information about the problem, namely
made. Although, if the Pareto front is continuous and can be the geometry of the Pareto front, we can find tip&mal
described in a parametric way (see (40)), an optimal value, scalarizing function. Optimal in this context means that
p*, can be obtained for which the decrease of the probability using the above scalarizing function all Pareto optimal so-

of finding a better solution is minimal while the ability ofeth
scalarizing function of finding every Pareto optimal saluti
is retained. The optimal value g, separates the family
of scalarizing functions into two subclasses. First, valoé
p < p* produceunstable scalarizing functions ang > p*

result in stable scalarizing functions. Here stability refers to

the ability of the scalarizing function to converge to anynpo
on the Pareto front, while instability refers to the oppesit

lutions will be obtainable for some weighting vector, and
that, the probability of obtaining a better solution, with
respect to the particular scalarizing function, decreases
more dowly compared to all other scalarizing functions
(and Pareto-dominance methods) that can provide the
same guarantee of finding all Pareto optimal solutions.
Using generalized decomposition (gD) [55], [56] in
conjunction with the results in this work, the required

A way to convexify the Pareto front, and thus allowing for
an arbitrarilysmall*® ¢,-norm to be used, has been proposed in specific locations on the Pareto front, can be identified
in [53]. Essentially, what the author of the aforementioned for any ¢,-norm.
work suggested is that the objective function is raised toSbme of the mentioned benefits apply only when we are able
power until the Pareto front becomes convex. Although thig identify the Pareto front geometry prior to obtainingdtar
suggestion may seem intriguing, the effect of such a nosptimal solutions. We have identified a solution to this peob
linear operation to the objective function would be, amongnd preliminary results seem very promising.
other things, introducing bias in the objective functiordan
potentially making the problem more difficult to solve in the
case that the initial set of scalar objective functions aye-n

weighting vectors for obtaining Pareto optimal solutions

APPENDIXA
GAMMA FUNCTION DEFINITION AND NORM VOLUMES

convex. TheT function'® is defined as:
_ > x—1_ —x
VII. CONCLUSION () _/0 et (43)
Based on the results in Section Ill and Section IV wgor x € N,
have seen that under mild conditions the Chebyshev function I(z+1)=2al (44)

is identical to Pareto-dominance methods. Identical in thﬁ1

sense that, for a solution following a balanced trajectory, e psi or digamma function is [57],

t_he reduction of probab|I|ty_to fmd a better solution is iden W(z) = - ((In (D(2)))

tical for both methods. This curious fact suggests that the x (45)
decomposition-based methods are actually beiter com- 1 n Z 1 1

pared with Pareto-based methods. But if that is so, how can TG —\n xz+n '

the results observed by several researchers for manytigiec
"Multi-Objective Genetic Local Search.

16Small here refers tp. 18pronouncedyamma.
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The term~ is Euler’s constant, see [57] for its definition.

Lemma A.1. For a vector, x € R", (1]

i = . 2
Tim (], = max{la] .., 7} 2
Proof: Let, |z;| = max{|zi],...,|z.|} andz; # 0, then  [3]
(l2al")? < (a” 4+ feal?)7 < (nfeif?)> = 3
1
P P\ p [5]
1< ('x” . ) <nv
| ;[P |zi|P [6]
and sincelim n# = 1, it follows that,
p—00
1 7]
P P\ %
O Y T i L
p=oo \ |zil? B [8]
1
Hm ([z1[7 -+ |zal?)? = |ai].
p—00

[0
In the case thafz;| = 0 it follows that the vectorx = 0,

hence, by the very definition of nornj| = 0. | [10]
A. Norm Volumes [11]

We want to show that,
Vse1 > Vs,z2 > > Vs,ZOO =Vp, (46) [12]

for a balanced trajectory. The terip is omitted as it is [13]
constant and independent of the scalarizing function or tﬂg‘]
dominance method employed.

Proof: To show that (46) obtains, it would suffice to show
that, (15]
Vsep > VS[erh’ 47
for h > 0 and that,

Vs,zp > Vsex =Vp, (48)

for any p € (1,00). We have from (33), (34) and (35) that[l7]
(19) expands to,

[16]

Vs, (z) = (Zf:1 wizf)lf (I‘ (1 + %)) [18]
, (M w)” T (5+1) o
__wt (f(+))

(mw)’ T+ 20
furthermore forM = +w withw; > 0foralli =1,...,k =
we have, =1 [22]

k
g(p) =In (k)» i (F (1 + %)) 50) 23]
(Hle wi) or (% " 1) [24]
whose partial derivative with respect fois,
g'(p) = —i? In(M) — ﬁg In(k) [25]
’ / 51)

k 1 k k [26]
- <1+—) + v <1+—>
p p p p
wherey(+) is the digamma function [57]. Since (51) is strictly

negative it follows thaVS,ZP is a monotone decreasing functior{zﬂ
of p. [ ]
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