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Abstract—Decomposition-based algorithms for multi-objective
optimization problems have increased in popularity in the past
decade. Although their convergence to the Pareto optimal front
(PF) is in several instances superior to that of Pareto-based algo-
rithms, the problem of selecting a way to distribute or guidethese
solutions in a high-dimensional space has not been explored. In
this work, we introduce a novel concept which we callgeneralized
decomposition. Generalized decomposition provides a framework
with which the decision maker (DM) can guide the underlying
evolutionary algorithm toward specific regions of interest or
the entire Pareto front with the desired distribution of Pareto
optimal solutions. Additionally, it is shown that generalized
decomposition simplifies many-objective problems by unifying
the three performance objectives of multi-objective evolutionary
algorithms – convergence to the PF, evenly distributed Pareto
optimal solutions and coverage of the entire front – to only one,
that of convergence. A framework, established on generalized
decomposition, and an estimation of distribution algorithm (EDA)
based on low-order statistics, namely the cross-entropy method
(CE), is created to illustrate the benefits of the proposed concept
for many objective problems. This choice of EDA also enables
the test of the hypothesis that low-order statistics based EDAs
can have comparable performance to more elaborate EDAs.

Index Terms—Generalized decomposition, cross entropy
method, MACE, many-objective optimization, multiobjective op-
timization, decomposition methods, scalarising functions.

I. I NTRODUCTION

M ULTI-objective problems arise naturally in many disci-
plines, for example in control systems [1], finance [2]

and biology [3]. A multi-objective problem (MOP) is defined
as,

min
x

F(x) = (f1(x), f2(x), . . . , fk(x))

subject tox ∈ S,
(1)

where k is the number of objective functions andx is the
vector of decision variables defined in the domainS ⊆ R

n.
It should be clarified what we mean by the notationmin

x
is

minimization overx which is different to themin operator
which returns the minimum element of a set. We follow this
convention because it leads to a more compact description.
There is an implicit assumption that the scalar objective
functions are competing, since if this assumption is not true
then (1) degenerates to a single objective problem, or if some
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of the k objectives are competing and some are harmonious
then theeffectivenumber of objectives will be less thank
[4]. MOPs for 2 or 3 objectives have been heavily studied,
however there is the need for algorithm frameworks that
can deal with higher dimensional problems, i.e. more than
3 objectives. These problems are so-called many-objective
problems (MAPs), for brevity we refer to multi and many-
objective problems simply as MAPs.

The problem that is apparent in MAPs is that there is no
natural way of ordering the obtained solutions; this ordering
is crucial for fitness assignment. However MOEAs base their
decisionas to the direction of search on the assigned fitness of
various solutions in the population. This is a very well known
problem in MAPs and has been addressed with varying degrees
of success by a number of researchers over the past three
decades [5]–[7]. In general there are two approaches employed
to resolve this issue: Pareto-based and decomposition-based
methods. In both methodologies there is the assumption that
the relative importance of the objectives is unknown. In the
case that this information is given by the decision maker (DM)
then a decomposition method can be used to create a scalar
objective function, see Section III.

Pareto-based methods use the Pareto-dominance relations
[8], to induce partial ordering in the objective space. These
relations, were initially introduced by Edgeworth [9] and
later expanded by Pareto [10]. For example for two vectors
a,b ∈ R

n, a � b if all the elements ina are smaller or
equal (≤) to the corresponding elements inb and at least
one element ina is strictly (<) smaller than its corresponding
element inb. This partial ordering, induced by the� relation,
is denoted asa � b, and, in the context of a minimization
problem this expression is read as: the vectora dominatesb.
For a more complete treatment of Pareto-dominance relations
the reader is referred to [8]. However such relations are of
limited utility when the number of dimensions is increased
[11]. This is primarily because the number of non-dominated
solutions increases as the dimensionality of the problem in-
creases, and for dimensions greater than around ten, almost
all the solutions are non-dominated [12]. Hence this type of
partial ordering becomes of limited use in high dimensions
since, if all the generated solutions are non-dominated, the
EA has no objective measure on which to base its selection
process.

Decomposition-based methods employ a scalarizing func-
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tion to aggregate all the objectives into a single objective
function. Such methods have been used predominantly in non-
linear mathematical programming, where the main algorithm
is based on some variant of gradient search [8], [13]. However
multi-objective evolutionary algorithms (MOEAs) have also
employed decomposition with varying degrees of success, for
example [14]–[16]. Arguably, decomposition methods have not
been explored to sufficient depth for MAPs. For example,
a popular hypothesis, that is employed by several MOEAs,
is that an even distribution of weighting vectors will result
in well distributed Pareto optimal points [7]. However, with
the help of a novel concept which we callgeneralizedde-
composition, we show that this assumption is fundamentally
flawed and we provide an exact solution to this issue, subject
to some prior information. It is interesting to note that recently
several researchers have taken an interest in the selection
of weighting vectors in decomposition-based methods. For
instance [17] identify two issues with the way that set of
weighting vectors are selected in MOEA/D [7]: (i) it is not
possible to select an arbitrary number of weighting vectors,
which can be problematic for many-objectives, and, (ii) the
number of weighting vectors situated on theboundarytends
to be large. The boundary in this context is understood to
mean: weighting vectors with many components equal to zero.
Weighting vectors on the boundary produce subproblems that
completely disregard some of the objective functions whichin
general is undesirable [17]. The suggestion is to useuniform
designto select the set of weighting vectors instead of a set
of evenly distributed weighting vectors. However, as is shown
in this work, an even oruniform distribution of weighting
vectors does not produce evenly distributed Pareto optimal
solutions, hence what is proposed in [17] does not address
the more pressing issue, that of finding the distribution of
weighting vectors that would lead to a Pareto set whose points
have adesirabledistribution on the PF. This distribution can
be defined in numerous ways, and depends mostly on the
preferences of the DM. This issue is further discussed in
Section III-C.

An interesting adaptive method to select the set of weight-
ing vectors is presented in [18], [19]. The main idea is to
identify the Pareto front geometry and then distribute a setof
points on that surface in such a way so as to maximize the
hypervolume indicator [20]. Subsequently, the points found
in the previous step, are used to identify a weighting vectors
that, upon minimization of the resulting subproblems, would
result in similar points on the Pareto front. The idea seems
hopeful, however, there are three major difficulties with this
approach. First, the authors assume that the Pareto front can
be parameterized using the following,

fp1

1 + fp2

2 = 1, (2)

where,pi ∈ R++ and the fact that (2) equals to one means
that the objective functions are normalized in the range,[0, 1].
The problem is that (2) is nonconvex but the authors of [18],
[19] ignored this issue and used the Newton method to solve
for thepi parameters. Therefore, if there is noise in the Pareto
optimal points used in identifying thepi parameters or the
Pareto front geometry has,pi 6= pj , i 6= j, this method will

fail. This can be seen in [19] whereby a front described by:
f2
1 + f2 = 1 is generated and the estimate using the Newton

method is:f1.445
1 + f1.445

2 = 1. Therefore, the first part of
the suggested method can mislead the entire procedure in
[18], [19]. The second problem, is that the weighting vectors
that correspond to points on the identified Pareto front are
formulated in a similar fashion to (2), hence the issue of
nonconvexity of the problem formulation emerges again and
the resulting weighting vectors will not produce subproblems
that converge to the reference points. Lastly, the hypervolume
indicator [20], which is used to ascertain the quality of the
referencepoints on the PF, has exponential complexity in the
number of objectives [21], [22], which limits the method to
approximately4-objective problems, since the hypervolume
must be calculated several times on every iteration of the
algorithm [19].

Most tantalizingly, in a recent publication Gu et al. [23]
discuss a solution for identifying a weighting vector set using
a set of evenly distributed Pareto optimal solutions. However,
the proposed method in the above mentioned work is limited
for the weighted sum method and the Chebyshev scalarizing
function [23]. For example if weakly Pareto optimal solutions
are to be avoided, themodifiedChebyshev scalarizing function
[8, pp. 101] can be used. However there is no clear way in
identifying the required set of weighting vectors using the
proposed methodology in [23].

Evolutionary algorithms (EAs) have found numerous ap-
plications in MAPs [12]. This is because most EAs are
population-based, in the sense that at each iteration an entire
population of solutions is evaluated. This feature is quintessen-
tial to MAPs since, in a posteriori optimization, an entire
family of solutions is required to describe the trade-off surface.
This trade-off surface in objective space is also called the
Pareto front (PF). Another important reason for EA applica-
bility is that they impose almost no constraints on the problem
structure; for example, continuity and differentiabilityare not
required for EA operation. Due to these factors MAP research
is vibrant in the EA community, something that can be attested
by the number of EAs available for MAPs, e.g. [7], [12],
[24]. Specifically EAs are comprised of a number of algorithm
families, such as genetic algorithms (GAs) [25] and evolution
strategies (ES) [26], as well as differential evolution (DE) [27]
and others. Most of the aforementioned algorithm families
are inspired by some naturally occurring process, such as
DNA recombination and mutation [25]. However this presents
certain difficulties. For example, it is very hard to analysethe
behaviour of MOEAs analytically, thus their performance on
a problem cannot be guaranteed prior to application. This is
why EAs are usually evaluated experimentally using some test
problem sets [28]–[30].

More recently, a new family of algorithms has emerged,
namely estimation of distribution algorithms (EDAs). EDAs
stand in the middle ground between Monte-Carlo simulation
and EAs. In EDAs, a probabilistic model is built, based on
elite individuals, which subsequently is sampled producing a
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new population ofbetter1 individuals. From the EA point of
view, EDAs can be traced back to recombination operators
based on density estimators that use good performing individ-
uals in the population as sample [31]. A positive aspect of
EDAs is that it is straightforward to fuse prior information
into the optimization procedure, thus reducing the time to
convergence if such information is available. Also, the amount
of heuristics, compared with other EAs, is reduced easing the
task of mathematical analysis of these algorithms. This is an
important aspect which has been overlooked, due to inherent
difficulties, in most heuristics for optimization. Studiesof
this kind are usually applied to algorithms that are not used
in practice [32], [33], therefore the practical value of such
studies is limited. However EDAs are not a panacea since
they heavily depend on the quality and complexity of the
underlying probabilistic model [34]. For instance, a simple
EDA based on low-order statistics, i.e. an EDA that does not
account for variable dependencies, can be easily misled if,
in fact, such dependencies exist in the underlying problem.
To overcome such difficulties researchers proposed ever more
elaborate models [34], which of course increase the complexity
of the algorithm and in some instances the identification of
the optimal model is of comparable complexity to that of
the optimization problem necessitating the use of heuristics
[35]. Acknowledging this problem has led some researchers to
suggest hybridization of EDAs based on simple probabilistic
models with some form of clustering [36]. This course is
further supported by more recent studies [37].

For these reasons we have selected an optimization algo-
rithm, the so-called Cross Entropy method (CE), as the main
algorithm in our generalized decomposition-based framework.
The CE-method was introduced by Rubinstein [38], initiallyas
a rare event estimation technique and subsequently as an algo-
rithm for combinatorial and continuous optimization problems.
The most alluring feature of CE is that, for a certain family
of instrumental densities, the updating rules can be calculated
analytically, and thus are extremely efficient and fast. Also the
theoretical background of CE is enabling theoretical studies
of this method which can provide sound guidelines about the
applicability of this algorithm to problems.

The main contributions of this work can be summarized as
follows:

• A generalization of decomposition methods is presented,
that is applicable to a wide range of EAs and for all
scalarizing functions that are convex with respect to the
weighting vectors. Using the presented methodology, the
spread of the resulting PF can be directly controlled.
Additionally, it is shown how generalized decomposition
can be used to refine the search of a MOEA in regions
that are of particular interest to the DM, thus introducing
preference articulation for decomposition methods.

• Using generalized decomposition, the CE-method is ex-
tended to MAPs and is shown to perform very well
compared to two other EAs, namely MOEA/D, RM-
MEDA, and random search.

1Or more precisely, individuals that are more likely to be better than their
predecessors.

The remainder of this paper is structured as follows. In
Section II we elaborate on the ensuing problems in Pareto-
based methods for many objective problems. In Section III
generalized decomposition is described along with the benefits
that this method can bring to currently existing MOEAs.
Following this, in Section IV the CE-method is presented
along with its form for continuous optimization problems. A
many-objective optimization framework based on generalized
decomposition and the CE-method is presented in Section V.
The algorithms in our comparative studies in Section VII
are described in Section VI. In Section VIII we illustrate
how generalized decomposition can be used for preference
articulation. Lastly in Section IX we summarize and conclude
this work.

II. PARETO-BASED METHODSAND MANY-OBJECTIVE

PROBLEMS

The concept of Pareto-dominance is of limited use as a
fitness assignment scheme for many-objective problems. Of
course, Pareto-optimal solutions in any number of dimensions
will still be the minimal elements of the feasible set in
objective space. In [39] a very interesting geometric argument
is presented that should clarify this point. In what followswe
elaborate on the above mentioned argument.

Consider the simplest multi-objective case, namely a2-
objective problem. Every point in objective space defines4
regions, (i) a region that contains solutions that are clearly bet-
ter, (ii) a region that contains solutions that are clearly worse
and (iii, iv) two regions where the solutions are incomparable
to the point in question. Now, for3-objective problems there
are8 such regions (23), however there is only1 region which
contains clearly better solutions and1 region with clearly
worse solutions. So, there are23− 2 = 6 regions that contain
solutions incomparable to the point in question. In generalthe
following is true, fork-dimensional problems, there is always
1 region with clearly better solutions,1 region with clearly
worse solutions and2k − 2 regions containing incomparable
solutions. Now, assuming that there is no bias towards any of
these regions in the problem (objective function), the probabil-
ity that a solution is generated in any one of these regions by
a stochastic process (algorithm) is approximately proportional
to the volume of these regions divided by the volume of the
entire feasible set in objective space2. However, for increasing
number of dimensions, the likelihood that a solution will be
generated within the region of solutions that are clearly better
becomes almost insignificant the closer the point is to the
Pareto front [39]. For example, for11 dimensions there are
2 048 regions, hence for the above problem, the probability
for a solution to be generated, that dominates the current
point, is approximatelyp = 1/2 048 = 4.88−4 if the point
in question is exactly in themiddle of the feasible objective
set. To contrast this, the probability that a non-comparable
solution is generated is2 046/2 048≈ 0.99.

However, we have simplified the problem greatly, that is we
have assumed no bias and that the point is significantly away
from the Pareto front so that the volume of all the regions

2We assume that the feasible objective set is bounded.
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Fig. 1. Left: An affine Pareto front. Right: The corresponding optimal
weighting vectors. Different shades of grey aid in identifying corresponding
regions in the Pareto front and the associated weighting vectors.

f1f2

f 3

w1w2

w
3

0

0.5

1

0
1

2

0
0.5

1

0

1

2

0

0.5

1

0

1

2

Fig. 2. Left: A concave Pareto front. Right: The corresponding optimal
weighting vectors.

is approximately the same. Naturally, this is highly unlikely
to be the case, so let us consider a more realistic scenario.
Let the problem in question be bounded, so assuming we
know the boundaries, we can shift it so that its forward image
(objective space) is the nonnegative orthant. The only case
that the problem will be easier to solve, is when there is bias
towards the Pareto front, but this is not usually encountered
in practice. The contrary is a much more common situation,
namely that there is “resistance” in finding better solutions.
This combined with the fact that as a solution approaches
toward the Pareto front the region that contains clearly better
solutions is becoming very small, the probability that a worse
solution is generated is increasing towardp → 1 (no-bias
towards worse solutions) and the probability of generating
a better solution is diminishing towardp → 0. Regarding
the regions that contain incomparable solutions, their volume
is exchangedwith the region that contains clearly worse
solutions. Therefore it becomes increasingly more difficult to
find solutions in the desirable direction.

The difference with decomposition-based algorithms is that,
for each subproblem a complete ordering of the objective
space is defined, irrespective of its dimension. This in effect
reduces3 the rate of decrease of the probability that a better
solution is generated [39]. To see this consider a scenario that
the weighted sum method is used (see (3)). In this scenario
the weighting vector represents the normal of a hyperplane
that separates the feasible objective space in two regions.
One region containing better solutions and one with worse
solutions. Solutions above the hyperplane are considered to
be worse while solutions below the hyperplane are taken to

3This statement is true only for the weighted sum scalarizingfunction. For
other scalarizing functions a more elaborate formulation is required, however
there are indications that a similar statement may be established [39].
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Fig. 3. Left: A convex Pareto front. Right: The corresponding optimal
weighting vectors.

be better with respect to the particular subproblem [39]. An
intuitive way that explains why this is the case is if we consider
the effect of a scalarizing function to the objective space.A
scalarizing function projects the entire objective space onto
a line4, therefore some regions that contain incomparable
solutions in the Pareto sense, now become solutions that
are either better or worse for the particular subproblem.
Admittedly this is not an entirely desirable behaviour, however
the algorithm is provided with an unambiguous direction of
search. It should be noted that by using a decomposition-based
method, the problem does not become any easier to solve. The
major difference between decomposition-based and Pareto-
based algorithms is that the former provide unambiguous
information about the quality of the produced solutions at
every iteration while the latter cannot always guarantee such
information because the likelihood of generating incomparable
solutions in high dimensions is high [12]. However it is
easy to reduce the above argument into a zugzwang between
Pareto-based methods and decomposition-based methods. This
is accomplished by the simple observation that theclearly
better regions in the Chebyshev scalarizing function (see (5))
are identical to the regions generated by Pareto dominance
based methods, while the incomparable and clearly worse
regions in Pareto-based methods are mapped toclearly worse
regions by the Chebyshev scalarizing function. Namely, if
we require a decomposition method that can guarantee the
generation of Pareto optimal solutions, then, we have to use
the Chebyshev scalarizing function but in so doing we give
up the favourable convergence rates5 achieved when using
the weighted sum method, and vice versa. There are ways
that different scalarizing functions can be used to adaptively
resolve this issue while preserving the guarantees that the
Chebyshev function provides however this requires further
investigation.

III. G ENERALIZED DECOMPOSITION

A. Decomposition Methods

Decomposition methods, or so-called scalarizing functions,
have been employed in several MOEAs, for example [14]–
[16]. These methods transform (1) to a single-objective prob-
lem by combining the objective functions to form a single
scalar objective function. The potential of such methods for
extending MOEAs to MOPs is obvious considering the basis

4In this case a segment of a ray, since the objective space is bounded.
5Or more correctly the potential for favourable convergencerates.
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of almost every, if not all, optimization algorithms is a method
that can address only single objective problems. Therefore
decomposition methods present a clear path in extending such
algorithms to MOPs.

Arguably the simplest scalarizing function is the weighted
sum method [40]:

min
x

wTF(x)

k
∑

i=1

wi = 1, andwi ≥ 0, ∀ i ∈ {1, . . . , k},
(3)

wherew = (w1, . . . , wk). However it has been shown that for
complicated Pareto fronts, an algorithm based on (3) is unable
to discover all Pareto optimal solutions [8]. Although, with
some modifications this simple decomposition can produce
respectable results, for example see [7].

A more sophisticated decomposition is based on the
weighted metrics method [40]:

min
x

(

k
∑

i=1

wi|fi(x) − z⋆i |p
)p−1

, (4)

here as in (3), it is assumed thatwi ≥ 0 and that
∑k

i=1 wi = 1,
and p ∈ [1,∞). Also z⋆ is the ideal vector, which is equal
to the minimum values for all the objectives independently.
When p → ∞ the well known Chebyshev decomposition is
obtained:

min
x
‖w ◦ |F(x)− z⋆| ‖∞. (5)

The ◦ operator denotes the Hadamard product which is
element-wise multiplication of vectors or matrices of the same
size. This decomposition is quite interesting due the fact
that there are theoretical results stating that for any Pareto
optimal solutionx̃ there exists aconvexweighting vectorw
for which the solution of (5) is̃x [8]. Note that by, convex
weighting vector,w, we mean a vectorw ∈ convC, where

C = {ei : i = 1, . . . , k} andei is a vector whose components
are all equal to zero, except itsith component that is equal
to one. AlsoconvC is the convex hullof the setC which
is defined in (37). For further details see Appendix B. This
means that all Pareto optimal solutions can be found using
the Chebyshev decomposition. This result is very encouraging,
however it does not suggest a way to choose the weighting
vectorsw in order for a representative and evenly spread PF
to be obtained.

B. Optimal Choice of Weighting Vectors

The guarantee that all Pareto optimal solutions can be
obtained by the Chebyshev decomposition, for some convex
weighting vectorw, is well known and has been exploited on
numerous occasions in past research. For example Jaszkiewicz
[14] suggests that a uniformly sampled set of weighting
vectorsw should produce uniformly distributed Pareto optimal
solutions along the entire PF. Later Zhang et al. [7] argue that
choosing at each iteration a new random weighting vector
is too ambitious, since only an approximation of the PF is
necessary. Instead the authors suggest that a set of evenly
spaced weighting vectors should producewell distributed
Pareto optimal solutions. Their main argument was that this
should be the case since the various subproblems obtained
using different weighting vectors are a continuous function of
the weights [7]. This seems to be the case, however there
is nothing to suggest that thiscontinuousfunction is also
linear in the parametersw, which is the only case for which
their assumption would hold, up to a multiplicative constant.
Namely, an evenly distributed set of weighting vectors would
produce well distributed Pareto optimal solutions only in the
case that the functiong∞(·) defined as:

min
x

g∞(x,ws, z⋆) = ‖ws ◦ |F(x) − z⋆| ‖∞
∀ s = {1, . . . , N},
subject tox ∈ S,

(6)

is linear in the weightsw, which is obviously not the case.
The parameterN in (6) is the size of the population which is
equal to the number of subproblems to be solved andws is
the weighting vector of thesth subproblem.

Therefore, the assumption that, well distributed Pareto
optimal points will result from decomposing an MAP into
a set of scalar subproblems with the aid of evenly spaced
weighting vectorsw, is not entirely valid. An illustration of
this can be seen inFig. (1) – Fig. (3)6 where to the left
we depict a PF and to the right we calculate the weighting
vectors that would produce these Pareto optimal solutions,
assuming that the algorithm is successful in minimizing all
subproblems. This calculation was performed with what we
call generalized decomposition, which is given by the solution
of the program in (7). The insight in this formulation is that
by using (7) we cansolve the inverse problem, i.e. given a
pointF(x̃) in objective space we want to find a unique convex
weighting vectorw̃ for which the following would be true

6An affine function is a linear function plus a shift, namelyy = αx+ c,
is an affine function.
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‖w̃ ◦F(x̃)‖∞ ≤ ‖w ◦F(x̃)‖∞ for all convex vectorsw. This
means, that for all possible subproblems defined by the set of
weighting vectorsw ∈ W , the Pareto optimal solutionF(x̃) is
closestto the subproblem defined by the weighting vectorw̃.
Closest in this context means that the Pareto optimal solution,
F(x̃), minimizes the subproblem defined bỹw. Additionally,
W is the set of allk dimensional convex vectors. The ability
to obtain the weighting vector̃w for a particular point on the
Pareto front can be exploited in several ways as explained later
in this section. To obtain thẽw vectors, the following program
is to be solved for every Pareto optimal point of interest:

min
w
‖w ◦ F(x)‖∞,

subject to
k
∑

i=1

wi = 1,

andwi ≥ 0, ∀ i ∈ {1, . . . , k}.

(7)

Also to obtain the optimal weighting vectors for the weighted
metrics scalarizing function forp other than infinity, all that
is required is to change the norm in (7) to reflect that
change. If the scalar objective functions(f1(x), . . . , fk(x)),
that comprise the objective vectorF(x), are non-negative for
all x ∈ S then the problem formulated in (7) is a disciplined
convex program [41], hence it is also a convex program. So a
unique solution is guaranteed and can be obtained by solving
(7) using some interior-point method [42]. On a side note the
non-negativity constraint on the scalar objective functions can
be relaxed in the case that all scalar functions are bounded
from below and these lower bounds are known. In which case
F(x) is replaced by,

F̃(x) = (f1 − b1, . . . , fk − bk) , (8)

wherebi are the respective lower bounds for the scalar objec-
tive functionsfi. For details on the formalism of disciplined
convex programming, the interested reader is referred to [41]–
[43].

The general idea is that the generation of weighting vectors
greatly influences the convergence and spread of the resulting
Pareto front. However, this selection has been either arbitrary
[14], or based on invalid assumptions [7]. Additionally, the
method presented by MOEA/D (see Section VI-A) to gener-
ate weighting vectors is limiting in the sense that for high
dimensional problems the choice of the size of the population
is restrictive. For example, forH = 10, whereH can be
interpreted as the number of divisions per dimension for the
weighting vectors, and for11 objectives the population size
must be equal to92 378. This H setting is less than half
of that used by Zhang et al. [7] for3-objective problems.
This restriction can prove problematic in certain situations,
for example if a different choice of population size is more
natural or if there are computational and memory constraints.

C. The Effect of Weighting Vector Choice

Assuming that our definition ofwell distributed PF solutions
is a Pareto optimal set uniformly distributed along the trade-
off surface, the following experiment illustrates the benefits
of using generalized decomposition. It should be noted that

the generalized decomposition framework is fully capable
of accommodating any other definition of well distributed
Pareto optimal solutions. A commonly used measure of evenly
distributed points on the unit hypersphere is the Coulomb
potential [44], or Riesz kernel [45], defined as:

E(Z; s) =
∑

1≤i≤j≤N

‖zi − zj‖−s, s > 0

z ∈ R
k, and,Z = {zi : i ∈ {1, . . . , N}},

(9)

and fors = 2, (9) is equivalent, up to a multiplicative constant,
to the Coulomb potential energy. The setZ in the present
work is the set of objective vectorsz. Intuitively, when (9)
is minimized then the mean nearest neighbour distance of
the set of pointsz is maximized, subject to the constraints
imposed by the geometry of the PF. For some examples on the
distribution of solutions using (9) the reader is referred to [44].
We illustrate the fluctuation of energy for an increasing number
of dimensions, when the weighting vectors are chosen either
according to the suggestions in [14] or [7], seeFig. (4). It
should be noted that these schemes for weight vector selection
are predominantly used in several algorithms. The results in
Fig. (4) have been obtained in the following way:

• For 2 to 11 dimensions and for a concave PF,N number
of objective vectors are selected according to generalized
decomposition and the methods described in [14] and
[7]. The number of selected objective vectors used in
every instance can be seen in Table I. This choice is
motivated by the fact thatH is the number of subdivisions
per dimension, so the point density of objective vectors
for a constantH should represent the PF equally well,
in all dimensions. TheH parameter has been set to7
because for11 objectives the number of objective vectors,
N , increases quite rapidly for a higher value ofH .
For instance, forH = 8 and H = 9 the number of
objective vectors becomesN = 19 448 andN = 43 758
respectively. This increases the computational resources
required for the experiment significantly.

• For each problem instance, a set of weighting vectors was
generated according to the proposed methods in [14] and
[7]. For generalized decomposition the weighting vectors
are generated using a reference Pareto front with the
desired distribution. For example, in2 dimensions the first
quadrant of a unit circle is uniformly sampled and then
the optimal weighting vectors are estimated by solving
(7). Also the expected energyE(Eb) is calculated using
N × 50 independent uniformly distributed samples on
the PF. Details on the generation of a uniformly sampled
concave PF can be found in Appendix A.

• Subsequently, using the inverse relationship to (7),

TABLE I
THE NUMBER OF OBJECTIVE VECTORS,N , FOR CONSTANTH USED IN

THE EXPERIMENT SEEN INFig. (4).

Obj. # 2 3 4 5 6 7 8 9 10 11

H 7 7 7 7 7 7 7 7 7 7
N 7 28 84 210 462 924 1716 3003 5005 8008
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namely:
min
F(x)
‖F(x) ◦ w̃‖∞,

subject to
k
∑

i=1

fi = 1,

andfi ≥ 0 ,∀ i ∈ {1, . . . , k}.

(10)

the Pareto optimal solutionsF(x) that minimize every
subproblemw̃ are calculated. However, as can be seen
in (10), the inverse problem to (7) can be solved only for
an affine Pareto front. Although, in the case of a concave
PF, the affine PF obtained by (10) can be projected onto
the unit hypersphere and the obtained solutions will still
be optimal for their corresponding weighting vectors.

• Lastly, the log ratio of the energy of obtained solutions
for every method,Em, and the expected energy,E(Eb),
is calculated for all objectives in Table I.

In Fig. (4) it can be seen that the energysignatureof general-
ized decomposition asymptotically converges toE(Eb), which
is the expected energy of uniformly distributed solutions on the
convex PF. Therefore, generalized decomposition successfully
captures the underlying distribution of the target PF, so it
is only a matter of convergence of the underlying algorithm
to that front in order to obtain an approximation of that PF
with the desired distribution. Conversely, solutions obtained
using the scalarisation method employed by MOEA/D [7] or
MOGLS [14], have radically different energy levels signifying
a distribution of Pareto optimal solutions very different to that
of the uniform. Additionally, since (9) penalizes solutions that
are clustered, we can see that for3 or more dimensions the
other methods produce significantly more clustered solutions
in comparison to generalized decomposition. These resultsdo
not provide superiority information of one method over all
others. They do however furnish evidence that given prior
information about the definition of what well distributed Pareto
optimal solutions on the PF means to the DM, generalized
decomposition can identify this and produce solutions dis-
tributed accordingly. Therefore, for a MOEA that is based on
generalized decomposition, the three performance objectives
that an EA, when applied to an MAP, has to achieve, namely
– convergence, well distributed solutions along the PF and
coverage of the entire PF – degenerate to only one, that of
convergence. This, of course, is subject to prior knowledgeof
the PF shape and a definition of whatwell distributed Pareto
optimal solutions mean to the DM. In Section VIII we present
how this feature of generalized decomposition can be used for
preference articulation.

IV. CROSSENTROPY METHOD

The cross entropy method (CE) was introduced by Ru-
binstein [38], for single objective continuous and discrete
optimization problems. In its original form, CE was based
on Kullback-Leibler cross-entropy, importance sampling and
the Boltzmann distribution for continuous problems, while
Markov chains are employed in the discrete case [38]. It
is interesting to note that in this form CE is similar, in
principle, to probability collectives (PC), a method introduced
by Wolpert et al. [46] for distributed control and optimization.

In CE, the optimization problem is cast as a rare event
estimation and, subsequently, an adaptive technique, with
the aid of importance sampling, is applied to update the
parameters of an instrumental density. The derived problemis
called theassociated stochastic problem(ASP). The method
then uses the ASP to implicitly solve the original optimization
problem. Generally speaking there are two steps involved in
this iterative procedure,

• Generate a population7 based on a prior distributiong.
The distributiong is uniquely defined by a parameter
vector v. In the initial iterations of the algorithm it is
usually the uniform distribution, unless there is prior
information available.

• Update the parameter vectorv to create the posterior
distribution using an elite subset,E , of the previous
population.

Since its introduction, several studies expanding on the
initial methodology have been presented. Most notably, the
minimum cross-entropy (MCE) method [47], where a non-
parametric instrumental distribution is used. Albeit, MCEis
computationally more demanding compared with CE. Another
interesting approach,presented by Botev in [48], to extendCE
is termed generalized cross entropy (GCE). In GCE, quite
elegantly, the ASP is transformed to a convex program with
the help of theχ2 directed divergence. GCE overcomes the
specification bias by using non-parametric density estimation.
However, the computational cost of GCE is prohibitive when
used in an optimization setting.

Let us assume that the optimization problem to be mini-
mized is single objective:

min
x

f(x) (11)

wherex is the decision variable vector andf(x⋆) = γ⋆ is the
minimum. Assumingx⋆ is rare8 in S, (11) can be interpreted
in a different way, i.e. as a rare event estimation. Therefore
(11) can be restated as follows,

EuIf(X )≤γ = Pu(f(X ) ≤ γ) = ℓ, (12)

whereℓ is the probability of therare event, I is the indicator
function andEu is the expectation of a quantity distributed
according to the densityg(·;u). Also X is a random variable
associated with the decision variable vectorx. For notational
compactness we defineH(X ; γ) ≡ If(X )≤γ ,

H(X ; γ) =
{

1 f(X ) ≤ γ

0 f(X ) > γ.
(13)

Now to estimateℓ for some γ̃ that ‖γ̃ − γ⋆‖ ≤ ǫ, with ǫ
small, we have to solvePu(H(X ; γ̃)) which is non-trivial
if our initial assumption is true, i.e. that the probability
Pu(H(X ; γ̃)) is small whenX ∼ g(·;u). In the trivial case

7Note that the termspopulation and samplesare used interchangeably in
this work; unless stated otherwise.

8By rare in this context we mean that for,C = {x : ‖x⋆ − x‖2 ≤ ε, ε >
0} andε small, then the probability,P(x ∈ C) =

∫
C
u(x)dx ≪ 1, where,

u, is a density function.
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that the aforementioned assumption is not true,ℓ can be
estimated using thecrude Monte Carlo(CMC) estimator,

ℓ̂ =
1

N

N
∑

i=1

H(X ; γ). (14)

If, however, our prior assumption holds that the indicator
function If(X )≤ρ in (14) will most likely be identically0 for
all Xi, then a different approach is necessary. An alternative
to CMC is the importance sampling(IS) estimator which is
defined as follows,

ℓ̂ =
1

N

N
∑

i=1

W (Xi;u,v)H(X ; γ), (15)

where W (X ;u,v) = g(·;u)
g(·;v) is the likelihood ratio (LR).

Now the problem is to find the IS densityg(·;v) that would
minimize the variance of the estimator; theoretically the zero
variance density is:

g⋆(x) =
f(x;u)H(X ; γ)

ℓ
. (16)

However (16) involves the quantity which we are trying to
estimate (ℓ), hence its practical value is limited, although we
could, up to a multiplicative constant, attempt to minimizethe
“distance” ofg(·;v) from g⋆(·). For this purpose, a convenient
measure of “distance” is the Kullback-Leiblerdistance(KL),
defined as:

D(g, h) =
∫

g(x) ln

(

g(x)

h(x)

)

dx (17)

and upon expansion,

D(g, h) =
∫

g(x) ln g(x) dx

−
∫

g(x) lnh(x) dx.
(18)

Since the first term in (18) is constant, we only need to
minimize the second term which is equivalent to maximizing
∫

g(x) ln h(x) dx. Therefore the optimal parameter vectorv⋆,
in the minimum variance sense, is obtained by the solution of
the following program:

v⋆ = max
v

EṽH(X ; γ)W (X ;u, ṽ) ln g(X ;v), (19)

where X is independent and identically distributed (i.i.d)
according tog(·; ṽ). HoweverPu(H(X ; γ)) is still a rare
event. In CE this is overcome by substitution ofγ with γ̄ ≥ γ
equal to theρ-quantile off(X ) underv. The program in (19)
is solved for decreasing levels ofγ̄ until γ̄ ≤ γ. So (19), in
the CE method, becomes:

vt = max
v

Evt−1
H(X ; γt−1)W (X ;u,vt−1) ln g(X ;v),

(20)
whose stochastic counterpart is,

vt = max
v

1

N

N
∑

i=1

H(Xi; γt−1)W (Xi;u,vt−1) ln g(Xi;v),

(21)
whereX1, . . . ,XN is drawn fromg(·;vt−1). Typically (21)
is convex and if the instrumental densitiesg(·; ·) are chosen

from thenatural exponential family(NEF) [49], then, (21) can
be solved analytically [47] by solving the following systemof
equations:

max
v

1

N

N
∑

i=1

H(Xi)W (Xi;u,vt−1)∇v ln g(Xi;v) = 0. (22)

This is a major strength in CE,that is, the fact that the updating
rules for the instrumental densities can be obtained analytically
translates to a much lower computational overhead. Briefly,
some distributions in the NEF family are the Gaussian, Poisson
and the gamma distributions [50].

The procedure described by (20)-(22) will generate a
monotonically nonincreasing sequence ofγ values: {γt :
t = 1, 2, . . . }, with the corresponding instrumental densities
converging to the optimal parameterv for which the event
Pu(H(X ; γ̃)) is increasingly easier to estimate, i.e. becomes
more likely under the densityg(·;v).

A. CE Method for Continuous Optimization

The procedure described so far is directly applicable to
optimization problems, the only difference being that the level
γ is either thea priori minimum of the objective functionf(·)
or, if this information is not available, it is allowed to decrease
ad infinitum. In practice, for bounded problems, the sequence
{γt | t = 1, 2, . . .} converges to a value close to the minimum,
hence the stopping criterion can be set to|γt − γt−1| ≤ δ for
some smallδ.

A commonly used candidate for the instrumental densities
is the normal distribution,

g(x;µ, σ) =
1√
2πσ

exp

(

− (x− µ)2

2σ2

)

, (23)

and its truncated equivalent for problems with boundary con-
straints. We should mention that the updating rules derived
using (22) are identical for the regular and truncated Gaussian
[48].

It is suggested in [47] that for the optimization case, IS is not
very useful since the initial parameteru in the densityg(·;u) is
actually arbitrary, under the assumption that we do not possess
any information about the location of the optimum. However,
such information may be available, hence maintaining the IS
estimator allows prior information to be exploited. This can
be achieved by setting the parametersu according to the
information available, which should, in turn, help steer the
search towards optimal solutions faster. On the downside, if
the prior information is not correct, this biasing can lead the
optimization procedure astray.

The CE method for single objective problems can be sum-
marized as follows:

Step 1 Initialize v0 to the uniform distribution and sett =
1.

Step 2 Sample the distributiong(·;vt−1) to generate a
random sample of sizeN and evaluate the objective
function f(·).

Step 3 Select the topρN performing samples and use them
to estimatevt. Solving (22) we obtain the updating



GIAGKIOZIS et al.: GENERALIZED DECOMPOSITION AND CROSS ENTROPY METHODS FOR MANY-OBJECTIVE OPTIMIZATION 9

rules for the normal distributionvt = {µt, σt}:

µ̂t =

∑ρN
i=1 W (Xi;u,vt−1)Xi
∑ρN

i=1 W (Xi;u,vt−1)
, (24)

σ̂t =

(

∑ρN
i=1 W (Xi;u,vt−1)(Xi − µ̂)2
∑ρN

i=1 W (Xi;u,vt−1)

)
1

2

,

(25)
whereρ is some small value, e.g.0.1. The updating
rules in (24) and (25) could lead to premature
convergence [47], so asmoothedversion is usually
employed:

µt = αµ̂t + (1− α)µt−1

σt = βtσ̂t + (1− βt)σt−1,
(26)

whereα andβt are smoothing parameters withα ∈
(0.7, 1) andβt is calculated as:

βt = β − β

(

1− 1

t

)q

,

β ∈ (0.7, 1),

q ∈ (5, 9).

(27)

Step 4 If the stopping condition is not met go toStep 2,
otherwise output the currentµt as the estimate of
the location of the optimum.

V. GENERALIZED DECOMPOSITION-BASED MANY

OBJECTIVE CROSS-ENTROPY

The proposed algorithm is based on the CE method, see
Section IV, and the newly introduced concept of general-
ized decomposition, as described in Section III. However
we introduce two versions: many-objective CE (MACE) and
MACE based on generalized decomposition (MACE-gD). The
difference between the versions is that the weighting vectorsw
in MACE are generated according to the suggestions in [7] to
enable a clearer comparison with the MOEA/D framework and
evaluate the benefits and potential shortcomings of generalized
decomposition. Therefore MACE employs a set of evenly
spaced weighting vectors to further test validity of our hy-
pothesis that this scheme does not result in anevendistribution
of Pareto optimal solutions on the PF, see Section III-C. We
show how such issues can be overcome using MACE-gD
and present a method that can prove invaluable when the
optimization problem has many objectives. The general idea
is that we can generate a set of weighting vectors near regions
that are of interest, thus avoiding a waste of resources in
search of Pareto optimal solutions away from such regions.
The main algorithm in MACE and MACE-gD is the CE
method for continuous optimization problems, as described
in Section IV-A. An overview of MACE-gD can be seen in
Algorithm 1. In line 1, the optimal weighting vectors are
obtained according to prior information about the shape of
the PF and the desired distribution of Pareto optimal solutions.
This procedure is comprised of two steps, namely:

Step 1 Generate a set of solutions according to the PF
shape of the given problem. For example, for a
concave PF this reference front could be the one

Algorithm 1 MACE-gD

1: {w1, . . . ,wN} ← gD(PF Shape)
2: M(1) ← minx+ U(0, 1)(maxx−minx)
3: S(1) ← C(maxx−minx)
4: X(1) ← N (M,S)
5: E← F(X(1))
6: z⋆ ← min{Ef1 , . . . ,Efk}
7: t← 1
8: repeat
9: for i← 1, N do

10: V(t) ← g∞(X(t),wi, z
⋆)

11: Q← Sort(V(t))
12: E ← Q1,...,ρN

13: M(t)
i ← αµ̂t + (1− α)µ̂t−1

14: S(t)i ← βtσ̂t + (1− βt)σ̂t−1

15: x̂
(t)
i ← N (M(t)

i ,S(t)i )

16: V̂
(t)
i ← gtce(x̂

(t)
i ,wi, z

⋆)

17: if V̂
(t)
i ≤ V

(t)
i then

18: V
(t+1)
i ← V̂

(t)
i

19: x
(t+1)
i ← x̂

(t)
i

20: z⋆ ← min
(

z⋆,F
(

x
(t)
i

))

21: end if
22: end for
23: t← t+ 1
24: until t ≤MaxGenerations
25: x←M(t)

depicted inFig. (2). The generation of this target
front is mostly a matter of preference. To insulate
the DM from different objective function scales, it
is advisable that the objective functions are normal-
ized in the range[0, 1]. This can be achieved if the
ideal vectorz⋆ is known a priori or an adaptive
method is used during the optimization, such as in
[7]. Note that this method can be used only for
bounded objective functions, since generalized de-
composition in its current formulation, only applies
to such functions.

Step 2 Solve (7) for every point in the reference PF gen-
erated inStep 1 to obtain the optimal weighting
vectorsw.

The reference Pareto front used in this work for the WFG4–9
test problems in Section VII-C is a uniformly distributed set
on a concave front using the method described in Appendix A.
For the test problem WFG3, since the front is a line in any
number of dimensions, an evenly spaced set of points were
selected along this line and lastly for the WFG2 problem
the optimal weighting vectors are evaluated using a random
sample from the true PF.

Next, in lines2–4, the starting populationX(1) is initialized
by sampling the almost uniform distributionN (M,S). In this
work, for notational compactness,N (M,S) has the following
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meaning:






N (µ1,1, σ1,1) · · · N (µ1,n, σ1,n)
...

. . .
...

N (µN,1, σN,1) · · · N (µN,n, σN,n)






, (28)

where n is the number of decision variables andN the
size of the population, which is the same as the number of
subproblems andN is the truncated normal distribution in the
domain of definition of the corresponding decision variables.
The matrix,M(t) contains the current estimate of the decision
variables andS(t) contains the standard deviation parameters.
TheM(t) matrix is initialized at random within the decision
variables’ domain of definition or using some alternative
method, for example Latin hypercube sampling. TheS(t)
matrix is initialized to some sufficiently large value so that
the truncated normal distributions tend to be approximately
equal to the uniform distribution at the first iteration, given
that no prior information is available. For this reason we use
C = 10, see line3.

Next, the objective function,F(·) is evaluated for the initial
populationX(1) and the ideal vectorz⋆ is estimated using the
minimum of the individual objectives inE.

The main loop of the MACE-gD algorithm is in lines8–
24. At each iteration and for every subproblem,wi, the entire
population is evaluated using the Chebyshev decomposition.
The population performance,V(t) is sorted in an ascending
order9 and the solutions in theρ-percentile,E , are used to
update the instrumental density parameters of theith subprob-
lem,M(t)

i and S(t)i . Next, a new solution,̂x(t)
i , is sampled

from the parametric density using the updated parameters. This
new solution is evaluated and if its performance is superior
to the previous solution it is retained, see lines17–20. The
algorithm terminates once the maximum function evaluations
are reached. Finally, the PF approximation set is the matrix
M(t).

MACE and MACE-gD have similarities with MOEA/D
[7] and derivatives [51]–[53]. However there are fundamental
differences which have been motivated by the results in
Section III-C. Namely, MACE and MACE-gD do not have a
mating restriction, and there is no neighbourhood in weighting
vector space. In fact only the top performing individuals for
every subproblem are used, irrespective of theirorigin (see
Algorithm 1), namely the distribution that generated them.
In contrast to that, MOEA/D derivatives insist on using a
neighbourhood based on the distance of the weighting vectors.
This choice seems reasonable when the relative location of the
Pareto optimal solutions resulting from the set of subproblems
is unknown. However, even if the Pareto front geometry is
unknown a priori, this information can be extracted using
generalized decomposition. For example, assuming an affine
Pareto front geometry the neighbourhood can be calculated in
objective space. The weighting vectors can be calculated using
(7) and the neighbourhood structure can be as calculated for
the above Pareto front. Here the assumption of an affine Pareto
front is only limiting if the real Pareto front is discontinuous.
However, this is also problematic for MOEA/D as defined

9For maximization problems,V(t) is sorted in descending order.

in [7]. In any other case, the relative distance of the Pareto
optimal solutions will be correct.

VI. B ENCHMARK ALGORITHMS

The goal of the comparative studies in this work is not to
proclaim abestalgorithm among variants of MACE and the
aforementioned frameworks. Our main aim is to explore the
potential of generalized decomposition versus what is consid-
ered to be standard practice in decomposition-based MOEAs.
The additional benefit is that the generalized decomposition
framework seems very suitable for the extension of EDAs
to MAPs, something that enables us to evaluate whether the
performance of the CE method is comparable with established
MOEAs. Therefore, our selection of MOEA/D as a benchmark
algorithm is only natural since this algorithm framework has
become a baseline for comparison of decomposition-based
MOEAs. Also the good performance of RM-MEDA against
other EDAs makes it a suitable candidate to evaluate the main
EDA in our MACE and MACE-gD algorithms.

A. Multi-Objective Evolutionary Algorithm based on Decom-
position

As mentioned in Section I, decomposition methods were
usually applied in conjunction with gradient search methods,
although there are examples of EAs based on this type of
fitness assignment. One notable framework based on decom-
position, introduced by Zhang et al. [7], is the MOEA/D algo-
rithm. The original version of MOEA/D was a decomposition-
based algorithm consisting of mating restriction and an archive
preserving the best-so-far solution for every subproblem.The
use of scalarizing functions to extend an EA to MAPs has the
following benefits:

• Diversity preserving operators andelite preserving strate-
gies, become, to an extent, redundant if the choice of
weighting vectors and decomposition method is suitable
for the problem in question.

• The computational cost tends to be lower compared to
Pareto-based algorithms [7].

MOEA/D depends on one of several available decomposition
techniques, - weighted sum, Chebyshev [8] and a penalty-
based variant of the normal boundary intersection [7], [54]
decompositions - with each having its own strengths and
weaknesses. The minimization problem from Section 1, when
using the Chebyshev decomposition is restated according to
(6). In MOEA/D the vectorswi are N evenly distributed
weighting vectors. A MAP is decomposed toN subproblems
usingwi. Each individual in the population is assigned to a
single subproblem, and soN is also the size of the population.
For example, for a2-objective problem, the weighting vectors
are defined as:

wi
1 =

i

H
, wi

2 = 1− wi
1, i ∈ {0, . . . , H}, (29)

where theH parameter controls the number of subdivisions
per dimension andwi = {wi

1, w
i
2}. The argument is that

sinceg∞ is a continuous function ofw, N evenly distributed
weighting vectors should result inN evenly distributed Pareto
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optimal solutions, assuming that the objectives are normalized
[7]. However this argument is only valid in the case that
a boundary intersection (BI) approach is used, such as the
normal boundary intersection method (NBI) [54]. In NBI the
following program is to be solved:

min
x

gnbi(x;w
i, z⋆) = d

subject toz⋆ − F(x) = d ·wi,
(30)

where Zhang et al. [7] suggest a penalty function approach to
handle the equality constraint. Thus (30) is transformed to:

min
x

gnbi(x;w
i, z⋆) = d1 + pd2

d1 =
‖(z⋆ − F(x))Twi‖2

‖wi‖2
,

d2 = ‖F(x)− (z⋆ − d1w
i)‖2,

(31)

where p is a tunable parameter which controls the relative
importance of convergence,d1, and position,d2, in the penalty
function. It was shown that MOEA/D using (31) has the poten-
tial to produce truly evenly distributed Pareto optimal solutions
[7]. Unfortunately (31) has three significant drawbacks. First,
the normal-boundary intersection method does not guarantee
that the solutions to the subproblems will be Pareto optimal
[54]. Second, NBI has to be solved using a penalty method
which introduces one more parameter that has to be tuned for
every test problem separately, and lastly it is unclear how this
decomposition method can be scaled for MAPs. A description
of the MOEA/D algorithm follows:

Step 1 GenerateN equally spacedwi vectors according
to (29). Create a matrixB containing the nearest
neighbours of eachwi and initialize the ideal
weighting vectorz⋆ to a large value.

Step 2 Evaluate the decision variable vectorsX using the
objective function.

Step 3 Update the ideal vectorz⋆ = min(z⋆,F(x)).
Step 4 For each individuali ∈ {1, . . . , N} execute the

following procedure:
Step 4.1 Apply genetic operators, crossover and mutation,

using individuals in the neighbourhood of each so-
lution. The choice of individuals is random among
neighbouring solutions.

Step 4.2 Evaluate the newly generated solution using (6).
Step 4.3 Update the ideal vectorz⋆.
Step 4.4 If the new solution is superior to the previous

in the archive, then swap the old solution to the
ith subproblem with the new solution. Otherwise,
retain the old solution.

Step 4.5 Check if the new solution is better for any of the
neighbouring subproblems and substitute if that is
the case.

Step 5 If the termination criteria are met, output the non-
dominated solutions. Otherwise, proceed toStep 4.

In this work the MATLAB code provided by the authors of
MOEA/D is used [7].

B. Regularity Model-Based Estimation of Distribution Algo-
rithm

The second algorithm that we employ in our comparative
studies, see Section VII, is the regularity model-based multi-
objective estimation of distribution algorithm (RM-MEDA)
proposed by Zhang et al. [55]. The main idea in RM-MEDA
is that, for continuous MAPs, the Pareto set can be viewed as
a (k− 1)-dimensional piecewise continuous manifold. So, for
two dimensions, the PF can be described with line segments,
for three dimensions with planes etc.

Zhang et al. [55] used inductively the Karush-Kuhn-Tucker
condition [8] for continuous multi-objective problems, assert-
ing that the PF of a problem withk objectives is defined by a
(k − 1) dimensional manifold in the decision variable space.
This assertion allowed Zhang et al. [55] to approximate this
(k − 1) dimensional manifold withK piecewise continuous
manifolds. To accomplish this task, a(k − 1) dimensional
local principal component analysis algorithm was used to
partition the population intoK disjoint clusters and then the
centroid and its variance were estimated. The problem with
this approach is that there is no objective measure to choose
the number of clustersK for an unknown problem, hence
the practitioner must heavily depend on thesmoothnessof the
objective function in the decision space. In contrast, if itis
known a priori that the MAP fulfils the smoothness criteria
then RM-MEDA will be able to exploit that structure and thus
converge much faster.

In [55] RM-MEDA was evaluated against PCX-NSGA-II
[56], GDE3 [57] and MIDEA [58], on average, outperform-
ing the aforementioned algorithms on variants of the ZDT10

test problems [30]. However the performance of RM-MEDA
comes at the expense of increased computational cost due
to the necessity of computing a local principal component
analysis at each iteration. The implementation of RM-MEDA
that is employed in this work is the publicly available version
in MATLAB code provided by the authors [55].

C. Random Search

Random search is regarded as the absolute baseline al-
gorithm in MOEAs. In random search, absolutely no prior
assumptions are made about the problem and, during the
optimization, the search is not affected by thefitness of
the previous samples. Random search with memory, that is
an algorithm that samples uniformly the decision variable
space but does not revisit solutions previously sampled, enjoys
asymptotical convergence [59]. However, since there is no
mechanism tosteer the search, the time to convergence is
proportional to the problem complexity. Conversely, due to
its simplicity and inability tolearn, it cannot be misled by
the problem. The random search algorithm employed in the
current work is in its most basic form. The objective function
is evaluated for25 000 uniformly sampled decision variable
combinations, then the non-dominated solutions are extracted
and a randomly selected subset is chosen for evaluation using
the methodology described in Section VII.

10Zitzler, Deb, Thiele (ZDT)
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TABLE II
VALUE OF THEH PARAMETER IN MOEA/D AND MACE AND THE

CORRESPONDING POPULATION SIZEN . THE POPULATION SIZE IS THE
SAME FOR ALL ALGORITHMS. |P⋆| IS THE SIZE OF THEPARETO FRONT

REFERENCE SET, SOLUTIONS IN THIS SET ARE UNIFORMLY DISTRIBUTED

ALONG THE PF.

Obj. # 2 3 4 5 6 7 8 9 10 11

H 101 20 10 7 6 5 5 5 5 5
N 101 210 220 210 252 210 330 495 715 1001

|P⋆| 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

TABLE III
SETTINGS FORMACE AND MACE-gD.

ρ α β q

0.1 0.9 0.9 7

VII. C OMPARATIVE STUDIES

A. Performance Indicator

The main performance metric for the comparative studies
in this work is the generational distance (GD) indicator. This
metric has been chosen since we are mainly interested in the
convergence properties of the studied algorithms.

• Generational Distance (GD), introduced in [60], is de-
fined thus:

D(A,P⋆) =

∑

s∈A

min{‖P⋆
1 − s‖2, . . . , ‖P⋆

N − s‖2}

|A|
(32)

where |P⋆| is the cardinality of the setP⋆. The GD
metric measures the distance of the elements in the set
A from the nearest point of the reference PF.A is an
approximation of the true Pareto front andP⋆ is the
reference Pareto optimal set.

B. Experiment Description

In Section III, it was explained that the three objectives
that MOEAs have to achieve – namely convergence, diversity
and PF coverage – can be reduced to only one, convergence,
in the generalized decomposition framework. Therefore, the
most important quantity of interest becomes some measure of
convergence to the PF. For this reason, the GD metric was
used, see (32).

The problem set chosen to perform the experiments is the
WFG toolkit [28], specifically problems WFG2–WFG9, since
they contain several challenging problems, are scalable and
the PFs are knowna priori. For all test instances we used
32 decision variables and thek parameter is calculated as:
k = 4+ 2 · (M − 1), the only exception being the2-objective
instances of the test problems where it is set to4; M is the
number of objectives. The neighbourhood sizeT in MOEA/D
was selected to be10% of the population sizeN , since,
according to [12], this appears to be a setting producing good
results for MAPs. The population size was the same for all
the algorithms, see Table II. The parameters of the CE method
are the same in MACE and MACE-gD and have been selected
according to the suggestions in [47], see Table III. Lastly,
the reference Pareto fronts used in MACE-gD to produce the

optimal weighting vectors for the test instances WFG2 and
WFG3 were generated by a random sample of the true Pareto
set and, for the problems WFG4–WFG9, the method described
in Appendix A was employed for generating a concave Pareto
optimal set.

In practice such information is usually not available before
the application of the optimization algorithm. This problem
can be addressed using an identification method to determine
the PF shape during the optimization; the methodology to be
adopted will be investigated in future research.

Finally, as is probably evident from the selection of the
reference PF for the generation of the weighting vectors in
MACE-gD, we assume that the DM is interested in a PF that
is uniformly distributed on that front. This is due to several
considerations. First, if we follow the method usually applied
in MOEA benchmarking for generating the reference PF of
concave geometry, say for3 dimensions, i.e. generate a set
of evenly distributed weighting vectors and then project onto
the first octant of the unit sphere, then for higher dimensions,
due to the curvature of the hypersphere this will induce a large
bias in the reference set. Namely, the density of Pareto optimal
solutions will be higher near the edges of the PF compared to
the density near the centre. Conversely, to produce a truly even
distribution of Pareto optimal solutions in high dimensions is
still an unresolved issue for an arbitrary number of points,
even for PFs that have simple geometry, see [44], [45].

C. Experiment Results

A summary of the GD-metric performance of the algorithms
is presented in Tables IV–XI. The values in bold indicate
the best performing algorithm for the particular instance of
a test problem. We used the Kruskal-Wallis test at the95%
confidence level to verify whether the mean performance of
the studied algorithms is different. For each algorithm and
for each problem instance we used the Wilcoxon two-sided
rank sum test forα = 0.05 (95% confidence level). Every
time an algorithm outperforms another in the test group, for
a test instance, a1 was added to its rank. Since we have5
algorithms, the maximum rank for an algorithm is4. A rank
of 4 means that the algorithm in question performs better than
all other algorithms for that particular test instance. In the
case that no algorithm is clearly better we have a tie thus both
algorithms are displayed in bold in Table IV–Table XI. An
algorithm with a rank of4 is denoted with a(1), one with
a rank of 3 with a (2) and so forth, with(1) denoting the
best performing algorithm and(5) the worst performer. These
values are recorded to the right of the GD-metric performance
in Tables IV–XI.

Table IV presents the results of the algorithms for2–11
objective instances of the WFG2 test problem. WFG2 has
the following features – it is non-separable, unimodal with
respect to all objectives except the last which is multi-modal,
there is no bias in the parameters and the PF geometry is
piecewise convex. In this problem, MACE-gD performance is
significantly better than the other algorithms for MOPs having
more than4 objectives. We attribute this performance to the
fact that, for PFs that have a convex geometry, the optimal
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Fig. 5. MACE-gD, MACE, MOEA/D and RM-MEDA Pareto front for3-objective instances of the WFG2–WFG5 test problems.

TABLE IV
GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMS ON THE

WFG2PROBLEM FOR2–11OBJECTIVES.

WFG2

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0816 (3) 0.1027 (4) 0.0656 (2) 0.0279(1) 0.1687 (5)
3 0.0353(1) 0.0386 (2) 0.0444 (3) 0.0794 (4) 0.1929 (5)
4 0.0712 (2) 0.0485(1) 0.1283 (4) 0.1274 (3) 0.1998 (5)
5 0.0718 (2) 0.0471(1) 0.1717 (4) 0.1674 (3) 0.2125 (5)
6 0.0573 (2) 0.0423(1) 0.1489 (3) 0.1979 (4) 0.2228 (5)
7 0.0650 (2) 0.0487(1) 0.1081 (3) 0.2152 (4) 0.2335 (5)
8 0.0525 (2) 0.0379(1) 0.0806 (3) 0.2434 (4) 0.2649 (5)
9 0.0471 (2) 0.0286(1) 0.0791 (3) 0.2563 (4) 0.2638 (5)
10 0.0495 (2) 0.0168(1) 0.0658 (3) 0.2694 (4) 0.2785 (5)
11 0.0453 (2) 0.0108(1) 0.0814 (3) 0.2793 (4) 0.2867 (5)

TABLE V
GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMS ON THE

WFG3PROBLEM FOR2–11OBJECTIVES.

WFG3

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0133(1) 0.0194 (3) 0.0190 (3) 0.0215 (4) 0.2108 (5)
3 0.0699 (2) 0.0231(1) 0.1553 (3) 0.2419 (4) 0.2899 (5)
4 0.0841 (2) 0.0338(1) 0.2422 (3) 0.3474 (5) 0.3204 (4)
5 0.1023 (2) 0.0230(1) 0.3137 (3) 0.3885 (5) 0.3311 (4)
6 0.1146 (2) 0.0209(1) 0.2701 (3) 0.4091 (5) 0.3312 (4)
7 0.1033 (2) 0.0340(1) 0.2122 (3) 0.4346 (5) 0.3321 (4)
8 0.0921 (2) 0.0290(1) 0.1912 (3) 0.4356 (5) 0.3350 (4)
9 0.0848 (2) 0.0237(1) 0.1728 (3) 0.4342 (5) 0.3364 (4)
10 0.0760 (2) 0.0135(1) 0.1512 (3) 0.4314 (5) 0.3371 (4)
11 0.0702 (2) 0.0117(1) 0.1317 (3) 0.4283 (5) 0.3379 (4)
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Fig. 6. MACE-gD, MACE, MOEA/D and RM-MEDA Pareto front for 3 objective instances of the WFG6–WFG9 test problems.

TABLE VI
GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMS ON THE

WFG4PROBLEM FOR2–11OBJECTIVES.

WFG4

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0345 (3) 0.0344 (3) 0.0211(1) 0.0392 (4) 0.1161 (5)
3 0.0617 (3) 0.0522 (2) 0.0316(1) 0.0939 (4) 0.1302 (5)
4 0.0749 (3) 0.0740 (2) 0.0655(1) 0.1336 (4) 0.1358 (5)
5 0.1438 (3) 0.1048(1) 0.1653 (5) 0.1464 (4) 0.1407 (2)
6 0.1358(1) 0.1414 (2) 0.1959 (5) 0.1668 (4) 0.1549 (3)
7 0.2349 (4) 0.1997 (3) 0.2739 (5) 0.1898 (2) 0.1770(1)
8 0.3176 (4) 0.2351 (3) 0.3371 (5) 0.2172 (2) 0.2025(1)
9 0.3995 (5) 0.3028 (3) 0.3958 (4) 0.2495(1) 0.2568 (2)
10 0.3791 (4) 0.3265 (3) 0.4001 (5) 0.2718 (2) 0.2577(1)
11 0.4839 (5) 0.3875 (3) 0.4644 (4) 0.3162(1) 0.3540 (2)

TABLE VII
GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMS ON THE

WFG5PROBLEM FOR2–11OBJECTIVES.

WFG5

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0393 (2) 0.0523 (4) 0.0276(1) 0.0433 (3) 0.1947 (5)
3 0.1052 (3) 0.0962 (2) 0.0321(1) 0.2168 (5) 0.2114 (4)
4 0.1533 (2) 0.1845 (3) 0.0655(1) 0.2652 (5) 0.2268 (4)
5 0.1537(2) 0.2221 (3) 0.1540(2) 0.2604 (5) 0.2307 (4)
6 0.1579 (2) 0.2313 (3) 0.1558(1) 0.2556 (5) 0.2346 (4)
7 0.1872(1) 0.2286 (2) 0.2455 (4) 0.2588 (5) 0.2372 (3)
8 0.2620 (3) 0.2340(1) 0.3262 (5) 0.2646 (4) 0.2441 (2)
9 0.3357 (4) 0.2685 (2) 0.4007 (5) 0.2748 (3) 0.2598(1)
10 0.3497 (4) 0.2789 (2) 0.3813 (5) 0.2911 (3) 0.2706(1)
11 0.4479 (4) 0.3203 (3) 0.4792 (5) 0.3096 (2) 0.3036(1)
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TABLE VIII
GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMS ON THE

WFG6PROBLEM FOR2–11OBJECTIVES.

WFG6

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0162(2) 0.0226 (3) 0.0293 (4) 0.0164(2) 0.2465 (5)
3 0.0489 (2) 0.0499 (3) 0.0318(1) 0.1417 (4) 0.2666 (5)
4 0.0782 (2) 0.0836 (3) 0.0624(1) 0.2441 (4) 0.2865 (5)
5 0.1459 (2) 0.1182(1) 0.1644 (3) 0.2532 (4) 0.2940 (5)
6 0.1960 (3) 0.1491(1) 0.1962 (3) 0.2574 (4) 0.2936 (5)
7 0.2531 (3) 0.1897(1) 0.2506 (2) 0.2608 (4) 0.2881 (5)
8 0.3094 (4) 0.2215(1) 0.3234 (5) 0.2759 (2) 0.2885 (3)
9 0.3890 (5) 0.2716(1) 0.3520 (4) 0.2888 (2) 0.2951 (3)
10 0.3762 (5) 0.3004(1) 0.3758 (5) 0.3078 (3) 0.3032 (2)
11 0.4632 (5) 0.3577 (3) 0.4233 (4) 0.3257 (2) 0.3201(1)

TABLE IX
GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMS ON THE

WFG7PROBLEM FOR2–11OBJECTIVES.

WFG7

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0075 (2) 0.0144 (3) 0.0040(1) 0.0158 (4) 0.1707 (5)
3 0.0363 (3) 0.0309 (2) 0.0261(1) 0.1159 (4) 0.1889 (5)
4 0.0819 (3) 0.0740 (2) 0.0732(1) 0.1742 (4) 0.1998 (5)
5 0.1374 (2) 0.1086(1) 0.1760 (3) 0.1915 (4) 0.2013 (5)
6 0.1541 (2) 0.1434(1) 0.2150 (5) 0.2050 (4) 0.2046 (4)
7 0.2587 (4) 0.1889(1) 0.2839 (5) 0.2191 (3) 0.2142 (2)
8 0.3269 (4) 0.2282 (2) 0.3704 (5) 0.2432 (3) 0.2270(1)
9 0.3954 (4) 0.2838 (3) 0.4359 (5) 0.2632 (2) 0.2508(1)
10 0.3803 (4) 0.3092 (3) 0.4052 (5) 0.2844 (2) 0.2633(1)
11 0.4812 (4) 0.3704 (3) 0.4875 (5) 0.3115(1) 0.3153 (2)

weighting vector set, seeFig. (3), is clustered near the centre
region. So, using an even distribution of weighting vectors,
the effective number of Pareto optimal solutions for which
these vectors are optimal is reduced. This is especially true in
higher dimensions, since the features seen inFig. (3) are only
accentuated. However, the MACE algorithm that utilized the
same weighting vector selection as MOEA/D, outperforms the
latter algorithm for all instances except the2-objective case.
This, in combination with the fact that MOEA/D consistently
outperforms RM-MEDA, except for the2-objective instance,
leads to the hypothesis that Pareto-based algorithms potentially
are not very well suited for problems with convex PF geome-
tries in high dimensions. This hypothesis is further supported
by the fact that RM-MEDA uses a variant of non-dominated
sorting [55]. So, for high dimensions, the closer the estimated
PF is to the true PF, the fewer are the solutions that are part of
the first and second non-dominated fronts, which means that
the availability ofgoodsolutions to the model creation process
is reduced in RM-MEDA. Therefore, the closer the algorithm
is to the actual PF, the more difficult it becomes for further
progress to be achieved.

The results for the WFG3 instances are given in Table V.
The WFG3 problem is non-separable, unimodal with no bias
in the parameters and its PF geometry is affine degenerate, i.e.
the front is always a line for any number of dimensions. In
this problem as well, the MACE-gD algorithm has the supe-
rior performance, except for the2-objective instance, where
the performance of all algorithms is comparable. However
MACE has statistically better performance for2 objectives.
We believe that MACE-gD outperforms other approaches on

the WFG3 problems mainly due to the PF geometry. Since
the PF geometry is affine, if we have the optimal weighting
vectors then the algorithm directly attempts to converge tothis
location, while other algorithms are exploring the search space
under the assumption that the front is some hyper-surface
which is to be populated with solutions. This focus illustrates
the potential advantages of generalized decomposition. Also
encouraging is the fact that MACE performs very well, which
means that, if the information about the geometry of the PF
is not very accurate, the algorithm can still achieve acceptable
results. Additionally the results of RM-MEDA on WFG3
further support our previous hypothesis about its selection
scheme, notably its performance is much degraded compared
to WFG2. Lastly, a curiosity is that for increasing number of
dimensions, MACE-gD is not only better compared with other
algorithms but the GD metric becomes smaller, something
that is counter intuitive. However, the explanation is rather
simple, namely, since WFG3 is a line in any number of
dimensions, the necessity of employing a larger population
is diminished. Since the population size is increased, and we
know exactly the optimal weighting vectors, the density of
solutions along the WFG3 PF is effectively increased, hence
the decrease in the mean of the GD metric. In Table VI
the results for the WFG4 problem are presented. WFG4 is
a separable problem, multi-modal with no bias and its PF
geometry is concave. In this problem the major influence on
algorithm performance seems to be the fact that this problem
is multi-modal. From the MACE and MACE-gD perspective,
the fact that the instrumental densities used are Gaussian
appears to have a significant effect. Namely, the multi-modal
nature of the problem is misleading to all of the algorithms.
However, the more elaborate model employed in RM-MEDA
helps the algorithm scale much better compared with the
other algorithms. This conclusion is based on the performance
of random search on this problem and the fact that RM-
MEDA follows this much moresmoothlyrelative to all other
algorithms. For example, for the11 objective instance, while
random search achieves a mean value for the GD-metric of
0.3540, MACE-gD, MOEA/D and MACE have much worse
performance. The positive effect of generalized decomposition,
however, is clearly visible when comparing MACE-gD to
MACE. For instances with2–4 objectives, MOEA/D exhibits
the best performance, however it is closely followed by

TABLE X
GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMS ON THE

WFG8PROBLEM FOR2–11OBJECTIVES.

WFG8

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0598 (2) 0.0697 (3) 0.0582(1) 0.0875 (4) 0.2043 (5)
3 0.0857 (3) 0.0797 (2) 0.0562(1) 0.1671 (4) 0.2147 (5)
4 0.1201 (3) 0.1165 (2) 0.0790(1) 0.2596 (5) 0.2436 (4)
5 0.1453 (2) 0.1349(1) 0.1966 (3) 0.2982 (5) 0.2635 (4)
6 0.1835 (2) 0.1528(1) 0.1961 (3) 0.3005 (5) 0.2657 (4)
7 0.2524 (2) 0.1888(1) 0.2804 (4) 0.3002 (5) 0.2652 (3)
8 0.3214 (4) 0.2237(1) 0.3594 (5) 0.3134 (3) 0.2703 (2)
9 0.3762 (4) 0.2706(1) 0.3929 (5) 0.3246 (3) 0.2852 (2)
10 0.3698 (4) 0.2995 (2) 0.4050 (5) 0.3401 (3) 0.2912(1)
11 0.4669 (5) 0.3601 (3) 0.4658 (4) 0.3560 (2) 0.3254(1)
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MACE-gD and MACE. This leads to the hypothesis that a
more elaborate EDA coupled with generalized decomposition
could potentially overcome the difficulties present in problems
similar to WFG4. Table VII presents the results for the
WFG5 problem. WFG5 is a unimodal, separable and deceptive
problem with no bias and a concave PF. It is most interesting
that for this test problem, contrary to what we anticipated,RM-
MEDA performs consistently worse than random search, the
only exception being the2-objective test instance. However
for more than9 objectives, random search out-performs the
other algorithms. Also, when compared with RM-MEDA, both
MACE and MACE-gD perform significantly better for all
instances with2–10 objectives, a fact that supports the theory
presented in [36] that EDAs using low order statistics with
some form of clustering have potential. Of course, clustering
is not used in these versions of the MACE algorithm; this is
the subject of future research. Another important feature is
that MOEA/D strongly outperforms all algorithms on this test
problem for2–6 objectives although its performance is heavily
degraded for larger numbers of objectives, performing much
worse than random search. This rapid relative degradation in
performance is not seen in MACE. We believe that this phe-
nomenon has to do with the control parameters in MOEA/D,
leading us to the conclusion that MACE, MACE-gD and
RM-MEDA are more robust with respect to their controlling
parameters. This is in accord with recent studies that show
that the sweet spot of configuration parametersshrinks with
an increase in problem dimension [61].

Table VIII presents the results of the GD-metric perfor-
mance for the WFG6 test problem. WFG6 is a non-separable,
unimodal problem with no bias and concave PF geometry.
These results further strengthen the hypothesis that the CE
method performs very well on unimodal problems. Generally,
the performance of MACE and MACE-gD over all test prob-
lems that are unimodal is similar, see Table VII-Table X. The
exception to this is WFG3. However the geometry of WFG3
is influencing the performance of the algorithms greatly, so
that MACE-gD, which has prior information of thecorrect
direction of search can exploit this feature. In WFG6, RM-
MEDA performs worse than random search for all instances
except the2-objective one. We believe that this phenomenon
has to do with the fact that this problem non-separable, as is
the case for WFG2–3 and WFG8–9, see Table IV–Table V and

TABLE XI
GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMS ON THE

WFG9PROBLEM FOR2–11OBJECTIVES.

WFG9

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0223 (2) 0.0259 (3) 0.0286 (4) 0.0179(1) 0.1925 (5)
3 0.0390 (3) 0.0366(2) 0.0365(2) 0.0657 (4) 0.2410 (5)
4 0.0653 (3) 0.0592(1) 0.0607 (2) 0.1636 (4) 0.2764 (5)
5 0.1494 (3) 0.0987(1) 0.1468 (2) 0.2442 (4) 0.2982 (5)
6 0.1441 (3) 0.1349(1) 0.1369 (2) 0.2655 (4) 0.3073 (5)
7 0.2193 (2) 0.1843(1) 0.2270 (3) 0.2769 (4) 0.3070 (5)
8 0.3055 (4) 0.2223(1) 0.3122 (5) 0.2889 (2) 0.3058 (4)
9 0.3657 (4) 0.2742(1) 0.3685 (5) 0.3039 (2) 0.3110 (3)
10 0.3514 (4) 0.2999(1) 0.3547 (5) 0.3214 (3) 0.3199 (2)
11 0.4473 (4) 0.3488 (3) 0.4506 (5) 0.3416 (2) 0.3346(1)
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Fig. 7. Mean GD-metric performance of studied algorithms over WFG2–9
for 2–11 objectives.

Table X–Table XI. For2–3 objectives MOEA/D has superior
performance to all algorithms and for4–10 objectives MACE-
gD is the top performer. It is interesting to note that, in
that range of objectives, MACE and MOEA/D exhibit similar
performance, which further suggests that the decomposition
method has a strong influence on algorithm performance.

Table IX and Table X correspond to the mean GD-metric
value of the compared algorithms for the problems WFG7 and
WFG8. The demonstrated performance is similar to the results
reported in Table IV–Table VIII.

Lastly, Table XI presents the results for the WFG9 test
problem which is non-separable, multi-modal and deceptive.
WFG9 has also parameter dependent bias and its PF geometry
is concave. Based on what we have observed in Table VI, also
a multi-modal problem, the results here are counter-intuitive,
especially given the fact that WFG9 is not only multi-modal
but it is also deceptive. For this reason we anticipated thatRM-
MEDA would be the top performer. Instead, for more than∼ 6
objectives the performance of RM-MEDA is very close to that
of random search and worse in the last two instances, i.e. for
10 and 11 objectives. In contrast, for3–7 objectives MACE,
MACE-gD and MOEA/D have relatively similar performance
– with MACE-gD in the lead. For8–10 objectives this lead
is significantly increased and this is attributed to generalized
decomposition, since the performance of the CE method for
multi-modal problems is moderate, or so it would seem.

D. Sensitivity of MACE and MACE-gD to theρ Parameter

Although a complete sensitivity analysis of algorithm per-
formance with respect to all control parameters in the MACE
and MACE-gD algorithms is beyond the scope of this work,
it is important that we investigate how convergence is affected
by the ρ parameter. This parameter controls the percentage
of the individuals in the previous generation that are used
in the updating process of theµ and σ parameters of the
instrumental densities in the CE method. Intuitively, since
every instrumental density is sampled only once for every
subproblem, this parameter controls the amount of information
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Fig. 8. Mean GD-metric performance of MACE, over all objectives for the
WFG9 test problem.

sharing between different subproblems. In that context it
is similar to the T parameter in MOEA/D. However the
neighbourhoodfor the MACE algorithms does not depend on
the closeness of weighting vectors but depends only on the
similarity of performance of different subproblems. Hence, it
is not fixed as it is in MOEA/D.

To test how the GD metric performance of MACE and
MACE-gD is affected for various values ofρ, 50 independent
trials were performed forρ = {0.1, 0.2, . . . , 0.9} on the WFG9
problem. All other parameters are identical to those employed
in Section VII-C. The results can be seen inFig. (8) – Fig. (10).
In Fig. (8) and Fig. (9) the mean performance of the two
algorithms over2–11 objectives for different values of theρ
parameter is illustrated. The fact that the mean performance of
MACE-gD, seeFig. (9), is better when compared with MACE,
seeFig. (8), is expected, given the results in Table XI. MACE
and MACE-gD exhibit similar variation in terms of their GD
metric performance for the selected range ofρ. Namely the
absolute value of the difference of the best performance less
the worse one as seen inFig. (8) andFig. (9) is 2.79× 10−3

and 2.96 × 10−3 for MACE and MACE-gD respectively. A
comparison of these values with the absolute performance of
the above algorithms shown inFig. (10), suggests that MACE
and MACE-gD are relatively robust to variations in theρ pa-
rameter. Specifically, the mean performance over all objectives
of MACE and MACE-gD for the WFG9 problem is0.2109 and
0.1685 respectively which means that forρ ∈ {0.1, . . . , 0.9}
the variation in performance with respect to the GD metric
of MACE and MACE-gD is 1.32% and 1.75% respectively.
However their behaviour is qualitatively different.

MACE performs relatively better for all values ofρ > 0.2
with no consistent degradation or improvement past this
threshold. Therefore any value forρ that is greater than0.2
should produce acceptable results. In contrast to MACE, the
performance of MACE-gD varies in a much more coherent
manner for different values ofρ, and, in general forρ < 0.5
it performs consistently better than forρ > 0.5. The lack
of coherencyin the improvement (or degradation) in GD
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Fig. 9. Mean GD-metric performance of MACE-gD, over all objectives for
the WFG9 test problem.

performance for MACE could suggest that the algorithm is
not affected as much as MACE-gD, by theρ parameter. The
question is: why is MACE less susceptible to variations in
ρ? Our hypothesis is that, since the weighting vectors in
MACE are selected in the same fashion as in MOEA/D,
subproblems are aggregated in a very small region of the
PF, therefore sharing information with neighbouring solutions
is less disruptive, for instance, seeFig. (2). Conversely, the
weighting vectors in MACE-gD are distributed according to a
uniformly distributed Pareto front, so that, as we increaseρ,
the less likely it is to obtainlocal information from faraway
solutions. Hence the convergence rate of the algorithm is
somewhat inhibited for largeρ.

Additionally, the GD-performance of MACE-gD appears to
be a quasi-convex function ofρ, seeFig. (9). We believe this
is due to the presence of two competing trends in MACE-gD.
First, as we increaseρ, more samples are used in the updating
rules in (24) and (25), hence better estimates are obtained.
However, past a certain value forρ, which for the selected
problem set appears to be somewhere between(0.5, 0.6), the
GD-metric performance starts to degrade. This degradationis
due to the second trend. As we increaseρ, samples obtained by
disparate subproblems are used in the updating process, hence
convergence to the PF becomes slower. This is consistent with
the hypothesis that generalized decomposition successfully
captures the density of the PF reference set used to generate
the optimal weighting vectors.

In Fig. (10) the mean GD performance is illustrated over
all ρ values for increasing number of objectives. Again, this
result is consistent with the experiments in Section VII-C.
Additionally, it seems that the linear scaling of performance
of the MACE-gD algorithm as seen inFig. (7), is persistent
for a range ofρ values.

VIII. P REFERENCEARTICULATION

Apart from convergence in MOEA algorithms, which is a
relatively well defined concept, there can be no consensus on
the meaning of awell distributed Pareto set. Apart from the
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ρ values for the WFG9 test problem.

theoretical difficulties, a proper definition of a well distributed
PF cannot be given, mainly because it is contingent on the
preferences of the decision maker (DM). Of what use would
a Pareto optimal set be, if the solutions that are of interestto
the DM are sparsely sampled, if at all.

Generalized decomposition can be employed very effec-
tively to resolve this problem, given that some information
is availablea priori about the general shape of the PF. To
illustrate this we used the3-objective instances of WFG2–9
with an evenly distributed reference PF for the generation of
weighting vectors in MACE-gD, seeFig. (5) andFig. (6). As
can be seen, the solutions produced by MACE-gD are more
evenly distributed compared with MOEA/D or RM-MEDA. It
should be noted that, apart from a different reference PF forthe
generation of weighting vectors, all algorithm parametersare
identical with the ones used in Section VII-C. Furthermore,
we also used a3-objective DTLZ2 instance, a test problem
with concave PF, and selected manually a set of regions on an
artificially generated PF, seeFig. (11). These regions represent
the desired parts of the PF, potentially because other partsare
of no interest to the DM. The set of points seen in the left
figure in Fig. (11) is the set,

C = C1 ∪ C2 ∪ C3 ∪C4,

and the setsC1, C2, C3, C4 are defined as follows,

C1 = {z : (z1 − c1)
2 + (z2 − c2)

2 + (z3 − c3)
2 ≥ r2},

r2 = 0.65, c = (0.33, 0.33, 0.33),

C2 = {z : (z1 − c1)
2 + (z2 − c2)

2 + (z3 − c3)
2 ≤ r2},

r2 = 0.15, c = (0.53, 0.23, 0.8),

C3 = {z : (z1 − c1)
2 + (z2 − c2)

2 + (z3 − c3)
2 ≤ r2},

r2 = 0.1, c = (0.23, 0.53, 0.8),

and,

C4 = Ca ∩Cb,

Ca = {z : (z1 − c1)
2 + (z2 − c2)

2 + (z3 − c3)
2 ≥ r2a},

Cb = {z : (z1 − c1)
2 + (z2 − c2)

2 + (z3 − c3)
2 ≤ r2b},

r2a = 0.2, r2b = 0.27, c = (0.63, 0.63, 0.38).

Subsequently (7) was solved to obtain the weighting vectors
corresponding to these regions and using these weighting
vectors MACE-gD was able to generate a PF that closely
resembles the initially chosen regions, seeFig. (11). This
concept extends directly to MAPs, however the results are
much more difficult to visualise.

Additionally, although it is useful to know the geometry
of the PF, it is sufficient if its general shape is known. The
boundary for which the weighting vectors radically change
position is the transition from concave geometry to convex
geometry, seeFig. (1) – Fig. (3).

IX. CONCLUSION

A new concept was introduced and used in the solution of
many-objective optimization problems (MAPs), namely gener-
alized decomposition (gD). With the aid ofgD, weighting vec-
tors can be selected optimally to satisfy specific requirements
in the distribution of the Pareto optimal solutions along the PF.
This approach allows decomposition-based MOEAs to focus
on only one performance objective, that of convergence to the
PF. This can be a significant advantage over other MOEAs
that have to tackle3 performance objectives simultaneously,
i.e. Pareto front coverage, even distribution of Pareto optimal
solutions and convergence to the Pareto front. Based ongD and
the CE method, a many-objective optimization framework was
presented, MACE-gD. The performance of MACE-gD with
respect to the GD-metric is competitive with that of MOEA/D
and RM-MEDA, for the selected problem set. Additionally,
a methodology for incorporating DM preferences is given,
using the presented framework. As far as we are aware,
there is no other method available that can address all of the
aforementioned issues so successfully. Another benefit ofgD-
based algorithms is that since there is a clear way to distribute
solutions on the Pareto front very precisely, the necessityof
using elaborate archiving strategies and sharing is diminished.
However, these benefits require that certain prior information
is available. Specifically, the geometry of the Pareto front
needs to be knowna priori. This requirement can be alleviated
to a certain degree, however, by adaptively identifying the
shape of the PF of a problem during the optimization process.
This adaptive Pareto front identification for use withgD seems
to be a promising direction for future research.

Another result of this study is that the CE method appears
to be a strong candidate as the main algorithm of choice for
multiobjective optimization. This is fortunate since the CE
method is based on sound theoretical principles which can
facilitate further analysis of this method. Also, the hypothesis
presented in [36], that EDAs based on low order statistics
and clustering can be used as an alternative to complex
probabilistic models, seems to be supported by the obtained
results in Section VII-C. However, as no clustering method is
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Fig. 11. Left: Preferred regions of the Pareto front. Middle: Weighting vectors corresponding to the preferred PF regions. Right: Obtained Pareto optimal
solutions on a3-objective instance of the DTLZ2.

employed in MACE-gD, this does not constitute solid proof
but it is certainly a good indication.

In conclusion, it was shown that MACE-gD is a scalable
framework for tackling many-objective problems, for example
seeFig. (7), with respect to the GD-metric. Also, MACE-gD
seems to be robust with respect to its main control parameter,
ρ, see Section VII-D. Furthermore, the collective results ofthis
work strongly suggest that the choice of weighting vectors
in MOEAs based on decomposition can affect not only the
distribution of Pareto optimal solutions on the PF but also the
convergence of the algorithm. This issue is more evident in
many-objective problems. Restriction of the search in objective
space to a region that is of interest can be an effective approach
in MAPs. Otherwise, the necessary increase in population
size to obtain similar coverage in many-objectives as for2
or 3-objective problems is computationally intractable. This
restricted search is fully supported by the presented frame-
work.

APPENDIX A
GENERATING AN N-DIMENSIONAL UNIFORMLY

DISTRIBUTED CONCAVE OR CONVEX PARETO FRONT

A moderately efficient and highly convenient method for
generating uniformly distributed points on the unit hypersphere
of arbitrary dimension is presented by Marsaglia [62]. Letn
be the dimension of a unit hypersphere. Then the method to
uniformly distribute points on its’surfacecan be summarized
as follows:

• GenerateX1,X2, . . . ,Xn independent random deviates
distributed according toN (0, 1). N (0, 1) is the normal
distribution with mean0 and variance1.

• CalculateS = X 2
1 +X 2

2 + · · ·+X 2
n , the point defined as:

U =

( X1√
S
,
X2√
S
, . . . ,

Xn√
S

)

(33)

is uniformly distributed on the n-dimensional hypersphere
[62].

With this method, points on the unit hypersphere can be
sampled that are uniformly distributed; however these points
are not Pareto optimal. To obtain a concave Pareto front with

uniformly distributed points all that is necessary is to select the
points that all their components are non-negative. That is all
pointsU for which the following is trueU ∈ R

n
+. Conversely

to obtain a Pareto front with convex geometry , it is sufficient
to select all the generated pointsU ∈ R

n
−.

However there is a limitation to the described method.
Namely since only a subset of the generated solutionsU is
used, for higher dimensions in order to obtain the same number
of Pareto optimal points it is required that the number of uni-
formly distributed solutions inU is constantly increased. The
required number of points inU , such that a specific number
of Pareto optimal solutions is obtained, can be derived from
the following relation that follows directly from geometric
considerations,

|P| ≈ 1

2k
|U |, (34)

where≈ becomes an equality in the limit as|U | → ∞. For
example, to obtain approximately100 uniformly distributed
solutions for a concave PF in11 dimensions, then it is required
that 204 800 uniformly distributed vectorsU are generated
on the11 dimensional unit hypersphere. This translates to∼
2.2×106 samples from the normal distributionN (0, 1). So this
method can easily become impractical for higher dimensions.

APPENDIX B
CONVEX SETS AND FUNCTIONS

Some fundamental definitions about convex sets and func-
tions are given below. For further details the reader is referred
to [42] for an applications oriented presentation and [63] for
a more theoretical approach.

A. Convex Sets

A set C ⊆ R
n is convex if for any x,y ∈ C and any

θ ∈ [0, 1],

θx + (1− θ)y ∈ C. (35)

The combination of the pointsx,y in (35), is called aconvex
combinationand can be extended to multiple points in a
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similar manner to the extension of affine combinations,

d
∑

i=1

θixi, with
d
∑

i=1

θi = 1, andθi ≥ 0, for all i = 1, . . . , d.

(36)
The set of all convex combinations of a convex setC is the
convex hullof that set and is denoted as,

convC =

{

d
∑

i=1

θixi : xi ∈ C,
d
∑

i=1

θi = 1, θi ≥ 0

}

, (37)

for i = 1, . . . , d.
A function f : Rn → R is said to be convex if the domain

of definition of f , denoted asdom f , is a convex set and
∀x,y ∈ dom f andθ ∈ [0, 1] we have,

f(θx+ (1 − θ)y) ≤ θf(x) + (1− θ)f(y). (38)

A function is strictly convex if the inequality in (38) is
strict. Accordingly a function is concave if−f is convex. A
more interesting definition of convex and concave functions
is formulated with the aid of theepigraphof a function, see
Appendix B-B.

B. Epigraph

Theepigraphof a functionf : Rn → R, which is the Greek
word for above the graph, is defined as

epi f = {(x, t) : x ∈ dom f, t ∈ R, f(x) ≤ t}, (39)

consequentlyepi f ⊂ R
n+1. If the epigraph of a function is

a convex set then the function is convex and vice versa. The
hypographof a functionf : Rn → R, meaningbelow the
graph, is defined as,

hypo f = {(x, t) : x ∈ dom f, t ∈ R, f(x) ≥ t}. (40)

If a function is concave, its hypograph is a convex set. In
general a functionf : R

n → R with a convex domain of
definition is:

• Convex, if and only ifepi f is a convex set. If in addition
hypo f is nonconvex then,f is strictly convex.

• Concave, if and only ifhypo f is a convex set. If in
additionepi f is nonconvex then,f is strictly concave.

• Convex and concave, if bothepi f and hypo f are
convex. A concave and convex function is affine.

• Nonconvex, if bothepi f andhypo f are nonconvex.

C. Pareto Front Geometry

Assuming that the Pareto front can be represented by a
piecewise continuous function,g : R

k−1 → R and k the
number of objectives, then there are three types ofgeometries
and combinations thereof, that the PF can have. Namely the
function,g, can have parts that are convex, concave, of affine.
We refer to a Pareto front as,

• Convex, ifepi g is a convex set.
• Concave, ifhypo g is a convex set.
• Affine, if both epi g andhypo g are convex.
• Discontinuous, ifdom g is nonconvex org is discontin-

uous.

Fig. 12. A Pareto front which is partially convex, partiallyconcave and
discontinuous. Notice that the frame of reference, which inthis case isf1,
used to determine the convex and concave parts is arbitrary,namely the same
parts of the Pareto front would be partially convex and concave, even iff2 was
chosen as the reference. However, discontinuities on the PFare not always
visible from all frames of reference, i.e. the projection of the PF onthe f2
axis is continuous, while the projection on thef1 axis is discontinuous.

• Partially convex, ifg is convex over a convex subset of
dom g.

• Partially concave, ifg is concave over a convex subset of
dom g.

• Partially affine, ifg is convex and concave over a convex
subset ofdom g.

• Piecewise convex, ifg partially convex over all convex
subsets ofdom g.

• Piecewise concave, ifg partially concave over all convex
subsets ofdom g.

• Piecewise affine, ifg partially affine over all convex
subsets ofdom g.
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[40] K. Miettinen and M. Mäkelä, “On Scalarizing Functions in Multiobjec-
tive Optimization,” OR Spectrum, vol. 24, no. 2, pp. 193–213, 2002.

[41] M. Grant, S. Boyd, and Y. Ye, “Disciplined Convex Programming,”
vol. 84, pp. 155–210, 2006.

[42] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge
University Press, 2004.

[43] M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined Convex
Programming,” 2008. [Online]. Available: http://cvxr.com/cvx/

[44] E. Saff and A. Kuijlaars, “Distributing Many Points on aSphere,”The
Mathematical Intelligencer, vol. 19, no. 1, pp. 5–11, 1997.

[45] S. B. Damelin and P. J. Grabner, “Energy Functionals, Numerical
Integration and Asymptotic Equidistribution on the Sphere,” Journal of
Complexity, vol. 19, no. 3, pp. 231 – 246, 2003.

[46] D. Wolpert, “Information Theory - The Bridge Connecting Bounded
Rational Game Theory and Statistical Physics,”Complex Engineered
Systems, pp. 262–290, 2006.

[47] R. Rubinstein, “A Stochastic Minimum Cross-Entropy Method for
Combinatorial Optimization and Rare-event Estimation,”Methodology
and Computing in Applied Probability, vol. 7, no. 1, pp. 5–50, 2005.

[48] Z. Botev, D. Kroese, and T. Taimre, “Generalized Cross-Entropy Meth-
ods with Applications to Rare-Event Simulation and Optimization,”
Simulation, vol. 83, no. 11, p. 785, 2007.

[49] P. De Boer, D. Kroese, S. Mannor, and R. Rubinstein, “A Tutorial on
the Cross-Entropy Method,”Annals of Operations Research, vol. 134,
no. 1, pp. 19–67, 2005.

[50] C. N. Morris, “Natural Exponential Families with Quadratic Variance
Functions,”The Annals of Statistics, vol. 10, pp. 65–80, 1982.

[51] H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima, “Effects of
Using Two Neighborhood Structures on the Performance of Cellular
Evolutionary Algorithms for Many-Objective Optimization,” in IEEE
Congress on Evolutionary Computation, may 2009, pp. 2508 –2515.

[52] H. Li and Q. Zhang, “Multiobjective Optimization Problems with
Complicated Pareto Sets, MOEA/D and NSGA-II,”IEEE Transactions
on Evolutionary Computation, vol. 13, no. 2, pp. 284–302, 2009.

[53] A. Zhou, Q. Zhang, and G. Zhang, “A Multiobjective Evolutionary
Algorithm Based on Decomposition and Probability Model,” in IEEE
Congress on Evolutionary Computation, june 2012, pp. 1–8.

[54] I. Das and J. Dennis, “Normal-Boundary Intersection: An Alternate
Method for Generating Pareto Optimal Points in Multicriteria Optimiza-
tion Problems,” DTIC Document, Tech. Rep., 1996.

[55] Q. Zhang, A. Zhou, and Y. Jin, “RM-MEDA: A Regularity Model-Based
Multiobjective Estimation of Distribution Algorithm,”IEEE Transac-
tions on Evolutionary Computation, vol. 12, no. 1, pp. 41–63, 2008.

[56] K. Deb, A. Sinha, and S. Kukkonen, “Multi-Objective Test Problems,
Linkages, and Evolutionary Methodologies,” inConference on Genetic
and Evolutionary Computation. ACM, 2006, pp. 1141–1148.

[57] S. Kukkonen and J. Lampinen, “GDE3: The Third EvolutionStep of
Generalized Differential Evolution,” inIEEE Congress on Evolutionary
Computation, vol. 1. IEEE, 2005, pp. 443–450.



22 ACSE RESEARCH REPORT, NO. 1029, NOVEMBER 2012

[58] P. Bosman and D. Thierens, “The Naive MIDEA: A Baseline Multi-
Objective EA,” inEvolutionary Multi-Criterion Optimization. Springer,
2005, pp. 428–442.

[59] D. Wolpert and W. Macready, “No Free Lunch Theorems for Optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1,
pp. 67–82, 1997.

[60] D. Van Veldhuizen, “Multiobjective Evolutionary Algorithms: Classifi-
cations, Analyses, and New Innovations,” inEvolutionary Computation,
1999.

[61] R. Purshouse and P. Fleming, “On the Evolutionary Optimization
of Many Conflicting Objectives,”IEEE Transactions on Evolutionary
Computation, vol. 11, no. 6, pp. 770 –784, dec. 2007.

[62] G. Marsaglia, “Choosing a Point from the Surface of a Sphere,” The
Annals of Mathematical Statistics, vol. 43, pp. 645–646, 1972.

[63] R. Rockafellar,Convex Analysis. Princeton University Press, 1970,
vol. 28.

[64] J. Mattingley and S. Boyd, “CVXGEN: A Code Generator forEmbedded
Convex Optimization,”Optimization and Engineering, pp. 1–27, 2012.

Ioannis Giagkiozis received the B.Sc. degree from
TEI of Thessaloniki, Thessaloniki, Greece in 2009.
He then obtained the M.Sc. degree in Control and
Systems Engineering with Distinction from the Uni-
versity of Sheffield, Sheffield, U.K. in 2010, for
which he was awarded the Nicholson Prize for
most outstanding student. He joined the Department
of Automatic Control and Systems Engineering,
University of Sheffield, Sheffield, as a Research
Associate in 2011 and is currently working towards
a Ph.D. degree in multiobjective evolutionary algo-

rithms.
His research interests are in many-objective optimization, estimation of

distribution algorithms and applied convex optimization.

Robin Purshouse received the MEng degree in
Control Systems Engineering in 1999 and a Ph.D.
in Control Systems in 2004 for his research on
evolutionary many-objective optimisation. Commer-
cial experience includes Logica plc (1999-2000), PA
Consulting Group (2003-2007) and Rolls-Royce plc
(2007-2008). He returned to academia in 2008 as a
Research Fellow in the School of Health and Related
Research at the University of Sheffield and was ap-
pointed as Lecturer in the Department of Automatic
Control and Systems Engineering in 2010.

Peter Fleming received the B.Sc. and Ph.D. de-
grees from The Queen’s University, Belfast, U.K.
He joined the University of Sheffield as Professor
of Industrial Systems and Control in 1991, hav-
ing previously been with Syracuse University, NY,
NASA, Langley, VA and the University of Wales,
Bangor, U.K. Since 1993, he has been Director with
Rolls-Royce University Technology Centre in Con-
trol and System Engineering, University of Sheffield,
Sheffield, U.K. He was the head of Automatic Con-
trol and Systems Engineering from 1993 to 1999,

Director of Research (Engineering) from 2001 to 2003, and Pro Vice-
Chancellor for External Relations from 2003 to 2008. His control and systems
engineering research interests include multicriteria decision making, optimiza-
tion, grid computing, and industrial applications of modeling, monitoring, and
control. He has over 400 research publications, including six books, and his
research interests have led to the development of close links with a variety
of industries in sectors such as aerospace, power generation, food processing,
pharmaceuticals, and manufacturing.

Prof. Fleming is a Fellow of the Royal Academy of Engineering, both a
Fellow of, and Adviser to, the International Federation of Automatic Control,
a Fellow of the Institution of Electrical Engineers, a Fellow of the Institute
of Measurement and Control, an Advisor to the InternationalFederation of
Automatic Control, and the Editor-in-Chief of the International Journal of
Systems Science.


