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Abstract8

Efron (1979) introduced the bootstrap method for independent data but it

can not be easily applied to spatial data because of their dependency. For

spatial data that are correlated in terms of their locations in the underly-

ing space the moving block bootstrap method is usually used to estimate

the precision measures of the estimators. The precision of the moving block

bootstrap estimators is related to the block size which is difficult to select. In

the moving block bootstrap method also the variance estimator is underesti-

mated. In this paper, first the semi-parametric bootstrap is used to estimate

the precision measures of estimators in spatial data analysis. In the semi-

parametric bootstrap method, we use the estimation of spatial correlation

structure. Then, we compare the semi-parametric bootstrap with a moving

block bootstrap for variance estimation of estimators in a simulation study.
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Finally, we use the semi-parametric bootstrap to analyze the coal-ash data.

Key words: Moving block bootstrap; Semi-parametric bootstrap; Plug-in9

kriging; Monte-Carlo simulation; Coal-ash data.10

1. Introduction11

In environmental studies the data are usually spatially dependent. Deter-12

mination of the spatial correlation structure of the data and prediction are13

two important problems in statistical analysis of spatial data. To do so a valid14

parametric variogram model is often fitted to the empirical variogram of the15

data. Since there is no closed form for the variogram parameter estimates,16

they are usually computed numerically. In addition, when data behave as17

a realization of a non-Gaussian random field, the bootstrap method can be18

used for statistical inference of spatial data.19

The bootstrap technique (Efron, 1979; Efron and Tibshirani, 1993) is a20

very general method to measure the accuracy of estimators, in particular for21

parameter estimation from independent identically distributed (iid) variables.22

For spatially dependent data, the block bootstrap method can be used with-23

out requiring stringent structural assumptions. This is an important aspect24

of the bootstrap in the dependent case, as the problem of model misspecifica-25

tion is more prevalent under dependence and traditional statistical methods26
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are often very sensitive to deviations from model assumptions. A prime ex-27

ample of this issue appears in the seminal paper by Singh (1981), who in28

addition to providing the first theoretical confirmation of the superiority of29

the Efron’s bootstrap, also pointed out its inadequacy for dependent data.30

Different variants of spatial subsampling and spatial block bootstrap meth-31

ods have been proposed in the literature; see Hall (1985), Possolo (1991), Liu32

and Singh (1992), Politis and Romano (1993, 1994), Sherman and Carlstein33

(1994), Sherman (1996), Politis, Paparoditis and Romano (1998, 1999), Poli-34

tis, Romano and Wolf (1999), Bühlman and Künsch (1999), Nordman and35

Lahiri (2003) and references therein. Here we shall follow the moving block36

bootstrap (MBB) methods suggested by Lahiri (2003).37

On the other hand, the semi-parametric bootstrap (SPB) method has38

been used by Freedman and Peters (1984) for linear models and Bose (1988)39

for autoregressive models in time series. In this paper, first, we apply SPB40

method for estimation of the sampling distribution of estimators in spatial41

data analysis. Then, the SPB and MBB methods are compared for variance42

estimation of estimators in a Monte-Carlo simulation study. Finally, the43

SPB method is used to estimate the bias, variance and distribution of plug-44

in kriging and variogram parameter estimation for the analysis of the coal-ash45
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data.46

In Section 2, spatial statistics, kriging and plug-in kriging are briefly re-47

viewed. The MBB method is given in Section 3. We use the SPB algorithm48

for analysis of spatial data in Section 4. Section 5 consists of a Monte-Carlo49

simulation study for comparison of the SPB and MBB methods for variance50

estimation of estimators. These estimators are; sample mean, GLS plug-51

in estimator of mean, plug-in kriging and variogram parameters estimator;52

nugget effect, partial sill and range. In Section 6, we apply the SPB method53

for estimation of bias, variance and distribution of plug-in kriging and pa-54

rameter variogram estimators for coal-ash data. In the last section, we will55

end with discussion and results.56

2. Spatial Statistics and Kriging57

Usually a random field {Z(s) : s ∈ D} is used for modeling spatial58

data, where the index set D is a subset of Euclidean space R
d, d ≥ 1.59

Suppose Z = (Z(s1), . . . , Z(sN))T denotes N realizations of a second-order60

stationary random field Z(·) with constant unknown mean µ = E[Z(s)] and61

covariogram σ(h) = Cov[Z(s), Z(s+h)]; s, s+h ∈ D. The covariogram σ(h)62

is a positive definite function. At a given location s0 ∈ D the best linear63
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unbiased predictor for Z(s0), the ordinary kriging predictor and its variance64

are given by (Cressie, 1993)65

Ẑ(s0) = λTZ, σ2
k(s0) = σ(0) − λT σ + m, (1)

where66

λT = (σ + 1m)T Σ−1, m = (1 − 1T Σ−1σ)(1T Σ−11)−1. (2)

Here, 1 = (1, . . . , 1)T , σ = (σ(s0 − s1), . . . , σ(s0 − sN))T and Σ is an N × N67

matrix whose (i, j)th element is σ(si − sj).68

In reality, the covariogram is unknown and should be estimated based on69

the observations. An empirical estimator of covariogram is given by70

σ̂(h) = Nh
−1

∑

N(h)

[(Z(s) − Z̄)(Z(s + h) − Z̄)],

where Z̄ = N−1
∑N

i=1 Z(si) is the sample mean, N(h) = {(si, sj) : si − sj =71

h; i, j = 1, · · · , N} and Nh is the number of elements of N(h). The covari-72

ogram estimator σ̂(h) cannot be used directly for kriging predictor equations,73

because it is not necessarily positive definite. The idea is to fit a valid para-74

metric covariogram model σ(h; θ) that is closest to the empirical covariogram75

σ̂(h). Various parametric covariogram models such as exponential, spheri-76

cal, Gaussian, linear are presented in Journel and Huijbregts (1978). For77
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example, the exponential covariogram is given by78

σ(h; θ) =





c0 + c1 ||h|| = 0

c1exp(−||h||
a

) ||h|| 6= 0,

(3)

where θ = (c0, c1, a)T are the nugget effect, partial sill and range, respectively.79

The maximum likelihood (ML), restricted maximum likelihood (REML), or-80

dinary least squares (OLS) and generalized least squares (GLS) methods can81

be applied to estimate θ. In these methods, θ̂ is computed numerically with82

the use of iterative algorithms since there is no closed form. For example,83

Mardia and Marshall (1984) described the maximum likelihood method for84

fitting the linear model when the residuals are correlated and when the co-85

variance among the residuals is determined by a parametric model containing86

unknown parameters. Kent and Mardia (1996) introduced the spectral and87

circulant approximations to the likelihood for stationary Gaussian random88

fields. Also, Kent and Mohammadzadeh (1999) obtained a spectral approx-89

imation to the likelihood for an intrinsic random field. We will estimate90

Var(θ̂) by SPB method.91

The plug-in kriging predictor and the plug-in kriging predictor variance92

are determined by using θ̂ instead of θ in the covariogram σ̂(si, sj) = σ(si, sj; θ̂)93
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as94

ˆ̂
Z(s0) = Ẑ(s0; θ̂); σ̂2

k(s0) = σ2
k(s0; θ̂). (4)

The plug-in kriging predictor is a non-linear function of Z because θ̂ is a non95

linear estimator of θ. As a result, properties of the plug-in kriging predictor96

and the plug-in kriging predictor variance — such as unbiasedness and vari-97

ance — are unknown. Mardia, Southworth and Taylor (1999) discussed the98

bias in maximum likelihood estimators. Under the assumption that Z(·) is99

Gaussian, Zimmerman and Cressie (1992) show that100

E[σ2
k(s0; θ̂)] ≤ σ2

k(s0) ≤ E[Ẑ(s0; θ̂) − Z(s0)]
2,

where θ̂ is ML estimator of θ. We can estimate the variance of the plug-in101

kriging predictor σ2(s0) = Var[
ˆ̂
Z(s0)] using the SPB method.102

3. Moving Block Bootstrap103

Suppose that the sampling region Dn is obtained by inflating the proto-104

type set D0 by the scaling constant λn as105

Dn = λnD0, (5)

where {λn}n≥1 is a positive sequence of scaling factors such that λn → ∞106

as n → ∞ and D0 is a Borel subset of (−1/2, 1/2]d containing an open107
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neighborhood of the origin. Suppose that {Z(s) : s ∈ Z
d} is a stationary108

random field that is observed at finitely many locations Sn = {s1, . . . , sNn
}109

given by the part of the integer grid Z
d that lies inside Dn, i.e., the data are110

Z = {Z(s) : s ∈ Sn} for Sn = Dn ∩ Z
d. Let N ≡ Nn denote the sample size111

or the number of sites in Dn such that N and the volume of the sampling112

region Dn satisfies the relation N = Vol(D0)λ
d
n, where Vol(D0) denotes the113

volume of D0.114

Let {βn}n≥1 be a sequence of positive integers such that β−1
n + βn/λn =115

o(1) as n → ∞. Here, βn gives the scaling factor for the blocks in the116

spatial block bootstrap method. As a first step, the sampling region Dn is117

partitioned using blocks of volume βd
n. Let Kn = {k ∈ Z

d : βn(k + U) ⊂ Dn}118

denote the index set of all separate complete blocks βn(k + U) lying inside119

Dn such that N = Kβd
n, where U = (0, 1]d denotes the unit cube in R

d and120

K ≡ Kn denotes the size of Kn. We define a bootstrap version of Zn(Dn)121

by putting together bootstrap replicates of the process Z(·) on each block of122

Dn given by123

Dn(k) ≡ Dn ∩ [βn(k + U)], k ∈ Kn. (6)

Let In = {i ∈ Z
d : i + βnU ⊂ Dn} denote the index set of all blocks124

of volume βd
n in Dn, with starting points i ∈ Z

d. Then, Bn = {i + βnU :125
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i ∈ In} gives a collection of cubic blocks that are overlapping and contained126

in Dn. For the MBB method, for each k ∈ Kn, one block is resampled at127

random from the collection Bn independently of the other resampled blocks,128

giving a version Z∗
n(Dn(k)) of Zn(Dn(k)) using the observations from the129

resampled blocks. The bootstrap version Z∗
n(Dn) of Zn(Dn) is now given by130

concatenating the resampled blocks of observations {Z∗
n(Dn(k)) : k ∈ Kn}.131

Now the bootstrap version of a random variable Tn = tn(Zn(Dn); θ) is132

given by T ∗
n = tn(Z∗

n(Dn); θ̂n). For example, the bootstrap versions of Tn =133

√
N(Z̄n − µ), where Z̄n = N−1

∑N

i=1 Z(si) and µ = E[Z(0)] is given by134

T ∗
n =

√
N(Z̄∗

n − µ̂n), where Z̄∗
n = N−1

∑N

i=1 Z∗(si), µ̂n = E∗(Z̄
∗
n), and E∗135

denotes the conditional expectation given Z.136

Lahiri (2003) shows that the MBB method can be used to derive a con-137

sistent estimator of the variance of the sample mean, and more generally,138

of statistics that are smooth functions of the sample mean. Suppose that139

θ̂n = H(Z̄n) be an estimator of a parameter of interest θ = H(µ), where H is140

a smooth function. Then, the bootstrap version of θ̂n is given by θ∗n = H(Z̄∗
n),141

and the bootstrap estimator of σ2
n = NVar(θ̂n) is given by σ̂2

n ≡ σ̂2
n(βn) =142

NVar∗(θ
∗
n). He shows that under a weak dependence condition for the ran-143

dom field {Z(s) : s ∈ Z
d}, like a strong mixing condition, then σ̂2

n −→p σ2
∞ as144
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n −→ ∞, where σ2
∞ ≡ limn−→∞ NVar(θ̂n) = 1

Vol(D0)

∑
i∈Zd EW (0)W (i), with145

W (i) =
∑

|α|=1 DαH(µ)(Z(i)− µ)α, H is continuously differentiable and the146

partial derivatives DαH(·), |α| = 1, satisfy Holder’s condition. Nordman and147

Lahiri (2003) and Lahiri (2003) determined the optimal block size by com-148

puting Bias[σ̂2
n(βn)] = β−2

n γ2
2+o(β−1

n ) and Var[σ̂2
n(βn)] = N−1βd

nγ
2
1+(1+o(1))149

and minimizing MSE[σ̂2
n(βn)] = N−1βd

nγ
2
1 +β−2

n γ2
2 +o(N−1βd

n+β−2
n ) to obtain150

βopt
n = N

d
d+2 [2γ2

2/dγ2
1 ]

1

d+2 (1 + o(1)), (7)

where γ2
1 = (2

3
)d. 2σ4

∞

(Vol(D0))3
and γ2 = − 1

Vol(D0)

∑
i∈Zd |i|σW (i) with σW (i) =151

Cov(W (0), W (i)), i ∈ Z
d and |i| = i1 + · · ·+ id for i = (i1, . . . , id) ∈ Z

d. The152

Bias[σ̂2
n(βn)] shows that the MBB estimator σ̂2

n(βn) is an underestimator of153

σ2
n. Lahiri, Furukawa and Lee (2007) suggested a nonparametric plug-in154

rule for estimating optimal block sizes in various block bootstrap estimation155

problems. The optimal block size determination is difficult and sometimes156

impossible. On the other hand, when using the MBB method the variance157

estimator σ̂2
n(βn) is underestimated. Therefore, we use the SPB method for158

spatial data analysis.159
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4. Semi-Parametric Bootstrap160

Suppose Z = (Z(s1), · · · , Z(sN))T are observations of a random field161

{Z(s) : s ∈ D ⊂ R
d} with decomposition Z(s) = µ(s) + δ(s), where µ(·) =162

E[Z(·)] and the error term δ(·) is a zero-mean stationary random field having163

N × N positive-definite covariance matrix Σ ≡ (σ(si − sj)). The Cholesky164

decomposition allows Σ to be decomposed as the matrix product Σ = LLT ,165

where L is a lower triangular N × N matrix. Let ǫ ≡ (ǫ(s1), . . . , ǫ(sN))T =166

L−1(Z − µ), be a vector of uncorrelated random variables with zero mean167

and unit variance from an unknown cumulative distribution F (ε), where the168

mean µ = (µ(s1), . . . , µ(sN))T . In the SPB method, we need an empirical169

distribution FN(ε) to estimate F (ε). The SPB algorithm is described by the170

following steps:171

Step 1. Estimation and removal of mean structure.172

The trend or mean structure µ(·) is estimated by the median polish algorithm173

(Cressie, 1993) or generalized additive models (Hastie, and Tibshirani, 1990)174

and is removed to obtain R(si) = Z(si) − µ̂(si); i = 1, . . . , N .175

Step 2. Estimation and removal of correlation structure.176

Estimate the spatial dependence structure of residual R(si) by the covariance177

matrix Σ̂. Note that, Σ̂ is an N×N symmetric positive definite matrix whose178
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(i, j)th element is an estimate of the covariogram σ̂(si − sj) = σ(si − sj ; θ̂).179

Then ǫ̂ ≡ (ǫ̂(s1), . . . , ǫ̂(sN))T = L̂−1R is a vector of uncorrelated residuals,180

where, L̂ is a lower triangular N × N matrix from Cholesky decomposition181

Σ̂ = L̂L̂T and R ≡ (R(s1), . . . , R(sN))T is the vector of residuals.182

Step 3. Computation of empirical distribution FN(ε).183

Suppose that ǫ̃ ≡ (ǫ̃(s1), . . . , ǫ̃(sN))T is a vector of standardized values ǫ̂,184

where ǫ̃(si) = (ǫ̂(si) − ¯̂ǫ)/sǫ̂ and ¯̂ǫ, sǫ̂ denote the sample mean and stan-185

dard deviation of the residuals, repectively. The empirical distribution func-186

tion formed from standardized uncorrelated residuals {ǫ̃(s1), . . . , ǫ̃(sN )} is187

FN(ε) = N−1
∑N

i=1 I(ǫ̃(si) ≤ ε), where I(ǫ̃(·) ≤ ε) is the indicator function188

equal to 1 when ǫ̃(·) ≤ ε and equal to 0 otherwise.189

Step 4. Resampling and Bootstrap sample.190

Efron’s (1979) bootstrap algorithm is used for the vector of standardized191

uncorrelated residuals ǫ̃. We generate N iid bootstrap random variables192

ǫ∗(s1), . . . , ǫ
∗(sN) having common distribution FN(ε). In other words, ǫ∗ ≡193

(ǫ∗(s1), . . . , ǫ
∗(sN))T is a simple random sample with replacement from the194

standardized uncorrelated residuals {ǫ̃(s1), . . . , ǫ̃(sN)}. The bootstrap sam-195

ple Z∗ ≡ (Z∗(s1), · · · , Z∗(sN))T can be determined using an inverse transform196

Z∗ = µ̂ + L̂ǫ∗, where µ̂ = (µ̂(s1), . . . , µ̂(sN))T estimates the mean structure.197
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Step 5. Bootstrap version of T .198

If T̂ = t(Z; µ̂, θ̂) is a plug-in estimator of T = t(Z; µ, θ), where θ̂ is the plug-in199

estimator of θ, then, the SPB version of T̂ is given by T ∗ = t(Z∗; µ̂, θ̂).200

Step 6. Bootstrap estimators.201

The bootstrap estimators of the bias, variance and distribution of T are given202

by203

Bias∗(T
∗) = E∗(T

∗) − T̂ ,

Var∗(T
∗) = E∗[(T

∗) − E∗(T
∗)]2,

G∗(t) = P∗(T
∗ ≤ t),

where E∗, Var∗ and P∗ denote the bootstrap conditional expectation, variance204

and probability given Z.205

Step 7. Monte-Carlo approximation.206

When the above bootstrap estimators have no closed form, the precision207

measures of T ∗ may be evaluated by Monte-Carlo simulation as follows. We208

repeat Steps 4 and 5, B (e.g., B = 1000) times to obtain bootstrap repli-209

cates T ∗
1 , . . . , T ∗

B. Then the Monte-Carlo approximations of the bootstrap210

estimators in step 6 are given by211

B̂ias∗(T
∗) =

1

B

B∑

b=1

T ∗
b − T̂ , (8)
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V̂ar∗(T
∗) =

1

B

B∑

b=1

(T ∗
b − 1

B

B∑

b=1

T ∗
b )2, (9)

Ĝ∗(t) =
1

B

B∑

b=1

I(T ∗
b ≤ t). (10)

5. Simulation Study212

In this section, we conduct a simulation study to compare the MBB and213

SPB estimator of σ2 = Var(T ), where T is a statistic of interest. We consider214

four examples for T : the sample mean; GLS plug-in mean estimator; plug-215

in kriging; and covariogram parameters estimator. Let {Z(s) : s ∈ Z2} be216

a zero mean second-order stationary Gaussian process with the exponential217

covariogram (3) using parameter values θ1 = (1, 1, 1)T (weak dependence)218

and θ2 = (0, 2, 2)T (strong dependence). We generate realizations of the219

Gaussian random field Z(·) over three rectangular regions D = n × n; n =220

6, 12, 24 as spatial sample Z = (Z(s1), . . . , Z(sN))T where N = n2.221

To apply the MBB method, we identify the above rectangular regions D222

as [−3, 3) × [−3, 3), [−6, 6) × [−6, 6) and [−12, 12) × [−12, 12), the scaling223

constants λ = 6, 12, 24 respectively and the prototype set D0 = [−1
2
, 1

2
) ×224

[−1
2
, 1

2
). For example, for the sample size N = λ2 = 144 and β = 2, there are225

K = |K| = 36 subregions in the partition (6), given by D(k) = [2k1, 2k1 +226

2) × [2k2, 2k2 + 2); k ∈ K = {(k1, k2)
T ∈ Z2,−3 ≤ k1, k2 < 3}. To define227
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the MBB version of the random field Z(·) over D we randomly resample 36228

times, with replacement from the collection of all observed moving blocks229

B(i) = [i1, i1 + 2) × [i2, i2 + 2); i ∈ I = {(i1, i2)T ∈ Z2,−6 ≤ i1, i2 < 4}.

The MBB sample Z∗ = Z∗(D) = (Z∗(s1), . . . , Z
∗(sN))T is given by concate-230

nating the K-many resampled blocks to size β of observations {Z∗(D(k)) :231

k ∈ K}.232

To define the SPB version of the random field Z(·) over D, we apply233

steps 2–4 in SPB method. First, the covariance matrix Σ is estimated234

using the plug-in estimator of the covariogram σ̂(h; θ) = σ(h; θ̂), where235

θ̂ = (ĉ0, ĉ1, â)T is an estimator of θ (e.g. ML estimator). Let L̂ be the236

Cholesky decomposition of Σ̂, then ǫ̂ = L̂−1Z is a vector of uncorrelated val-237

ues. Hence, the bootstrap vector ǫ∗ = (ǫ∗(s1), . . . , ǫ
∗(sN))T is generated as a238

simple random sample with replacement from {ǫ̃(s1), . . . , ǫ̃(sN)}, where ǫ̃(·)239

denotes standardized uncorrelated values of ǫ̂(·). Finally, the SPB sample240

Z∗ = (Z∗(s1), . . . , Z
∗(sN)))T is given by the inverse transform Z∗ = L̂ǫ∗.241

Suppose that T = t(Z) is the statistic of interest, then the MBB and SPB242

versions of T are given by T ∗ = t(Z∗). The MBB and SPB estimators σ̂2 =243

Var∗(T
∗) of σ2 = Var(T ) are approximated based on B = 1000 bootstrap244

replicates (9). For each region D and covariance structure, we compute the245
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variance estimator σ̂2 and approximate the normalized bias, variance and246

mean squared error(MSE)247

NBias(σ̂2) = E(σ̂2/σ2) − 1,

NVar(σ̂2) = Var(σ̂2/σ2),

NMSE(σ̂2) = E[(σ̂2/σ2) − 1]2,

by its empirical version based on 10000 simulations. In MBB method, the248

variance estimator is determined as σ̂2 = σ̂2(βopt), where the optimal block249

size βopt is based on minimal NMSE over various block sizes β.250

Example 1. The Sample mean251

In this example, we compare the MBB and SPB estimators σ̂2
1 = NVar∗(Z̄

∗)252

of σ2
1 = NVar(Z̄) = N−11T Σ1, where the sample mean Z̄ = N−1

∑N

i=1 Z(si)253

is the OLS estimator of mean µ and Z̄∗ is a bootstrap sample mean. We con-254

sider version T ∗
1 of the sample mean T1 =

√
NZ̄ based on a bootstrap sample255

Z∗ by T ∗
1 =

√
NZ̄∗. The MBB and SPB estimators σ̂2

1 = NVar∗(Z̄
∗) are ap-256

proximated based on B = 1000 bootstrap replicates (9). The covariogram257

models that we considered are exponential, spherical and unknown.258

Table 1 shows approximates of the NBias, NVar and NMSE for MBB259

estimators σ̂2
1 for various block sizes β based on the exponential covariogram260
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model. The asterisk (*) denotes the minimal value of the NMSE. From Table261

1, the optimum block size βopt can be determined based on minimal value of262

the NMSE. For example, for θ1 and n = 6, 12, 24 the optimum block size is263

βopt = 2, 3, 6 and for θ2 and n = 6, 12, 24, βopt = 3, 4, 8. We have used the264

optimum block sizes βopt for MBB method in Table 2. To conserve space, we265

will not further mention the determination of βopt as in Table 1.266

Tables 2-4 show true values of σ2
1 , estimates of the NBias, NVar and267

NMSE for MBB (based on βopt) and SPB estimators σ̂2
1 based on exponential268

covariogram, spherical covariogram with parameter values θ2 = (0, 2, 2)T and269

θ3 = (0, 2, 4)T and unknown covariogram.270

Example 2. The GLS plug-in mean estimate271

Let µ̂ = 1T Σ−1Z/1T Σ−11 be the GLS estimator of mean µ with variance272

1/1TΣ−11. We compare MBB and SPB estimators of σ2
2 = NVar(ˆ̂µ), where273

ˆ̂µ = 1T Σ̂−1Z/1T Σ̂−11 is GLS plug-in estimator of µ. We define a version274

T ∗
2 of the GLS plug-in mean T2 =

√
N ˆ̂µ based on a bootstrap sample Z∗ by275

T ∗
2 =

√
Nµ∗, where µ∗ = 1T Σ̂−1Z∗/1T Σ̂−11.276

Example 3. Plug-in kriging277

To compare MBB and SPB variance estimators of σ2
3 = Var[

ˆ̂
Z(s0)], we define278

the T ∗
3 version of plug-in ordinary kriging predictor T3 =

ˆ̂
Z(s0) = λ̂TZ, based279
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Table 1: Approximates of the NBias, NVar and NMSE for MBB estimators σ̂2

1
= σ̂2

1
(β)

based on exponential covariogram. The asterisk (*) denotes the minimal value of MSE.

θ1 = (1, 1, 1)T θ2 = (0, 2, 2)T

n β NBias NVar NMSE NBias NVar NMSE

6 2 -0.569 0.039 0.362∗ -0.853 0.008 0.736

3 -0.624 0.057 0.446 -0.844 0.013 0.725∗

2 -0.561 0.011 0.326 -0.864 0.002 0.750

12 3 -0.475 0.033 0.258∗ -0.786 0.009 0.626

4 -0.452 0.063 0.267 -0.732 0.021 0.557∗

6 -0.563 0.080 0.397 -0.751 0.033 0.597

2 -0.575 0.003 0.333 -0.874 0.001 0.764

3 -0.463 0.009 0.233 -0.790 0.003 0.626

24 4 -0.369 0.018 0.174 -0.710 0.008 0.512

6 -0.320 0.053 0.155∗ -0.595 0.029 0.383

8 -0.328 0.087 0.195 -0.541 0.058 0.351∗

12 -0.507 0.102 0.359 -0.648 0.064 0.484
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Table 2: True values of σ2
1 and approximates of the NBias, NVar and NMSE for MBB and

SPB estimators σ̂2

1
based on exponential covariogram.

θ1 = (1, 1, 1)T θ2 = (0, 2, 2)T

Method n σ2
1 βopt NBias NVar NMSE σ2

1 βopt NBias NVar NMSE

MBB 6 5.279 2 -0.572 0.039 0.366 19.994 3 -0.846 0.014 0.729

SPB -0.254 0.295 0.359 -0.327 0.367 0.474

MBB 12 6.311 3 -0.471 0.033 0.254 32.074 4 -0.740 0.021 0.569

SPB -0.059 0.239 0.242 -0.067 0.343 0.347

MBB 24 6.890 6 -0.310 0.054 0.150 40.598 8 -0.558 0.057 0.369

SPB 0.012 0.142 0.143 0.039 0.193 0.195

Table 3: True values of σ2

1
and approximates of the NBias, NVar and NMSE for MBB and

SPB estimators σ̂2

1
based on spherical covariogram.

θ2 = (0, 2, 2)T θ3 = (0, 2, 4)T

Method n σ2
1

βopt NBias NVar NMSE σ2
1

βopt NBias NVar NMSE

MBB 6 4.728 2 -0.398 0.078 0.236 14.069 3 -0.703 0.051 0.546

SPB -0.042 0.231 0.232 -0.302 0.275 0.366

MBB 12 5.072 3 -0.285 0.053 0.134 17.046 4 -0.493 0.063 0.306

SPB -0.046 0.048 0.048 -0.122 0.120 0.135

MBB 24 5.249 4 -0.188 0.029 0.064 18.638 6 -0.313 0.057 0.155

SPB -0.026 0.011 0.012 -0.048 0.020 0.022
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Table 4: True values of σ2
1 and approximates of the NBias, NVar and NMSE for MBB and

SPB estimators σ̂2

1
based on unknown covariogram.

weak dependence strong dependence

Method n σ2
1 βopt NBias NVar NMSE σ2

1 βopt NBias NVar NMSE

MBB 6 2.593 2 -0.125 0.124 0.140 35.637 3 -0.927 0.004 0.863

SPB -0.026 0.101 0.102 -0.620 0.353 0.737

MBB 12 3.896 3 -0.032 0.031 0.032 78.315 4 -0.880 0.006 0.781

SPB -0.011 0.013 0.013 -0.482 0.465 0.697

MBB 24 4.681 4 -0.006 0.009 0.009 126.930 8 -0.754 0.024 0.592

SPB -0.003 0.004 0.004 -0.422 0.349 0.527

Table 5: True values of σ2

2
and approximates of the NBias, NVar and NMSE for MBB and

SPB estimators σ̂2

2
.

θ1 = (1, 1, 1)T θ2 = (0, 2, 2)T

Method n σ2
2

βopt NBias NVar NMSE σ2
2

βopt NBias NVar NMSE

MBB 6 5.700 2 -0.574 0.044 0.374 16.355 2 -0.749 0.031 0.592

SPB -0.341 0.201 0.317 -0.274 0.406 0.481

MBB 12 6.242 3 -0.434 0.046 0.235 27.771 4 -0.643 0.045 0.458

SPB -0.108 0.202 0.214 -0.116 0.286 0.299

MBB 24 6.504 4 -0.329 0.025 0.133 36.802 6 -0.521 0.043 0.315

SPB -0.039 0.123 0.124 0.006 0.166 0.166
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Table 6: True values of σ2

3
and approximates of the NBias, NVar and NMSE for MBB and

SPB estimators σ̂2

3
.

θ1 = (1, 1, 1)T θ2 = (0, 2, 2)T

Method n s0 σ2
3 βopt NBias NVar NMSE σ2

3 βopt NBias NVar NMSE

MBB 6 (3.5,3.5) 0.496 2 -0.386 0.404 0.553 1.530 2 -0.510 0.133 0.393

SPB -0.297 0.414 0.503 -0.372 0.168 0.306

MBB 12 (6.5,6.5) 0.415 3 -0.212 0.252 0.297 1.436 4 -0.215 0.114 0.160

SPB -0.128 0.265 0.282 -0.111 0.087 0.099

MBB 24 (12.5,12.5) 0.381 8 -0.036 0.132 0.133 1.385 8 -0.068 0.059 0.063

SPB -0.018 0.115 0.115 0.001 0.036 0.036

on a bootstrap sample Z∗ by T ∗
3 = Z∗(s0) = λ̂TZ∗.280

The MBB and SPB estimators σ̂2
2 = NVar∗(µ

∗) and σ̂2
3 = Var∗[Z

∗(s0)]281

are approximated based on B = 1000 bootstrap replicates (9). Tables 5 and282

6 show true values of σ2
2 and σ2

3, estimates of the NBias, NVar and NMSE for283

MBB (based on βopt) and SPB estimators σ̂2
2 and σ̂2

3 based on exponential284

covariogram for each region D and covariogram parameters θ1 and θ2.285

Example 4. Covariogram parameters estimator286

Let θ̂ = (T4, T5, T6) = (ĉ0, ĉ1, â) be the MLEs of the covariogram parameters287

θ = (c0, c1, a). Note that the estimator of θ̂ is computed numerically based288
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Table 7: True values of σ2

4
and approximates of the NBias, NVar and NMSE for MBB and

SPB estimators σ̂2

4
.

θ1 = (1, 1, 1)T θ2 = (0, 2, 2)T

Method n σ2
2 βopt NBias NVar NMSE σ2

2 βopt NBias NVar NMSE

MBB 6 0.639 2 -0.547 0.240 0.539 0.026 3 -0.037 0.141 0.142

SPB -0.114 0.237 0.250 -0.072 0.129 0.134

MBB 12 0.378 4 -0.091 0.312 0.321 0.011 4 -0.055 0.100 0.103

SPB -0.083 0.220 0.227 0.073 0.092 0.097

MBB 24 0.198 6 -0.102 0.291 0.301 0.003 8 -0.148 0.010 0.032

SPB 0.069 0.193 0.198 0.040 0.003 0.005

on the spatial sample Z as Ti = ti(Z); i = 4, 5, 6 and has no closed form,289

so σ2
i = Var(Ti) is unknown. We define a version T ∗

i = ti(Z∗) of the esti-290

mator Ti based on bootstrap samples Z∗. The MBB and SPB estimators291

σ̂2
i = Var∗(T

∗
i ) are approximated based on B = 1000 bootstrap replicates292

(9). Tables 7–9 show true values of σ2
i , estimates of the NBias, NVar and293

NMSE for MBB (based on βopt) and SPB estimators σ̂2
i based on exponential294

covariogram for each region D and covariogram parameters θ1 and θ2.295

Results296

Tables 1–9 show that the MBB variance estimations σ̂2 are underestimated.297
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Table 8: True values of σ2
5 and approximates of the NBias, NVar and NMSE for MBB and

SPB estimators σ̂2

5
.

θ1 = (1, 1, 1)T θ2 = (0, 2, 2)T

Method n σ2
2 βopt NBias NVar NMSE σ2

2 βopt NBias NVar NMSE

MBB 6 0.863 2 -0.655 0.233 0.662 0.686 2 -0.363 0.764 0.896

SPB -0.120 0.258 0.272 -0.297 0.689 0.777

MBB 12 0.409 3 -0.118 0.288 0.302 0.246 4 -0.309 0.702 0.797

SPB -0.084 0.181 0.188 -0.273 0.507 0.581

MBB 24 0.203 4 -0.145 0.2775 0.298 0.078 6 -0.294 0.624 0.710

SPB -0.074 0.139 0.144 0.220 0.358 0.406

Table 9: True values of σ2

6
and approximates of the NBias, NVar and NMSE for MBB and

SPB estimators σ̂2

6
.

θ1 = (1, 1, 1)T θ2 = (0, 2, 2)T

Method n σ2
2

βopt NBias NVar NMSE σ2
2

βopt NBias NVar NMSE

MBB 6 0.471 2 -0.714 0.459 0.969 1.477 3 -0.377 0.761 0.903

SPB -0.616 0.447 0.826 -0.247 0.594 0.655

MBB 12 0.258 4 -0.552 0.312 0.616 0.592 6 -0.302 0.702 0.793

SPB -0.434 0.195 0.383 -0.206 0.488 0.530

MBB 24 0.162 8 -0.400 0.278 0.438 0.151 8 -0.260 0.639 0.707

SPB -0.260 0.145 0.213 0.117 0.384 0.398
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Tables 2–9 show that the MBB and SPB variance estimations σ̂2 are asymp-298

totically unbiased and consistent. Tables 2–9 also indicate that the SPB299

estimators are preferable to the MBB versions, especially for stronger de-300

pendence structure and larger sample sizes. In Tables 5–9, true values of301

σ2
i = Var(Ti); i = 2, · · · , 6 have no closed form and they can be approxi-302

mated based on Monte-Carlo simulation by 10000 times replicates.303

6. Analysis of Coal-Ash Data304

In this section, we apply the SPB method to analyze the coal-ash data305

(Cressie, 1993) from Greene County, Pennsylvania. These data are collected306

with sample size N = 206 at locations {Z(x, y) : x = 1, . . . , 16; y = 1, . . . , 23}307

with west coordinates greater than 64 000 ft; spatially this defines an approx-308

imately square grid, with 2500 ft spacing (Cressie, 1993; Fig. 2.2). Our goal309

is estimation of bias, variance and distribution of plug-in kriging predictor310

and variogram parameters estimator by SPB method.311

The SPB algorithm is used to estimate and remove the correlation struc-312

ture. To estimate the correlation structure of the residuals, first, the spherical313
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semi-variogram314

γ(h; θ) =





0 ||h|| = 0

c0 + c1(
3
2
||h||
a

− 1
2
( ||h||

a
)3) 0 < ||h|| ≤ a

c0 + c1 ||h|| ≥ a

(11)

is fitted to the empirical semi-variogram estimation of coal-ash data with315

θ̂ = (ĉ0, ĉ1, â) = (0.817, 0.815, 15.787). Figure 1(a) shows the fitted spherical
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Figure 1: (a) Spherical semi-variogram model γ̂(h; θ) fitted to the empirical semi-

variogram γ̂(h) before removal correlation structure. (b) Empirical semi-variogram

γ̂(h) for standardized residuals after removal correlation structure.

316
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semi-variogram. The covariance matrix can be estimated as Σ̂ = σ(h; θ̂) =317

σ(0; θ̂) − γ(h; θ̂). Then, the uncorrelated residuals ǫ̂ = L̂−1R are used to318

compute the standardized uncorrelated residuals ǫ̃(si) = (ǫ̂(si) − ¯̂ǫ)/sǫ̂; i =319

1, . . . , N . Figure 1(b) shows the fit of a linear semi-variogram to the em-320

pirical semi-variogram estimate of the standardized residuals. The linear321

semi-variogram model in Figure 1(b) shows that the standardized residuals322

(ǫ̃(s1), . . . , ǫ̃(sN)) are uncorelated. Finally, the bootstrap samples are deter-323

mined by Z∗ = µ̂+ L̂ǫ∗, where the bootstrap vector ǫ∗ is generated by simple324

random sampling with replacement from the standardized uncorrelated resid-325

uals vector ǫ̃.326

Now suppose that the plug-in ordinary kriging T1 =
ˆ̂
Z(s0) and variogram327

parameter estimators θ̂ = (T2, T3, T4) = (ĉ0, ĉ1, â) are the estimators of in-328

terest, where Ti = ti(Z). For example, if s0 = (5, 6) is a new location then,329

ˆ̂
Z(s0) = λ̂TZ = 10.696 and also θ̂ = (ĉ0, ĉ1, â) = (0.817, 0.815, 15.787). The330

SPB version T ∗
i of Ti is T ∗

i = ti(Z∗), where Z∗ is the SPB sample. We es-331

timate the precision measures Bias(Ti) and Var(Ti) and distribution GTi
(t)332

by SPB method and B bootstrap replicates T ∗
i,1, . . . , T

∗
i,B; i = 1, 2, 3, 4 in333

relations (8)–(10). Table 10 shows estimates of SPB bias and variance for334

plug-in kriging and estimates of variogram parameters based on B = 1000335
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Table 10: Estimates of SPB bias and variance for plug-in kriging and variogram parameters

for coal-ash data.

T ∗
i Bias∗ Var∗

Z∗(s0) –0.901 0.706

c∗0 0.002 0.017

c∗1 0.066 0.037

a∗ –5.829 21.602

bootstrap replicates. Figure 2 shows the histogram of plug-in kriging and336

variogram parameters estimator based on B = 1000 bootstrap replicates.337

7. Discussion and Results338

Spatial data analysis is based on the estimate of correlation structure, for339

example, kriging predictor. The estimation of correlation structure is based340

on parametric covariogram models. Unfortunately, the estimates of covari-341

ogram parameters have no closed form and so are computed numerically. If342

we can estimate the correlation structure as well, then we will use knowledge343

of the covariogram model which describes the dependence structure in the344

SPB method. For spatial data the MBB method is usually used to estimate345
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Figure 2: Histogram of (a) plug-in kriging and variogram parameters estimator:

(b) nugget effect, (c) partial sill and (d) range for coal-ash data.
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the precision measures of the estimators. However, as already pointed out,346

the MBB method has limitations and weaknesses. We now summarize some347

advantages of the SPB method as compared with the MBB method:348

The precision of the MBB estimators is related to the optimal block size349

βopt
n in (7) which depends on unknown parameters which are difficult to350

estimate. In our simulations it is clear that the optimal block size differs351

for various estimators or precision measures. Note also that the optimal352

block size determination is impossible for estimators that have no closed353

form (e.g. covariogram parameters estimator). For some data sets we may354

not be able to find the block size that satisfies N = Kβd
n. In other words,355

there is not always complete blocking and then N1 = Kβd
n < N is the total356

number of data-values in the resampled complete blocks. As a result, N −N1357

observations are ignored.358

Establishing the consistency of MBB estimators and estimation of block359

size requires that the random field satisfies strong-mixing conditions. In360

the MBB method, our simulations indicate that the variance estimators σ̂2
361

are underestimated. Moreover, our simulations show that the MBB and362

SPB variance estimations σ̂2 are asymptotically unbiased and consistent. In363

this study, the SPB estimators are more accurate than the MBB estimator,364
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for variance estimation of estimators in spatial data analysis, especially for365

stronger dependence structure and larger sample sizes. In the SPB method,366

we use the estimation of spatial correlation structure, therefore the SPB367

method will perform better than the MBB method. We are studying on368

comparison of estimation of distribution, spatial prediction interval and con-369

fidence interval by SPB and MBB methods.370
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