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Abstract

The execution process of a genetic algorithm typically ireslsome trial-and-error. This is
due to the difficulty in setting the initial parameters of the dtligor— especially when little is
known about the problem domain. The problem is magnified when dppli@ulti-objective
optimisation, as care is needed to ensure that the final pioputE candidate solutions is
representative of the trade-off surface. We propose a cotigpaiasteering system that
allows the engineer to interact with the optimisation routine nduxecution. This
interaction can be as simple as monitoring the values of some parameters @uexectition
process, or could involve altering those parameters to influencgudiity of the solutions
produce by the optimisation process.



1. Introduction

Decision Making in Engineering Design can often be aided by wg@ngtic algorithms to

solve many-objective problems.  Typically, these many-objectjeaetic algorithms

(MOGASs) are run non-interactively. The engineer will set ithiéal parameters of the
algorithm and then execute it. During this execution procdsishvean often take hours or
days to complete, user interaction, if any, is limited to theagional plotting of the

intermediate solutions and the possible termination of the algoriti@ppears to have failed
(for example, if the algorithm doesn’t show convergence). Whenxémugon has finished

the solutions produced by the algorithm are assessed and, if the resultssatesfactory, the

parameters of the algorithm are adjusted and it is run agaims process of repeated
execution of the MOGA leads to an inefficient use of resousras possibly also to inferior
solutions.

As the process of setting the initial parameters of tgerighm can be difficult, especially if
little is known about the problem domain, the re-execution of theGBQvith altered
parameters is common. Unfortunately, the evolutionary computatimmunity is still some
way from possessing anything more useful than ‘rules-of-thumb’ whamies to the setting
of these initial parameters [1]. One potential solutiorni® problem is to allow the engineer
to interact with the optimisation routine during execution. T&ikrniown as computational
steering, and may be as simple as allowing the engineer to mtimitosalues of some
parameters in the optimisation process and, if necessary,ust atlpers. In this way, the
engineer could influence the quality of the solutions produced by the optonipaticess.



2. Computational Steering and PDAs

[2] defines computational steering as an approach that improvagdheation of simulation
and visualisation in the computational process, allowing theneegior scientist to control
the succession of steps required to solve engineering and caonltatience problems.
The desire to interact with their simulations is nothing new engineers and scientists
however, as far back as 1987 the Visualization in Scientific Computingsihtapkeported:

“Scientists not only want to analyze the data that resudte Super-computations; they also
want to interpret what is happening to the data during super-compstaiResearchers want
to steercalculations in close to close-to-real time; they want talide to change parameters,
resolution, or representation, and see the effects. They avdnit/é the scientific discovery

process; they want iateractwith their data.” [3]

Currently, the majority of computational steering systerasagplied to large simulations of
compute-intensive models, such as those used in the study of nanotinderitéron [4 or
the study of implantable defibrillator device designs [5].

The visualisation of the intermediate results of the computdtiprocess is extremely
important. It must allow the engineer or scientist toceffitly extract the relevant
information from the data [6], so as to be able to make an infbicheice about which
aspects of the process to adjust. The complexity of thaligation should be able to be
tailored to the hardware available to the user (for example, a lap-top,&2®OX4].

In our application domain of Engineering Design, it would be espeacimgful for an

engineer working on a multi-objective optimisation problem to be &blcheck on the
progress of the algorithm from the field. An ideal client fiois tcomputational steering
system would provide low-cost, portable access to the system.

The implementation of this steering client can be effegtixehlised by using a PDA enabled
with a wireless connection. The low cost involved in the use BDA based client would
allow a wide uptake of this steering system by engineetieirfield. The portability of a
PDA with a wireless connection also results in a very flexible system



3. Decision Making in Evolutionary Multi-Objective
Optimisation
The main role of the decision maker (DM) in evolutionary mulgotye optimisation
(EMO) is usually to select a single solution from the poadigtiinfinite Pareto-optimal
solution set, according to some criteria. In practice the DM is usuallyiraahgsted in a sub-
set of the trade-off surface, thus there is little or no fitenerepresenting parts of the trade-
off surface that lie outside this region of interest (R@)owing the DM to focus the search
on relevant areas of the solution space increases the raffiax the optimisation process and
reduces the amount of irrelevant information that the DM has to cong|der [

DM preferences can be incorporated into the optimisation pratéissee waysa posteriorj

a priori, and progressivelyA posteriorimethods of preference articulation involve the DM
selecting a compromise solution from the global set of Paretowaptolutions. A priori
preference articulation and progressive preference atimulaim to achieve a good
representation of the trade-off surface in the DM’s ROI. Tdeyhis by concentrating the
optimiser on a sub-set of the global trade-off surfacea pmiori articulation of preferences
the DM expresses their preferences before the start adptisation process. However,
often the DM may not be sure of their preferences prior to cgdtion, and by stating
preferences priori the DM may not investigate some areas of the search #patcmerit
attention. A better method is progressive articulation of meaées, where the DM can
express preferences during the search and thus incorporate informatiorctina¢Havailable
during the search process.

The first scheme for progressive preference articulatias wtroduced by Fonseca and
Fleming [8]. It extended the Pareto-based ranking scheme dw alieferences to be
expressed during the run of the MOGA. These preferenceseatérua modified version of
dominance which combines Pareto-optimality, constraint satisfactah pgogramming, the
lexicographic method, and constrained optimisation to rank the candidaiersoin a multi-
objective genetic algorithm.



4. Visualisation in Computational Steering

As mentioned in section 2, visualisation is a key component of catigmdl steering. The
visualisation method of any computational steering system bausble to present the user
with enough relevant information for the user to guide the proce$serefore, the
visualisation method for the intermediate results of our robjgctive genetic algorithm
must be able to display high-dimensional data sets, as we are dealing witbbjetives.

The visualisation of high dimensional data sets in an intuitiganar is extremely difficult.
While scatter diagrams provide a fundamental tool for visatadis of lower dimensional data
— allowing the eye to see such features as clustering, owtlidrBnearity/nonlinearity — they
do not generalise easily to more than three dimensions [9]. Metiatdsave been proposed
for solving this visualisation problem include:

e Scatter Plot Matricegonsist of an array of scatter diagrams formed into an
matrix. Each dimension of the data forms one column and onefrihe matrix
(see Figure 1.1).

e Chernoff Faceg10] are an iconic representation of multidimensional data, used
to illustrate trends in that data. Each point in multidimensiepace is
represented by a cartoon face whose features, such as lengtheofambs
curvature of mouth, correspond to a dimension of the data (see Figure 1.2).

e Parallel Coordinate Plot$11] allow the visualisation of high dimensional data in
a simple two dimensional representation. Instead of havingxthe athogonal
to each other, as in Cartesian geometry, the axes are plapadailel. Thus a
point in n dimensional space will be represented as a line thattbisearallel
axes (see Figure 1.3).
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5. Implementation

5.1. Visualisation

The visualisation technique used for our computational steeystgrs must be capable of
displaying the candidate solutions produced by our many-objectiveigalgorithm in an
intuitive manner. It is not sufficient just to be able teptiy this high dimensional data in a
two dimensional representation, we must also be able to eawlpret the relationships
between the data points. Many techniques have been proposed tthsopreblem, and an
overview of three commonly used methods is given in section 4. eTimethods are
examined more closely below, and their suitability to our computatgtearing application
is assessed.

Scatter plot matrices are one commonly used technique in thealigation of high
dimensional data sets. They provide a visualisation techniquéathlitates rapid scanning
of many dimensions; however discovery of high dimensional pattam&e complicated by
the disconnected representation of multiple aspects of the samteirpdiigh dimensional
space [12]. The representational complexity of these sqaltie matrices is highQ(n?),
because they project dimensions ontan X (n — 1) scatter plots. This means that this
technique won't scale well to large numbers of variables. Tigh representational
complexity also means that this technique will be unsuitédyleise on a PDA due to the
extremely limited size of the screen.

Another technique used to represent many-dimensional data is usimpffi@aces. This
visualisation technique has a lower representational complidty scatter plot matrices, as
each face represents a point of data in high dimensional .spddgs gives us a
representational complexity dd(n). The use of Chernoff Faces, however, amounts to
drawing a two dimensional function surface in high dimensional spmu@ not to the
representation of a genuinely high dimensional structure [13herQtisadvantages to this
method of visualisation are that the interpretation of the facsubjective and there is no
guantitative information displayed. Chernoff proposed this visai@din technique simply as

a way of highlighting which areas of the search space shoulthrigeted for closer
examination.

Parallel Coordinate plots also have a representationaplegity of O(n), as each line
bisecting the axes of the plot represents a single point in higéndional space. Parallel
coordinates lose no data in the representation processnthisni ensures that there is a
unique representation for each unique set of data. Unlike Ché&iaads, parallel coordinate
plots treat each dimension of the data in the same way, ngsiidtieasy plotting of data
points. The main weaknesses of this method are that it requirkiple views to see
different trade-offs and it can be difficult to distinguish indial points if many data points
are represented.

Parallel Coordinate plots were chosen to perform the vistials of the data in our
computational steering system due to their ease of interpregatid the ability to display all
the appropriate data on the screen of the PDA. To overcome #rdigloproblem of having
difficulty distinguishing individual points when the display is cluttered will only represent
those candidate solutions that fit our modified definition of Payptonality (see section 3).
This will prevent the plot from becoming cluttered without removing arthetiseful data.

5.2. Steering of the Multi-Objective Genetic Algorithm

The computation steering of our optimisation process can be aghietw@o ways. The first
of these is by adjusting the parameters of the algorithm. Tpasaneters control the



behaviour of the algorithm and can affect both the rate of comwzgnd the quality of the
solutions produced. For example, reducing the exploratory eftdctmutation in the
algorithm by lowering the mutation rate will reduce the amounhes® genetic material
coming in to the population in each new generation, and thus inc@asergence. However
this increase in the rate of convergence will come at tle of converging to a local
optimum.

Some other parameters that we can adjust in our steerirgmsgse the upper and lower
bounds on the decision variables, the population size (either by smgehe number of

immigrants or increasing the number of solutions produced by se&lgctind the fitness

assignment method. These parameters all affect the behaVithe algorithm in different

ways. For instance, tightening or loosening the bounds orettisi@h variables allows the
engineer to focus or widen the search in decision space, whileasimogethe number of

immigrants in the population can force the algorithm out of locaapbecause it introduces
new genetic material.

Changing how fitness is assigned in the algorithm can altqartiebility of a solution being
carried over to the next generation. If an exponential fitresgranent method is used, then
the highest ranked solution will form a proportionally largert mdrthe next generation
compared to a linear fitness assignment method (see Fig. 2).
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Fig. 2.1 — Graph showing linear fithess assignment to solutions



Fig. 2.2 — Graph showing exponential fithess assignment

The second way of steering the optimisation process is to usgepsive preference
articulation (see section 3) to alter the goals and peeritor the objectives, and thus affect
the areas of the search space that the algorithm focuses oralgbhiehm is focused on a
region in the search space by assigning higher rank to thosessltliat are in that region
(which is defined by the preferences of the algorithm). Onsatiafactory value has been
achieved for one of the objectives, the objective in quesaonbe constrained to be at least
as good as that value. All the potential solutions that doneet this criterion are ranked
worse than those that do, and therefore the algorithm is dtaewsy from values that violate
that constraint.
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