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Abstract 
The execution process of a genetic algorithm typically involves some trial-and-error.  This is 
due to the difficulty in setting the initial parameters of the algorithm – especially when little is 
known about the problem domain.  The problem is magnified when applied to multi-objective 
optimisation, as care is needed to ensure that the final population of candidate solutions is 
representative of the trade-off surface.  We propose a computational steering system that 
allows the engineer to interact with the optimisation routine during execution.  This 
interaction can be as simple as monitoring the values of some parameters during the execution 
process, or could involve altering those parameters to influence the quality of the solutions 
produce by the optimisation process. 



1. Introduction 
Decision Making in Engineering Design can often be aided by using genetic algorithms to 
solve many-objective problems.  Typically, these many-objective genetic algorithms 
(MOGAs) are run non-interactively.  The engineer will set the initial parameters of the 
algorithm and then execute it.  During this execution process, which can often take hours or 
days to complete, user interaction, if any, is limited to the occasional plotting of the 
intermediate solutions and the possible termination of the algorithm if it appears to have failed 
(for example, if the algorithm doesn’t show convergence).  When the execution has finished 
the solutions produced by the algorithm are assessed and, if the results are not satisfactory, the 
parameters of the algorithm are adjusted and it is run again.  This process of repeated 
execution of the MOGA leads to an inefficient use of resources, and possibly also to inferior 
solutions. 
 
As the process of setting the initial parameters of the algorithm can be difficult, especially if 
little is known about the problem domain, the re-execution of the MOGA with altered 
parameters is common.  Unfortunately, the evolutionary computation community is still some 
way from possessing anything more useful than ‘rules-of-thumb’ when it comes to the setting 
of these initial parameters [1].  One potential solution to this problem is to allow the engineer 
to interact with the optimisation routine during execution.  This is known as computational 
steering, and may be as simple as allowing the engineer to monitor the values of some 
parameters in the optimisation process and, if necessary, to adjust others.  In this way, the 
engineer could influence the quality of the solutions produced by the optimisation process. 
 



2. Computational Steering and PDAs 
[2] defines computational steering as an approach that improves the integration of simulation 
and visualisation in the computational process, allowing the engineer or scientist to control 
the succession of steps required to solve engineering and computational science problems.  
The desire to interact with their simulations is nothing new for engineers and scientists 
however, as far back as 1987 the Visualization in Scientific Computing Workshop reported: 
 
“Scientists not only want to analyze the data that results from super-computations; they also 
want to interpret what is happening to the data during super-computations.  Researchers want 
to steer calculations in close to close-to-real time; they want to be able to change parameters, 
resolution, or representation, and see the effects.  They want to drive the scientific discovery 
process; they want to interact with their data.” [3] 
 
Currently, the majority of computational steering systems are applied to large simulations of 
compute-intensive models, such as those used in the study of nano-indentation of iron [4 or 
the study of implantable defibrillator device designs [5]. 
 
The visualisation of the intermediate results of the computational process is extremely 
important.  It must allow the engineer or scientist to efficiently extract the relevant 
information from the data [6], so as to be able to make an informed choice about which 
aspects of the process to adjust.  The complexity of the visualisation should be able to be 
tailored to the hardware available to the user (for example, a lap-top, PDA, etc.) [4]. 
 
In our application domain of Engineering Design, it would be especially useful for an 
engineer working on a multi-objective optimisation problem to be able to check on the 
progress of the algorithm from the field.  An ideal client for this computational steering 
system would provide low-cost, portable access to the system.   
 
The implementation of this steering client can be effectively realised by using a PDA enabled 
with a wireless connection.  The low cost involved in the use of a PDA based client would 
allow a wide uptake of this steering system by engineers in the field.  The portability of a 
PDA with a wireless connection also results in a very flexible system. 



3. Decision Making in Evolutionary Multi-Objective 
Optimisation 

The main role of the decision maker (DM) in evolutionary multiobjective optimisation 
(EMO) is usually to select a single solution from the potentially infinite Pareto-optimal 
solution set, according to some criteria.  In practice the DM is usually only interested in a sub-
set of the trade-off surface, thus there is little or no benefit in representing parts of the trade-
off surface that lie outside this region of interest (ROI).  Allowing the DM to focus the search 
on relevant areas of the solution space increases the efficiency of the optimisation process and 
reduces the amount of irrelevant information that the DM has to consider [7]. 
 
DM preferences can be incorporated into the optimisation process in three ways; a posteriori, 
a priori, and progressively.  A posteriori methods of preference articulation involve the DM 
selecting a compromise solution from the global set of Pareto-optimal solutions.  A priori 
preference articulation and progressive preference articulation aim to achieve a good 
representation of the trade-off surface in the DM’s ROI.  They do this by concentrating the 
optimiser on a sub-set of the global trade-off surface.  In a priori articulation of preferences 
the DM expresses their preferences before the start of the optimisation process.  However, 
often the DM may not be sure of their preferences prior to optimisation, and by stating 
preferences a priori the DM may not investigate some areas of the search space that merit 
attention.  A better method is progressive articulation of preferences, where the DM can 
express preferences during the search and thus incorporate information that becomes available 
during the search process. 
 
The first scheme for progressive preference articulation was introduced by Fonseca and 
Fleming [8].  It extended the Pareto-based ranking scheme to allow preferences to be 
expressed during the run of the MOGA.  These preferences are used in a modified version of 
dominance which combines Pareto-optimality, constraint satisfaction, goal programming, the 
lexicographic method, and constrained optimisation to rank the candidate solutions in a multi-
objective genetic algorithm. 



4. Visualisation in Computational Steering 
As mentioned in section 2, visualisation is a key component of computational steering.  The 
visualisation method of any computational steering system must be able to present the user 
with enough relevant information for the user to guide the process.  Therefore, the 
visualisation method for the intermediate results of our multi-objective genetic algorithm 
must be able to display high-dimensional data sets, as we are dealing with many objectives. 
 
The visualisation of high dimensional data sets in an intuitive manner is extremely difficult.  
While scatter diagrams provide a fundamental tool for visualisation of lower dimensional data 
– allowing the eye to see such features as clustering, outliers and linearity/nonlinearity – they 
do not generalise easily to more than three dimensions [9].  Methods that have been proposed 
for solving this visualisation problem include: 
 

•  Scatter Plot Matrices consist of an array of scatter diagrams formed into an n x n 
matrix.  Each dimension of the data forms one column and one row of the matrix 
(see Figure 1.1). 

•  Chernoff Faces [10] are an iconic representation of multidimensional data, used 
to illustrate trends in that data.  Each point in multidimensional space is 
represented by a cartoon face whose features, such as length of nose and 
curvature of mouth, correspond to a dimension of the data (see Figure 1.2). 

•  Parallel Coordinate Plots [11] allow the visualisation of high dimensional data in 
a simple two dimensional representation.  Instead of having the axes orthogonal 
to each other, as in Cartesian geometry, the axes are placed in parallel.  Thus a 
point in n dimensional space will be represented as a line that bisects n parallel 
axes (see Figure 1.3). 

 
 

 
 

Fig. 1.1 – A Scatter Plot Matrix 



 
 

Fig. 1.2 – Chernoff Faces 
 
 

 
 

Fig. 1.3 – Parallel Coordinate Plot 



5. Implementation 

5.1. Visualisation 
The visualisation technique used for our computational steering system must be capable of 
displaying the candidate solutions produced by our many-objective genetic algorithm in an 
intuitive manner.  It is not sufficient just to be able to display this high dimensional data in a 
two dimensional representation, we must also be able to easily interpret the relationships 
between the data points.  Many techniques have been proposed to solve this problem, and an 
overview of three commonly used methods is given in section 4.  These methods are 
examined more closely below, and their suitability to our computational steering application 
is assessed. 
 
Scatter plot matrices are one commonly used technique in the visualisation of high 
dimensional data sets.  They provide a visualisation technique that facilitates rapid scanning 
of many dimensions; however discovery of high dimensional patterns can be complicated by 
the disconnected representation of multiple aspects of the same point in high dimensional 
space [12].  The representational complexity of these scatter plot matrices is high (O(n2)), 
because they project n dimensions onto n x (n – 1) scatter plots.  This means that this 
technique won’t scale well to large numbers of variables.  This high representational 
complexity also means that this technique will be unsuitable for use on a PDA due to the 
extremely limited size of the screen. 
 
Another technique used to represent many-dimensional data is using Chernoff Faces.  This 
visualisation technique has a lower representational complexity than scatter plot matrices, as 
each face represents a point of data in high dimensional space.  This gives us a 
representational complexity of O(n).  The use of Chernoff Faces, however, amounts to 
drawing a two dimensional function surface in high dimensional space, and not to the 
representation of a genuinely high dimensional structure [13].  Other disadvantages to this 
method of visualisation are that the interpretation of the face is subjective and there is no 
quantitative information displayed.  Chernoff proposed this visualisation technique simply as 
a way of highlighting which areas of the search space should be targeted for closer 
examination. 
 
Parallel Coordinate plots also have a representational complexity of O(n), as each line 
bisecting the axes of the plot represents a single point in high dimensional space.  Parallel 
coordinates lose no data in the representation process; this in turn ensures that there is a 
unique representation for each unique set of data.  Unlike Chernoff Faces, parallel coordinate 
plots treat each dimension of the data in the same way, resulting in easy plotting of data 
points.  The main weaknesses of this method are that it requires multiple views to see 
different trade-offs and it can be difficult to distinguish individual points if many data points 
are represented. 
 
Parallel Coordinate plots were chosen to perform the visualisation of the data in our 
computational steering system due to their ease of interpretation and the ability to display all 
the appropriate data on the screen of the PDA.  To overcome the potential problem of having 
difficulty distinguishing individual points when the display is cluttered, we will only represent 
those candidate solutions that fit our modified definition of Pareto optimality (see section 3).  
This will prevent the plot from becoming cluttered without removing any of the useful data. 

5.2. Steering of the Multi-Objective Genetic Algorithm 
The computation steering of our optimisation process can be achieved in two ways.  The first 
of these is by adjusting the parameters of the algorithm.  These parameters control the 



behaviour of the algorithm and can affect both the rate of convergence and the quality of the 
solutions produced.  For example, reducing the exploratory effects of mutation in the 
algorithm by lowering the mutation rate will reduce the amount of new genetic material 
coming in to the population in each new generation, and thus increase convergence.  However 
this increase in the rate of convergence will come at the risk of converging to a local 
optimum.   
 
Some other parameters that we can adjust in our steering system are the upper and lower 
bounds on the decision variables, the population size (either by increasing the number of 
immigrants or increasing the number of solutions produced by selection), and the fitness 
assignment method.  These parameters all affect the behaviour of the algorithm in different 
ways.  For instance, tightening or loosening the bounds on the decision variables allows the 
engineer to focus or widen the search in decision space, while increasing the number of 
immigrants in the population can force the algorithm out of local optima because it introduces 
new genetic material.   
 
Changing how fitness is assigned in the algorithm can alter the probability of a solution being 
carried over to the next generation.  If an exponential fitness assignment method is used, then 
the highest ranked solution will form a proportionally larger part of the next generation 
compared to a linear fitness assignment method (see Fig. 2). 

 
 

Fig. 2.1 – Graph showing linear fitness assignment to solutions 



 
 

Fig. 2.2 – Graph showing exponential fitness assignment 
 
The second way of steering the optimisation process is to use progressive preference 
articulation (see section 3) to alter the goals and priorities for the objectives, and thus affect 
the areas of the search space that the algorithm focuses on.  The algorithm is focused on a 
region in the search space by assigning higher rank to those solutions that are in that region 
(which is defined by the preferences of the algorithm).  Once a satisfactory value has been 
achieved for one of the objectives, the objective in question can be constrained to be at least 
as good as that value.  All the potential solutions that do not meet this criterion are ranked 
worse than those that do, and therefore the algorithm is steered away from values that violate 
that constraint. 
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