
This is a repository copy of A service oriented architecture for engineering design.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74702/

Monograph:
Shenfield, A. and Fleming, P.J. (2004) A service oriented architecture for engineering
design. Research Report. ACSE Research Report no. 877 . Automatic Control and
Systems Engineering, University of Sheffield

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A SERVICE ORIENTED ARCHITECTURE
FOR

ENGINEERING DESIGN

A. SHENFIELD P. J. FLEMING

Department of Automatic Control and Systems Engineering
University of Sheffield

Sheffield, S1 3JD
UK

Research Report No. 877

December 2004

A Service Oriented Architecture for Engineering
Design
A. Shenfield and P. J. Fleming
Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street,
Sheffield, S1 3JD, UK

Abstract
Decision making in engineering design can be effectively addressed by using genetic
algorithms to solve multi-objective problems. These multi-objective genetic algorithms
(MOGAs) are well suited to implementation in a Service Oriented Architecture. Often the
evaluation process of the MOGA is compute-intensive due to the use of a complex computer
model to represent the real-world system. The emerging paradigm of Grid Computing offers
a potential solution to the compute-intensive nature of this objective function evaluation, by
allowing access to large amounts of compute resources in a distributed manner. This paper
presents a grid-enabled framework for multi-objective optimisation using genetic algorithms
(MOGA-G) to aid decision making in engineering design.

1. Introduction
Soft Computing techniques such as Neural Networks, Fuzzy Logic, and Evolutionary
Computation are used to solve many complex real-world engineering problems. These
techniques provide the engineer with a new set of tools that often out-perform conventional
methods in areas where the problem domain is noisy or ill-defined. However, in the cases of
Neural Networks and Evolutionary Computation especially, these tools can be
computationally intensive.

Grid Computing offers a solution to the computationally intensive nature of these techniques.
The Grid Computing paradigm is an emerging field of computer science that aims to offer “a
seamless, integrated computational and collaborative environment” [1]. Ian Foster defines a
computational grid as “a hardware and software infrastructure that provides dependable,
consistent, pervasive, and inexpensive access to high-end computational capabilities” [2].
Grid Computing is differentiated from conventional distributed computing by its emphasis on
co-ordinated resource sharing and problem solving in dynamic, multi-institutional virtual
organisations [3]. These resources include software packages, compute resources, sensor
arrays, data and many others.

The purpose of this paper is to introduce a grid enabled framework for multi-objective
optimisation using genetic algorithms (MOGA-G). This framework will be presented in the
context of a Service Oriented Architecture approach. This approach ties in with that taken by
the Globus Project [4] to providing access to grid resources via Grid Services. Section 2 will
introduce Genetic Algorithms and Multi-Objective Optimisation. Section 3 will briefly
introduce the core grid concepts used in the implementation of our framework. Section 4 will
outline other related work. Section 5 will provide details of the implementation of our
framework, and Section 6 will draw some conclusions and present some ideas for further
work.

2. Genetic Algorithms and Multi-Objective
Optimisation

2.1. Genetic Algorithms
Genetic Algorithms (GAs) are an optimisation technique utilising some of the mechanisms of
natural selection [5]. GAs are an iterative, population based method of optimisation that are
capable of both exploring the solution space of the problem and exploiting previous
generations of solutions. Exploitation of the previous generation of solutions is performed by
a selection operator. This operator gives preference to those solutions which have high fitness
when creating the next generation of solutions to be evaluated. Exploration of the solution
space is performed by a mutation operator and a recombination operator and helps to ensure
the robustness of the algorithm by preventing the algorithm from getting stuck in local
optima.

Genetic Algorithms evaluate candidate solutions based on pay-off information from the
objective function, rather than derivative information or auxiliary knowledge. This ensures
that GAs are applicable to many different problem domains, including those where
conventional optimisation techniques (such as hill-climbing) may fail.

2.2. Multi-Objective Optimisation
Many real-world engineering design problems involve the satisfaction of multiple conflicting
objectives. In this case it is unlikely that a single ideal solution will be possible. Instead, the
solution of a multi-objective optimisation problem will lead to a family of Pareto optimal

points, where any improvement in one objective will result in the degradation of one or more
of the other objectives.

Genetic Algorithms are particularly well suited to this kind of multi-objective optimisation,
because they search a population of candidate solutions. This enables the GA to find multiple
solutions which form the Pareto optimal set (see Fig. 1.). GAs are often able to find superior
solutions to real-world problems than conventional optimisation techniques (i.e. constraint
satisfaction). This is due to the difficulty that conventional optimisation techniques have
when searching in the noisy or discontinuous solution spaces that real-world problems often
have.

Fig. 1. The Pareto Optimal Set

2.3. Applications of Genetic Algorithms
Genetic Algorithms have been used to solve problems across many different disciplines. GAs
have been used in such diverse fields as Economics and Social Theory [6]. Robotics [7] and
Art [8]. For many non-trivial real-world applications the evaluation of the objective function
is performed by computer simulation of the system. For example, in the optimisation of
controller parameters for gas turbine aero engines [9], a computer model of the engine is used
to calculate the values of the objective functions for a given controller design.

The use of computer simulations to evaluate the objective function leads to some new issues.
To ensure that the results gained from the genetic algorithm are meaningful, the simulation
must be complex enough to capture all the relevant dynamics of the true system. However,
assuming that this level of complexity is obtainable, the simulation may be very
computationally intensive. As genetic algorithms are population based methods, the
simulation must be run many times. In a typical genetic algorithm this could involve running
the simulation 10,000 times.

2.4. Parallel Genetic Algorithms
The computationally intensive nature of the evaluation process has motivated the
development of parallel genetic algorithms. Early proposals for the implementation of
parallel GAs considered two forms of parallelisation which still apply today: multiple
communicating populations, and single-population master-slave implementations [10].

The decision between which of these two types of parallelisation to implement must consider
several factors, such as ease of implementation and use, and the performance gained by
parallelisation. Single-population parallel GAs are often the easier to implement and use, as
experience gained with sequential GAs can be easily applied to these. In contrast, the
implementation and use of multiple communicating populations based parallel GAs involves
choosing appropriate values for additional parameters such as size and number of populations,
frequency of migration, and the number of individuals involved in migration. This increases
the complexity of the parallel GA as each of these parameters affects the efficiency of the
algorithm and the quality of the overall solution.

3. Grid Technologies
The concept of Grid Computing is not new. As far back as 1969 Len Kleinrock suggested:

“We will probably see the spread of ‘computer utilities’, which, like present electric and
telephone utilities, will serve individual homes and offices across the country.” [11]

However, it is only recently that technologies such as the Globus Toolkit have emerged to
enable this concept to be achieved. The Globus Toolkit is an open-source, community-based
set of software tools to enable the aggregation of compute, data, and other resources to form
computational grids. Since version 3 of the Globus Toolkit it has been based on the Open
Grid Services Architecture (OGSA) introduced by the Globus Project. OGSA builds on
current Web Service concepts and technologies to support the creation, maintenance, and
application of ensembles of services maintained by virtual organisations [12].

3.1. Web Services
A Web Service is defined by the W3C as “a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface described in
a machine-processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP messages” [13]. Web Services
are accessible through standards-based internet protocols such as HTTP and are enabled by
three core technologies [14]:

• Simple Object Access Protocol (SOAP)
• Web Services Description Language (WSDL)
• Universal Description, Discovery, and Integration (UDDI)

These technologies work together in an application as shown in Fig. 2. The Web Service
client queries a UDDI registry for the desired service. This can be done by service name,
service category, or other identifier. Once this service has been located the client queries the
WSDL document to find out how to interact with the service. The communication between
client and service is then carried out by sending and receiving SOAP messages that conform
to the XML schema found in the WSDL document.

Fig. 2. Interaction between Web Service Technologies

3.2. Open Grid Services Architecture
The Open Grid Services Architecture (OGSA) is the basis for the Globus Toolkit version 3.
OGSA represents computational resources, data resources, programs, networks and databases
as services. These services utilise the Web Services technologies mentioned in Section 3.1.
There are three main advantages to representing these resources as services:

• It aids interoperability. A service-oriented view addresses the need for standard
service definition mechanisms, local/remote transparency, adaptation to local OS
services, and uniform semantics [12].

• It simplifies virtualisation. Virtualisation allows for consistent resource access across
multiple heterogeneous platforms by using a common interface to hide multiple
implementations [12].

• It enables incremental implementation of grid functionality. The provision of grid
functionality via services means that the application developer is free to pick and
choose the services that provide the desired behaviour to their application.

4. Related Work
In recent years the interest in using parallel genetic algorithms to solve single-objective
optimisation problems has increased considerably [15]. However, there has been little
research performed in applying parallel GAs to solve multi-objective optimisation problems.
In [16] and [17] there is some discussion concerning multi-objective evolutionary
optimisation techniques in distributed systems, but these do not implement parallel GAs in a
Grid Computing environment.

A middleware system for evolutionary computation in a Grid Computing environment is
proposed in [18], and then used to construct a parallel simulated annealing algorithm to solve
a single objective problem. This system requires the application developer to implement a set
of interfaces (comprising the middleware) and write the code for the desired evolutionary
operations. Another paper that utilizes the Grid Computing concept for single-objective
optimisation using genetic algorithms is [19]. This paper develops a `Black Box Optimisation
Framework' (BBOF) in C++ to optimise a computer simulation of a forest fire propagation
problem from environmental science. This BBOF is executed in a Condor pool to harness the
spare CPU cycles of a cluster of computers.

Our MOGA-G system differs from those proposed in [18] and [19] because it provides a
concrete implementation of a multi-objective genetic algorithm. Like [19] we have utilised
the power of computational grids to perform distributed fitness evaluation of our objectives,
but we have implemented our framework in a Service Oriented Architecture using the Globus
Toolkit to provide access to the resources of the grid (see section 5.2).

Web Service
Client

Application Service

WSDL
document

Web Service
Logic

HTTP

request

HTTP

response

SOAP processor

UDDI registry

The power of computational grids is used to execute a distributed enumerative search in [20].
This distributed enumerative search is then used to generate the Pareto-optimal front for
several benchmark test functions that are commonly used in the evaluation of the performance
of multi-objective optimisation algorithms. A brief comparison with heuristic techniques is
then performed.

This MOGA-G system is more computationally efficient than the distributed enumerative
search described in [20]. This is because our algorithm converges on the Pareto optimal front
by making intelligent choices about which points to search in the next generation, whereas the
enumerative search algorithm has to evaluate every point in the search space. This approach
would be impossible for a real-world engineering design problem due to the potential size of
the search space.

5. Implementation

5.1. Parallelisation of the Multi-Objective Genetic Algorithm
In section 2.4 we found that there are two types of possible parallelisation strategies for
genetic algorithms: multiple communicating populations, and single-population master-slave
implementations. In the implementation of our grid-enabled framework for multi-objective
optimisation using genetic algorithms (MOGA-G) we have decided to parallelise our multi-
objective genetic algorithm using the single-population master-slave implementation. This is
also known as distributed fitness evaluation or global parallelisation. This model uses the
master-worker paradigm (see Fig. 3.) of parallel programming.

Fig. 3. The Master-Worker Programming Paradigm

A master-slave parallel genetic algorithm uses a single population maintained globally by the
master node and parallelises the evaluation of the objective function by distributing the
population to the worker processes. These are then assigned to the available processors for
execution (in the ideal case, one individual per processor). The genetic operators - selection,
recombination and mutation - are then applied globally by the master node to form the next
generation.

This model is particularly well suited for the parallelisation of genetic algorithms as the
evaluation of the objective function requires only the knowledge of the candidate solution to
evaluate, and therefore there is no need for inter-communication between worker processes.
Communication only occurs when the individuals are sent to the worker processes for
evaluation and when the results of those evaluations are returned to the master node.

5.2. Service Oriented Architecture and the Globus Toolkit
Version 3

We have chosen to implement our grid-enabled framework for multi-objective optimisation
using genetic algorithms in a Service-Oriented Architecture (SOA) using the Globus Toolkit

Master Node

Worker 1 Worker 2 Worker n

version 3 to provide access to the resources of the grid. We have implemented the MOGA-G
framework using the Java programming language, primarily due to the portability of the code.
This means that the components of the MOGA-G framework can easily be run across various
heterogeneous platforms.

A service-oriented architecture is essentially a collection of services that communicate with
each other in order to perform a complex task. SOA is an approach to building loosely-
coupled, distributed systems that combine services to provide functionality to an application.
IBM sees SOA as key to interoperability and flexibility requirements for its vision of an on
demand business [21].

The SOA approach to grid computing is well suited to the kind of master-worker parallelism
used in the MOGA-G framework. This SOA view of grid computing has the client acting as
the master node, and the service acting as the worker. In the implementation of the MOGA-G
framework (see Fig. 4.) there are two different services. One service exposes the operations
of the multi-objective genetic algorithm to the client, and the other provides operations for
running evaluations of the objective function on the computational grid.

E
valuation

F
actory

S
ervice

Evaluation
Instance 1

Evaluation
Instance 2

Evaluation
Instance n

GA Client

Individual 1

Individual 2

Individual n

Eval Result 1

Eval Result 2

Eval Result n

M
O

G
A

S

er
vi

ce

Generation to
be evaluated

Results of
evaluation

E
valuation

F
actory

S
ervice

E
valuation

F
actory

S
ervice

Evaluation
Instance 1

Evaluation
Instance 2

Evaluation
Instance n

GA Client

Individual 1

Individual 2

Individual n

Eval Result 1

Eval Result 2

Eval Result n

M
O

G
A

S

er
vi

ce
M

O
G

A

S
er

vi
ce

Generation to
be evaluated

Results of
evaluation

Fig. 4. The Implementation of the MOGA-G Framework

This SOA approach also provides flexibility both in how the MOGA-G framework is used
and in the maintenance of the framework. The provision of the components of the MOGA-G
framework as services means that it is simple to add new functionality to the system, and to
improve upon existing functionality, by adding new services. In the context of the MOGA-G
framework, this functionality could be anything from the implementation of the genetic
algorithm operators - selection, recombination and mutation - to the distribution and
management of the objective function evaluation.

Providing the MOGA-G framework as services also means that the functionality can be
accessed via the HTTP protocol. This means that the services can be easily integrated into an
Internet portal so as to be accessible by any device with a capable web browser (such as a
PDA).

This SOA approach is used in providing access to grid resources via the Globus Toolkit (see
section 3). The Globus Toolkit has become a fundamental enabling technology for grid
computation, letting people carry out computations across geographically distributed
resources in a secure way. The success of the Globus Project has meant that the project has
become one of the driving forces in developing standards for grid computing.

6. Conclusions and Further Work
This paper has described a grid-enabled framework for multi-objective optimisation using
genetic algorithms (MOGA-G). This MOGA-G framework has been designed in a Service-
Oriented Architecture (SOA) so as to take advantage of the flexibility that this architecture
offers. In the MOGA-G framework a concrete implementation of a multi-objective genetic
algorithm is provided. However, the SOA approach that we have taken allows our
implementation to be easily extended to provide additional features, such as those required to
construct hybrid genetic algorithms. Extending the MOGA-G framework to support
additional features is an area for further investigation.

This framework is primarily suited to computationally expensive objective function
evaluations, such as those performed by computer simulation, due to its distributed nature.
For computationally trivial objective functions the communication overheads involved in
executing the evaluations in a distributed manner result in a decrease in performance
compared to a sequential GA. This is due to the way in which job submission and
management is performed. Further work will be conducted into determining the scale of
problems for which this framework is most effective.

References

1. Baker, M., Buyya, R., and Laforenza, D., “Grids and Grid technologies for wide-
area distributed computing”, Software: Practice and Experience, 32(15), pp. 1437-
1466, 2002.

2. Foster, I., and Kesselman, C. (eds.), “The Grid: Blueprint for a New Computing
Infrastructure”, Morgan Kaufmann, 1999.

3. Foster, I., Kesselman, C., and Tuecke, S., “The Anatomy of the Grid: Enabling
Scalable Virtual Organisations”, Int. J. Supercomputer Applications, 15(3), 2001.

4. The Globus Project; www.globus.org
5. Goldberg, D.E., “Genetic Algorithms in Search, Optimization, and Machine

Learning”, Addison-Wesley, 1989.
6. Axelrod, R., “The evolution of strategies in the Iterated Prisoners Dilemma” , in

Genetic Algorithms and Simulated Annealing (L. Davies ed.), Morgan Kaufmann, pp.
32-41, 1987.

7. Pratihar, D., Deb, K., and Ghosh, A., “A genetic-fuzzy approach for mobile robot
navigation among moving obstacles”, Int. J. Approximate Reasoning, 20(2), pp. 145-
172, 1999.

8. Sims, K., “Artificial Evolution for Computer Graphics”, Computer Graphics (Proc.
SIGGRAPH ’91), 25(4), pp. 319-328, 1991.

9. Fleming, P.J., Purshouse, R.C., Chipperfield, A.J., Thompson, H.A., and Griffin, I.A.,
“Control System Design with Multiple Objectives: An Evolutionary Computing
Approach”, Workshop in the 15th IFAC World Congress, Barcelona, 2002.

10. Cantu-Paz, E., and Goldberg, D.E., “On the Scalability of Parallel Genetic
Algorithms”, Evolutionary Computation, 7(4), pp. 429-449, 1999.

11. Kleinrock, L., UCLA Press Release, July 3rd, 1969.
12. Foster, I., Kesselman, C., Nick, J.M., and Tuecke, S., “The Physiology of the Grid:

An Open Grid Services Architecture for Distributed Systems Integration”, Open Grid
Services Infrastructure WG, Global Grid Forum, June 22nd, 2002.

13. “Web Services Architecture”, W3C Working Group Note February 11th 2004;
www.w3c.org/TR/ws-arch

14. Chappell, D.A., and Jewell, T., “Java Web Services”, O’Reilly, 2002.
15. Alander, J.T., “Indexed Bibliography of Distributed Genetic Algorithms”, Technical

Report 94-1-PARA, University of Vaasa, 2003.
16. Deb, K., Zope, P., Jain, A., “Distributed Computing of Pareto-Optimal Solutions with

Evolutionary Algorithms”, Proceedings of EMO 2003, pp. 534-549, Springer-Verlag,
2003.

17. Van Veldhuizen, D.A., Zydallis, J.B., and Lamont, G.B., “Considerations in
Engineering Parallel Multiobjective Evolutionary Algorithms”, IEEE Trans. on
Evolutionary Computation, 7(2), pp. 144-173, 2003.

18. Tanimura, Y., Hiroyasu, T., Miki, M., and Aoi, K., “The System for Evolutionary
Computing on the Computational Grid”, Proceedings of the IASTED 14th Intl. Conf.
on Parallel and Distributed Computing and Systems, pp. 39-44, ACTA Press, 2002.

19. Abdalhaq, B., Cortes, A., Margalef, T., and Luque, E., “Evolutionary Optimization
Techniques on Computational Grids”, Proceedings of ICCS 2002, pp. 513-522,
Springer-Verlag, 2002.

20. Luna, F., Nebro, A.J., and Alba, E., “A Globus-Based Distributed Enumerative
Search Algorithm for Multi-objective Optimization”, Technical Report LCC 2004/02,
University of Malaga, 2004.

21. Colan, M., “Service-Oriented Architecture expands the vision of Web Services, part
1” , IBM developerWorks paper, 2004.

