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Abstract 
Decision making in engineering design can be effectively addressed by using genetic 
algorithms to solve multi-objective problems.  These multi-objective genetic algorithms 
(MOGAs) are well suited to implementation in a Service Oriented Architecture.  Often the 
evaluation process of the MOGA is compute-intensive due to the use of a complex computer 
model to represent the real-world system.  The emerging paradigm of Grid Computing offers 
a potential solution to the compute-intensive nature of this objective function evaluation, by 
allowing access to large amounts of compute resources in a distributed manner.  This paper 
presents a grid-enabled framework for multi-objective optimisation using genetic algorithms 
(MOGA-G) to aid decision making in engineering design. 



1. Introduction 
Soft Computing techniques such as Neural Networks, Fuzzy Logic, and Evolutionary 
Computation are used to solve many complex real-world engineering problems.  These 
techniques provide the engineer with a new set of tools that often out-perform conventional 
methods in areas where the problem domain is noisy or ill-defined.  However, in the cases of 
Neural Networks and Evolutionary Computation especially, these tools can be 
computationally intensive. 
 
Grid Computing offers a solution to the computationally intensive nature of these techniques.  
The Grid Computing paradigm is an emerging field of computer science that aims to offer “a 
seamless, integrated computational and collaborative environment” [1].  Ian Foster defines a 
computational grid as “a hardware and software infrastructure that provides dependable, 
consistent, pervasive, and inexpensive access to high-end computational capabilities” [2].  
Grid Computing is differentiated from conventional distributed computing by its emphasis on 
co-ordinated resource sharing and problem solving in dynamic, multi-institutional virtual 
organisations [3].  These resources include software packages, compute resources, sensor 
arrays, data and many others. 
 
The purpose of this paper is to introduce a grid enabled framework for multi-objective 
optimisation using genetic algorithms (MOGA-G).  This framework will be presented in the 
context of a Service Oriented Architecture approach.  This approach ties in with that taken by 
the Globus Project [4] to providing access to grid resources via Grid Services.  Section 2 will 
introduce Genetic Algorithms and Multi-Objective Optimisation.  Section 3 will briefly 
introduce the core grid concepts used in the implementation of our framework.  Section 4 will 
outline other related work.  Section 5 will provide details of the implementation of our 
framework, and Section 6 will draw some conclusions and present some ideas for further 
work. 

2. Genetic Algorithms and Multi-Objective 
Optimisation 

2.1. Genetic Algorithms 
Genetic Algorithms (GAs) are an optimisation technique utilising some of the mechanisms of 
natural selection [5].  GAs are an iterative, population based method of optimisation that are 
capable of both exploring the solution space of the problem and exploiting previous 
generations of solutions.  Exploitation of the previous generation of solutions is performed by 
a selection operator.  This operator gives preference to those solutions which have high fitness 
when creating the next generation of solutions to be evaluated.  Exploration of the solution 
space is performed by a mutation operator and a recombination operator and helps to ensure 
the robustness of the algorithm by preventing the algorithm from getting stuck in local 
optima. 
 
Genetic Algorithms evaluate candidate solutions based on pay-off information from the 
objective function, rather than derivative information or auxiliary knowledge.  This ensures 
that GAs are applicable to many different problem domains, including those where 
conventional optimisation techniques (such as hill-climbing) may fail. 

2.2. Multi-Objective Optimisation 
Many real-world engineering design problems involve the satisfaction of multiple conflicting 
objectives.  In this case it is unlikely that a single ideal solution will be possible.  Instead, the 
solution of a multi-objective optimisation problem will lead to a family of Pareto optimal 



points, where any improvement in one objective will result in the degradation of one or more 
of the other objectives. 
 
Genetic Algorithms are particularly well suited to this kind of multi-objective optimisation, 
because they search a population of candidate solutions.  This enables the GA to find multiple 
solutions which form the Pareto optimal set (see Fig. 1.).  GAs are often able to find superior 
solutions to real-world problems than conventional optimisation techniques (i.e. constraint 
satisfaction).  This is due to the difficulty that conventional optimisation techniques have 
when searching in the noisy or discontinuous solution spaces that real-world problems often 
have. 
 

 
Fig. 1. The Pareto Optimal Set 

2.3. Applications of Genetic Algorithms 
Genetic Algorithms have been used to solve problems across many different disciplines.  GAs 
have been used in such diverse fields as Economics and Social Theory [6]. Robotics [7] and 
Art [8].  For many non-trivial real-world applications the evaluation of the objective function 
is performed by computer simulation of the system.  For example, in the optimisation of 
controller parameters for gas turbine aero engines [9], a computer model of the engine is used 
to calculate the values of the objective functions for a given controller design. 
 
The use of computer simulations to evaluate the objective function leads to some new issues.  
To ensure that the results gained from the genetic algorithm are meaningful, the simulation 
must be complex enough to capture all the relevant dynamics of the true system.  However, 
assuming that this level of complexity is obtainable, the simulation may be very 
computationally intensive.  As genetic algorithms are population based methods, the 
simulation must be run many times.  In a typical genetic algorithm this could involve running 
the simulation 10,000 times.  



2.4. Parallel Genetic Algorithms 
The computationally intensive nature of the evaluation process has motivated the 
development of parallel genetic algorithms.  Early proposals for the implementation of 
parallel GAs considered two forms of parallelisation which still apply today: multiple 
communicating populations, and single-population master-slave implementations [10]. 
 
The decision between which of these two types of parallelisation to implement must consider 
several factors, such as ease of implementation and use, and the performance gained by 
parallelisation.  Single-population parallel GAs are often the easier to implement and use, as 
experience gained with sequential GAs can be easily applied to these.  In contrast, the 
implementation and use of multiple communicating populations based parallel GAs involves 
choosing appropriate values for additional parameters such as size and number of populations, 
frequency of migration, and the number of individuals involved in migration.  This increases 
the complexity of the parallel GA as each of these parameters affects the efficiency of the 
algorithm and the quality of the overall solution. 

3. Grid Technologies 
The concept of Grid Computing is not new.  As far back as 1969 Len Kleinrock suggested: 
 
“We will probably see the spread of ‘computer utilities’, which, like present electric and 
telephone utilities, will serve individual homes and offices across the country.” [11] 
 
However, it is only recently that technologies such as the Globus Toolkit have emerged to 
enable this concept to be achieved.  The Globus Toolkit is an open-source, community-based 
set of software tools to enable the aggregation of compute, data, and other resources to form 
computational grids.  Since version 3 of the Globus Toolkit it has been based on the Open 
Grid Services Architecture (OGSA) introduced by the Globus Project.  OGSA builds on 
current Web Service concepts and technologies to support the creation, maintenance, and 
application of ensembles of services maintained by virtual organisations [12].  

3.1. Web Services 
A Web Service is defined by the W3C as “a software system designed to support 
interoperable machine-to-machine interaction over a network. It has an interface described in 
a machine-processable format (specifically WSDL). Other systems interact with the Web 
service in a manner prescribed by its description using SOAP messages” [13].  Web Services 
are accessible through standards-based internet protocols such as HTTP and are enabled by 
three core technologies [14]: 
 

•  Simple Object Access Protocol (SOAP) 
•  Web Services Description Language (WSDL) 
•  Universal Description, Discovery, and Integration (UDDI) 

 
These technologies work together in an application as shown in Fig. 2.  The Web Service 
client queries a UDDI registry for the desired service.  This can be done by service name, 
service category, or other identifier.  Once this service has been located the client queries the 
WSDL document to find out how to interact with the service.  The communication between 
client and service is then carried out by sending and receiving SOAP messages that conform 
to the XML schema found in the WSDL document.   
 



 
 

Fig. 2. Interaction between Web Service Technologies 

3.2. Open Grid Services Architecture 
The Open Grid Services Architecture (OGSA) is the basis for the Globus Toolkit version 3.  
OGSA represents computational resources, data resources, programs, networks and databases 
as services.  These services utilise the Web Services technologies mentioned in Section 3.1.  
There are three main advantages to representing these resources as services: 
 

•  It aids interoperability.  A service-oriented view addresses the need for standard 
service definition mechanisms, local/remote transparency, adaptation to local OS 
services, and uniform semantics [12]. 

•  It simplifies virtualisation.  Virtualisation allows for consistent resource access across 
multiple heterogeneous platforms by using a common interface to hide multiple 
implementations [12]. 

•  It enables incremental implementation of grid functionality.  The provision of grid 
functionality via services means that the application developer is free to pick and 
choose the services that provide the desired behaviour to their application. 

4. Related Work 
In recent years the interest in using parallel genetic algorithms to solve single-objective 
optimisation problems has increased considerably [15].  However, there has been little 
research performed in applying parallel GAs to solve multi-objective optimisation problems.  
In [16] and [17] there is some discussion concerning multi-objective evolutionary 
optimisation techniques in distributed systems, but these do not implement parallel GAs in a 
Grid Computing environment. 
 
A middleware system for evolutionary computation in a Grid Computing environment is 
proposed in [18], and then used to construct a parallel simulated annealing algorithm to solve 
a single objective problem.  This system requires the application developer to implement a set 
of interfaces (comprising the middleware) and write the code for the desired evolutionary 
operations.  Another paper that utilizes the Grid Computing concept for single-objective 
optimisation using genetic algorithms is [19].  This paper develops a `Black Box Optimisation 
Framework' (BBOF) in C++ to optimise a computer simulation of a forest fire propagation 
problem from environmental science.  This BBOF is executed in a Condor pool to harness the 
spare CPU cycles of a cluster of computers. 
 
Our MOGA-G system differs from those proposed in [18] and [19] because it provides a 
concrete implementation of a multi-objective genetic algorithm.  Like [19] we have utilised 
the power of computational grids to perform distributed fitness evaluation of our objectives, 
but we have implemented our framework in a Service Oriented Architecture using the Globus 
Toolkit to provide access to the resources of the grid (see section 5.2). 
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The power of computational grids is used to execute a distributed enumerative search in [20].  
This distributed enumerative search is then used to generate the Pareto-optimal front for 
several benchmark test functions that are commonly used in the evaluation of the performance 
of multi-objective optimisation algorithms.  A brief comparison with heuristic techniques is 
then performed. 
 
This MOGA-G system is more computationally efficient than the distributed enumerative 
search described in [20].  This is because our algorithm converges on the Pareto optimal front 
by making intelligent choices about which points to search in the next generation, whereas the 
enumerative search algorithm has to evaluate every point in the search space.  This approach 
would be impossible for a real-world engineering design problem due to the potential size of 
the search space. 

5. Implementation 

5.1. Parallelisation of the Multi-Objective Genetic Algorithm 
In section 2.4 we found that there are two types of possible parallelisation strategies for 
genetic algorithms: multiple communicating populations, and single-population master-slave 
implementations.  In the implementation of our grid-enabled framework for multi-objective 
optimisation using genetic algorithms (MOGA-G) we have decided to parallelise our multi-
objective genetic algorithm using the single-population master-slave implementation.  This is 
also known as distributed fitness evaluation or global parallelisation.  This model uses the 
master-worker paradigm (see Fig. 3.) of parallel programming. 
 

 
 

Fig. 3. The Master-Worker Programming Paradigm 
 
A master-slave parallel genetic algorithm uses a single population maintained globally by the 
master node and parallelises the evaluation of the objective function by distributing the 
population to the worker processes.  These are then assigned to the available processors for 
execution (in the ideal case, one individual per processor).  The genetic operators - selection, 
recombination and mutation - are then applied globally by the master node to form the next 
generation. 
 
This model is particularly well suited for the parallelisation of genetic algorithms as the 
evaluation of the objective function requires only the knowledge of the candidate solution to 
evaluate, and therefore there is no need for inter-communication between worker processes.  
Communication only occurs when the individuals are sent to the worker processes for 
evaluation and when the results of those evaluations are returned to the master node. 

5.2. Service Oriented Architecture and the Globus Toolkit 
Version 3 

We have chosen to implement our grid-enabled framework for multi-objective optimisation 
using genetic algorithms in a Service-Oriented Architecture (SOA) using the Globus Toolkit 
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version 3 to provide access to the resources of the grid.  We have implemented the MOGA-G 
framework using the Java programming language, primarily due to the portability of the code.  
This means that the components of the MOGA-G framework can easily be run across various 
heterogeneous platforms. 
 
A service-oriented architecture is essentially a collection of services that communicate with 
each other in order to perform a complex task.  SOA is an approach to building loosely-
coupled, distributed systems that combine services to provide functionality to an application.  
IBM sees SOA as key to interoperability and flexibility requirements for its vision of an on 
demand business [21]. 
 
The SOA approach to grid computing is well suited to the kind of master-worker parallelism 
used in the MOGA-G framework.  This SOA view of grid computing has the client acting as 
the master node, and the service acting as the worker.  In the implementation of the MOGA-G 
framework (see Fig. 4.) there are two different services.  One service exposes the operations 
of the multi-objective genetic algorithm to the client, and the other provides operations for 
running evaluations of the objective function on the computational grid. 
 

 
 
 

E
valuation 

F
actory 

S
ervice

Evaluation 
Instance 1

Evaluation 
Instance 2

Evaluation 
Instance n

GA Client

Individual 1

Individual 2

Individual n

Eval Result 1

Eval Result 2

Eval Result n

M
O

G
A

 
S

er
vi

ce

Generation to 
be evaluated

Results of 
evaluation

E
valuation 

F
actory 

S
ervice

E
valuation 

F
actory 

S
ervice

Evaluation 
Instance 1

Evaluation 
Instance 2

Evaluation 
Instance n

GA Client

Individual 1

Individual 2

Individual n

Eval Result 1

Eval Result 2

Eval Result n

M
O

G
A

 
S

er
vi

ce
M

O
G

A
 

S
er

vi
ce

Generation to 
be evaluated

Results of 
evaluation

 
 

Fig. 4. The Implementation of the MOGA-G Framework 
 
This SOA approach also provides flexibility both in how the MOGA-G framework is used 
and in the maintenance of the framework.  The provision of the components of the MOGA-G 
framework as services means that it is simple to add new functionality to the system, and to 
improve upon existing functionality, by adding new services.  In the context of the MOGA-G 
framework, this functionality could be anything from the implementation of the genetic 
algorithm operators - selection, recombination and mutation - to the distribution and 
management of the objective function evaluation. 
 
Providing the MOGA-G framework as services also means that the functionality can be 
accessed via the HTTP protocol.  This means that the services can be easily integrated into an 
Internet portal so as to be accessible by any device with a capable web browser (such as a 
PDA). 
 



This SOA approach is used in providing access to grid resources via the Globus Toolkit (see 
section 3).  The Globus Toolkit has become a fundamental enabling technology for grid 
computation, letting people carry out computations across geographically distributed 
resources in a secure way.  The success of the Globus Project has meant that the project has 
become one of the driving forces in developing standards for grid computing. 

6. Conclusions and Further Work 
This paper has described a grid-enabled framework for multi-objective optimisation using 
genetic algorithms (MOGA-G).  This MOGA-G framework has been designed in a Service-
Oriented Architecture (SOA) so as to take advantage of the flexibility that this architecture 
offers.  In the MOGA-G framework a concrete implementation of a multi-objective genetic 
algorithm is provided.  However, the SOA approach that we have taken allows our 
implementation to be easily extended to provide additional features, such as those required to 
construct hybrid genetic algorithms.  Extending the MOGA-G framework to support 
additional features is an area for further investigation. 
 
This framework is primarily suited to computationally expensive objective function 
evaluations, such as those performed by computer simulation, due to its distributed nature.  
For computationally trivial objective functions the communication overheads involved in 
executing the evaluations in a distributed manner result in a decrease in performance 
compared to a sequential GA.  This is due to the way in which job submission and 
management is performed.  Further work will be conducted into determining the scale of 
problems for which this framework is most effective. 
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