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Abstract

The subject of this paper is the modelling of the influence of non-minimum phase discrete-time system dynamics on the
performance of norm optimal iterative learning control (NOILC) algorithms with the intent of explaining the observed
phenomenon and predicting its primary characteristics. It is established that performance in the presence of non-minimum
phase plant zeros typically has two phases. These consist of an initial fast monotonic reduction of the L2 error norm (mean
square error) followed by a very slow asymptotic convergence. Although the norm of the tracking error does eventually converge
to zero, the practical implications over a finite number of trials is apparent convergence to a non-zero error. The source of this
slow convergence is identified using the singular value distribution of the system’s all pass component. A predictive model of
the onset of slow convergence behavior is developed as a set of linear constraints and shown to be valid when the iteration
time interval is sufficiently long. The results provide a good prediction of the magnitude of error norm where slow convergence
begins. Formulae for this norm and associated error time series are obtained for single-input single-output systems with several
non-minimum phase zeros outside the unit circle using Lagrangian techniques. Numerical simulations are given to confirm the
validity of the analysis.

Key words: iterative learning control; non-minimum phase systems; singular value decomposition; all pass systems

1 Introduction

Iterative learning control (ILC) is a control method for
improving tracking performance of systems that execute
the same task repeatedly by learning from past actions.
Applications of ILC can be widely found in areas includ-
ing industrial robot manipulators [1], [2], chemical batch
processes [3], [4], some medical applications [?] and man-
ufacturing [5], [6]. Since the original work [7] in the mid
1980s, the general area of ILC has been the subject of
substantial research effort. An initial source for the lit-
erature here are the survey papers [8], [9] and [10].

In principle, ILC has shown its capability of attain-
ing high tracking performance. However, as in all con-
trol algorithms, including the familiar feedback control
paradigm, there are limitations to what ILC can achieve
depending on the characteristics of the plant. In partic-
ular, when dealing with non-minimum phase systems,
ILC algorithms will be seen to result in a fast reduction
in the tracking error initially and then slow convergence

⋆ Corresponding author David H Owens. Email:
D.H.Owens@sheffield.ac.uk.

thereafter, which is undesirable in practice. The exis-
tence of the problem was originally realized in [11] and
several methods [12], [13], [14] have been proposed to
solve this problem. It is believed, however, that the basis
of the slow convergence phenomenon is not fully under-
stood and new design methods to solve this problem are
still needed.

In this paper, the performance of norm-optimal iterative
learning control (NOILC) algorithms for the discrete
time linear time invariant non-minimum phase systems
is studied in terms of the singular value structure asso-
ciated with an all-pass network arising from the plant
transfer function. The paper is organized as follows. In
Section 2 the problems observed when NOILC is applied
to non-minimum phase systems is introduced briefly
with emphasis on illustrating the primary observed
characteristics. An ability to predict this behaviour and
compute its effect in a given case is the focus for the
following discussion. In Section 3, some fundamental re-
sults for matrix representation of all pass system are re-
viewed and the basis of the slow convergence of NOILC
algorithms applied to non-minimum phase systems is
identified in terms of an subspace decomposition of the
output (time series) space. Each component is seen to
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be associated with a subspace in which the NOILC al-
gorithm exhibits different convergence properties. This
is used in Section 4 to motivate and construct an ap-
proximate model for the slow convergence in terms of a
modified NOILC problem with additional linear inner
product constraints. This model is then used to pre-
dict the transient and asymptotic performance of the
algorithm and identify/predict important features of
the convergence. Numerical simulations are presented
in Section 5 to verify the analysis results and finally,
conclusions are given in Section 6.

2 Problem Formulation

In this section, system modelling is summarised and the
ILC problem is formulated. The slow convergence ob-
served when NOILC is applied to non-minimum phase
plants is then illustrated by a simulation example.

2.1 ILC: Matrix Modelling of Plant dynamics

Consider the following discrete time, single-input single-
output, linear time-invariant system with transfer func-
tion G(z) = C(zI − A)−1B + D and state space model

xk(t + 1) = Axk(t) + Buk(t)

yk(t) = Cxk(t) + Du(t), t = 0, 1, 2, ...., N (1)

where t is the time index (i.e. sample number), k is the
iteration number and uk(t), xk(t), yk(t) are input, state
and output of the system at time t on iteration k. The ini-
tial condition xk(0) = x0, k = 1, 2, · · · is the same for all
iterations. The control objective is to track a given ref-
erence signal r(t) defined on a finite duration t ∈ [0, N ]
(i.e. t is the sample number for time series of length
N +1)and to do so by repeated execution of the task and
data transfer from task to task. Mathematically, follow-
ing the final time t = N , the state is reset to x0 and time
is reset to t = 0, a new iteration is started and, again,
the system is required to track the same reference.

Remark 1 In the literature, iterations are variously
termed iterations, trials, repetitions and passes. There
is, as yet, no agreement on common terminology.

Before presenting the main results, the matrix operator
form of the dynamics is demonstrated using the well-
known, so-called lifted-system representation, which
provides a straightforward ’N × N matrix’ approach in
the analysis of discrete-time ILC [15], [16], [17].

Denote the relative degree (pole-zero excess) of the sys-
tem by k∗ ≥ 0. Then system model (1) on the kth itera-
tion can be expressed in an equivalent form

yk = Guk + d, (2)

where the (N + 1− k∗)× 1 vectors of input, output and
reference time series uk, yk, r (resp.) are defined as

uk =
[

uk(0) uk(1) · · · uk(N − k∗)
]T

yk =
[

yk(k∗) yk(2) · · · yk(N)
]T

r =
[

r(k∗) r(2) · · · r(N)
]T

(3)

with tracking error vector e = r − y. Also

d =
[

CAk∗

x0, CAk∗+1x0, · · · , CANx0

]T

(4)

and G is defined by the (N + 1 − k∗) × (N + 1 − k∗)
matrix when k∗ = 0

G =





























D 0 0 · · · 0 0

CB D 0 · · · 0 0

CAB CB D 0
. . . 0

CA2B CAB
. . .

. . . 0
...

...
. . .

. . . CB D 0

CAN−1B · · · · · · CAB CB D





























(5)

or, when k∗ ≥ 1,

G =























CAk∗−1B 0 · · · 0 0

CAk∗

B CAk∗−1B
. . . 0 0

CAk∗+1B CAk∗

B
. . .

. . .
...

...
. . .

. . . CAk∗−1B 0

CAN−1B · · · · · · CAk∗

B CAk∗−1B























.

Remark 2 By construction, the matrix G is nonsin-
gular and hence the control times series u∞ that pro-
duces the output y = r can be computed formally as
u∞ = G−1(r − d). Hence, without loss of generality, it
can be assumed that d = 0 by incorporating it into the
reference signal (i.e. replacing r by r − d). In this case

yk = Guk (6)

Remark 3 The lifted representation matrix G, although
derived from G(z) operates on its time series vectors in
a manner described by the transfer function zk∗

G(z).

The above representation changes the original ILC prob-
lem into a MIMO tracking problem [15], [16]. All the fol-
lowing discussions will be based on this representation
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although note [17] that all calculations based on ma-
trix descriptions can be undertaken as calculations using
the underlying state space model or associated transfer
function.

2.2 ILC: Problem Formulation

Tracking error improvements from iteration to iteration
are achieved in ILC using the following general control
updating law

uk+1 = f (ek+1, . . . , ek−s, uk, · · · , uk−r) , (7)

where ej = r − yj is the tracking error time series vec-
tor on the jth trial. When s > 0 or r > 0, (7) is called a
high order updating law. This paper only considers al-
gorithms of the form uk+1 = f (ek, uk). For higher order
algorithms, please refer to [18], [19] and the references
therein.

The ILC Algorithm Design Problem: The ILC al-
gorithm design problem can now be stated as finding a
control updating law (7) such that the system output
has the asymptotic property that ek → 0 as k → ∞.

Remark 4 In practice, this definition is extended to re-
quire that convergence to zero is rapid (hence reducing
simulation and experimental time and costs) and ideally
monotonic in the sense that the mean square tracking er-
ror reduces from trial to trial whenever possible.

There are many design methods to solve the ILC prob-
lem. The one considered here is that of NOILC which
is based on a quadratic (norm) optimal formulation [20]
where, at each iteration, the following performance in-
dex is minimized to obtain the system input time series
vector to be used for that iteration:

Jk+1(uk+1) = ‖ek+1‖2
Q + ‖uk+1 − uk‖2

R (8)

The minimization is subject to the dynamic constraint
that ek+1 = r − Guk+1. Here, in general, Q and R are
symmetric, positive definite weighting matrices, ‖e‖2

Q

denotes the quadratic form eT Qe and similarly with ‖ ·
‖2

R. Solving this optimization problem gives the following
optimal choice for the time series vector uk+1

uk+1 = uk + G∗ek+1 (9)

where G∗ is the adjoint operator of G in the chosen
Hilbert space topologies and can be expressed as

G∗ = R−1GT Q. (10)

Remark 5 Note that the matrices R and Q only provide
scaling of the input and output signals and hence, without
loss of generality, in what follows they are chosen as R =

Q = I when G∗ can be identified as G∗ = GT . With
R = Q = I, the time series inner products reduce to
< f1, f2 >= fT

1 f2 and the norms to Euclidean norms.

In the original NOILC papers [11], [21] Q = qI and
R = rI where r > 0 and q > 0 are scalars. This leads
to an optimal control problem solved by Riccati methods.
This is the case assumed in what follows.

This algorithm has many important properties [20]. In
particular,

(1) The change in input uk+1 −uk converges to zero in
norm.

(2) For discrete system, the input {uk} converges, and
the limit is the input that produces the required
output trajectory y = r exactly. That is, the error
norm converges to zero.

(3) The error sequence has the important property that
the error norm (mean square error value) decreases
monotonically, i.e. ‖ek+1‖ < ‖ek‖,∀k ≥ 0.

(4) NOILC can be implemented using a feedforward
(trial to trial) and current trial Riccati state feed-
back elements.

More details on NOILC can be found in [11], [21], [22],
[23], [20].

2.3 Non-minimum phase plants in iterative learning
control

In many cases, NOILC has shown its ability to achieve
both rapid convergence and accurate tracking perfor-
mance. There are however important exceptions illus-
trated by the following example.

Example 0 The example has two parts, the first of
which considers the system with minimum-phase trans-
fer function

G(s) =
5(s + 1)

(s + 2)(s + 1/2)
, (11)

and the second, non-minimum-phase system is as above
but with s+1 replaced with s−1. In both cases the system
is sampled using a zero-order hold with a sampling time
of 0.1sec. The chosen trial length is 10s (from which N =
100) and the reference signal is a sampled version of the
sine-wave r(t) = sin( 4π

3 t) shown in Figure 1. The initial
input time series is chosen to be u0 = 0 for simplicity.

The minimum-phase case has discrete transfer function

G (z) =
0.4647 (z − 0.9049)

(z − 0.8187) (z − 0.9512)
(12)

with a zero at z = 0.9049. The simulation was run over
20 iterations using the NOILC algorithm and the result is

3
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Fig. 1. The Reference Signal r(t)

shown in Figure 2 which indicates a reduction (improve-
ment) in error norm by a factor of approximately 103 in
20 iterations and a factor of around 102 in six iterations.
This indicates both high accuracy and rapid convergence.

Convergence can, however, be associated with poor per-
formance when the plant is non-minimum phase. Error
convergence to zero is still guaranteed but the convergence
behavior is very different. Figure 3 shows error norm the
convergence behavior for the transfer function above with
the numerator polynomial replaced by (s−1). In this case
the discrete transfer function is

G (z) =
0.4186 (z − 1.1055)

(z − 0.8187) (z − 0.9512)
(13)

with a zero at z = 1.1055.

The algorithm is seen to reduce error norms rapidly in
the first few trials but then it stagnates, moving along a
”plateau” of almost constant error norm with only very
small changes from iteration to iteration. For all practical
purposes, (i) the input after the 6th trial barely changes
and hence (ii) the error appears to be converging to a
non-zero value. A significant problem is that the non-zero
error achieved is, in this case, only a reduction of a fac-
tor of approximately 7.4 in norm over the initial error
norm. In practical terms, this is an entirely unsatisfac-
tory outcome. The task undertaken by this paper is to
explain why this is happening and to model the behavior
with the intention of predicting the stagnated values and
signals that will be seen on the plateau.

Remark 6 Although it is intuitively clear from the ex-
amples and associated graphics what is meant by the
”stagnated value” or ”plateau”, it ultimately has no
asymptotic mathematical meaning for the NOILC al-
gorithm. This is because the error is, in fact, simply
converging to zero at an infinitesimally slow rate. The
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Fig. 2. Tracking error norm of NOILC for a typical minimum
phase system
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Fig. 3. Non-minimum phase example with apparent conver-
gence to a non-zero, large error

plateau seen in the example is therefore a visual phe-
nomenon valid for a large but finite number of iterations
but, ultimately, has no relevance to final convergence to
zero. Its meaning is therefore transient but valuable as it
is what will be observed in practice and is what will ulti-
mately limit the practical tracking accuracy achieveble.
In what follows, the plateau is taken to be a value typical
of error norm values at the onset of slow convergence.
This is quantified in terms of behaviours in subspaces.

In the following analysis, attention is focussed on the
case of single-input single-output systems with m non-
minimum phase zeros {zj : |zj | > 1, 1 ≤ j ≤ m}. It will
be shown that the NOILC algorithm exhibits two dif-
ferent convergence rates characterized by factoring the
space of all possible error functions into two subspaces.
One of these is associated with the span of time series
vectors generated typified by time series of the form
{z−t

j , t = 0, · · · , N − k∗}, 1 ≤ j ≤ m. This subspace will
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be denoted by E+ and will be seen to be associated with
the onset of slow convergence if the time interval [0, N ]
is ’long’. The other subspace can be taken to be its or-
thogonal complement E⊥

+ .

3 Characterization of E+

Suppose the non-minimum phase (NMP) system with
transfer function G(z) has m NMP zeros

G(z) =

i0
∏

i=1

(z − bi)
m
∏

i=1

(z − zi)

n
∏

i=1

(z − ai)
(14)

where |zi| > 1, i = 1, · · · ,m are NMP zeros outside the
unit circle.

Remark 7 It is also assumed that |bj | < 1, 1 ≤ j ≤ i0.
The rare case when a zero exists on the unit circle is
technically more complex and is not considered in this
paper.

G(z) can be decomposed into the product

G(z) = Gm(z)Ga(z), (15)

where

Gm(z) =

i0
∏

i=1

(z − bi)
m
∏

i=1

(1 − ziz)

n
∏

i=1

(z − ai)
(16)

is minimum phase and

Ga(z) =

m
∏

i=1

(z − zi)

m
∏

i=1

(1 − ziz)
(17)

is all-pass (i.e. |G(z)| ≡ 1,∀|z| = 1). In matrix form, this
can be written [17]

G = GmGa,

where G,Gm and Ga are the lifted matrix representa-
tions of G(z), Gm(z), Ga(z), respectively.

Remark 8 The matrices Ga and Gm operate on the as-
sociated time series vectors in a manner described by the
transfer functions Ga(z) and zk∗

Gm(z) respectively as
Ga(z) (resp. Gm(z)) has relative degree zero (resp. k∗).

The chosen time series subspace E+ will be seen to be
defined by

E+ = (GT
m)−1Ea+, (18)

where Ea+ is defined in the next section.

3.1 Construction of Ea+

Suppose that G(z) has m NMP plane zeros described by
the list {zi : 1 ≤ i ≤ m0} with zi having multiplicity ni

and
∑m0

i=1 ni = m. Using the notation

γ0(z) = [1, z, z2, · · · , zN−k∗

]T ,

define, for 1 ≤ ℓ ≤ ni, 1 ≤ i ≤ m0, the vectors

γiℓ =
dℓ−1

dzℓ−1
γ0(z)|z=zi

(19)

For example, if z1 has multiplicity n1 = 3, it follows that

γ11 = [1, z1, z
2
1 , z3

1 , · · · , zN−k∗

1 ]

γ12 = [0, 1, 2z1, 3z2
1 , · · · , (N − k∗)zN−k∗−1

1 ]

γ13 = [0, 0, 2, 6z1, · · · , (N − k∗)(N − k∗ − 1)zN−k∗−2
1 ]

Next reverse the order of the elements in γiℓ to construct
a vector αiℓ as

αiℓ =
[

γiℓ(N − k∗) γiℓ(N − k∗) · · · γiℓ(1)
]T

. (20)

It is easy to show that αiℓ, 1 ≤ ℓ ≤ ni, 1 ≤ i ≤ m0 are
linear independent.

Ea+ is now defined by the relation

Ea+ = span{αiℓ, 1 ≤ ℓ ≤ ni, 1 ≤ i ≤ m0},
dim(Ea+) = m

(21)

Remark 9 Noting that 1
(1−ziz−1) = γ0(zi)γ0(z

−1) +

O((zi/z)−(N+1−k∗)), a simple calculation indicates that,
for each 1 ≤ ℓ ≤ ni, 1 ≤ i ≤ m0, the time series repre-
sented by γiℓ is generated by the impulse response of the
transfer function

z−(ℓ−1)(ℓ − 1)!

(1 − ziz−1)ℓ
,

Remark 10 In the generic case of ni = 1,∀i, a simple
calculation shows that these vectors have the notationally
simpler form, i = 1, · · · ,m,

αi =
[

zN−k∗

i zi
N−k∗−1 · · · 1

]T

= zN−k∗

i γ0(z
−1
i )
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which, for computational purposes, can be further sim-
plified by scaling to αi = γ0(z

−1
i ).

Remark 11 The zeros can be real or complex. In the
complex case the vector αij and its complex conjugate are
simply replaced by their real and imaginary parts. The
details are omitted for brevity.

Note that, the subspace Ea+ can be associated with the
all-pass system Ga(z), or its matrix representation Ga.
To further discuss the properties of this subspace, some
important fundamental results on the singular value
structure of Ga are introduced in the following.

3.2 Fundamental results for matrix representation of
all pass system

For convenience, the notation from [24] is borrowed. De-

note by σ
(N+1−k∗)
i , i = 1, · · · , N +1−k∗, in nondecreas-

ing order, the singular values of Ga. Then, the following
theorem characterizes their values:

Theorem 1 If an all pass system Ga(z) has the form

Ga(z) =

m
∏

i=1

(z − zi)

m
∏

i=1

(1 − ziz)
=

a0 + a1z + . . . + amzm

am + am−1 + . . . + a0zm
(22)

where |zi| > 1, i = 1, · · · ,m, then there are two cases
possible for the singular values distribution of the matrix
representation Ga :

(i) σ
(N+1−k∗)
i < 1 for all 1 ≤ i ≤ N + 1 − k∗, if

N + 1 − k∗ ≤ m;

(ii) σ
(N+1−k∗)
i < 1 for 1 ≤ i ≤ m and σ

(N+1−k∗)
i = 1

for m + 1 ≤ i ≤ N + 1 − k∗, if N + 1 − k∗ > m.

Proof. See appendix.

Remark 12 Note that in practice, both k∗ and the num-
ber of NMP zeros m are small and the time interval N
(computed by T/step, where T is the trial length and step
is the sampling time) is usually large. Hence N+1−k∗ ≫
m is the normal practical situation, which is assumed in
the following.

The next theorem characterizes the eigenstructure of the
matrix GaGT

a .

Theorem 2 For the above all pass system Ga, with N +
1−k∗ > m, the eigenstructure of GaGT

a has the following
form:

(i) the following N+1−k∗−m linear independent vectors
are eigenvectors of GaGT

a corresponding to the N + 1 −
k∗ − m eigenvalues of 1:

u1 =
[

am am−1 · · · a0 0 · · · 0
]T

u2 =
[

0 am am−1 · · · a0 · · · 0
]T

...

uN+1−k∗−m =
[

0 · · · 0 am am−1 · · · a0

]T

(ii) The m eigenvectors of GaGT
a corresponding to the m

eigenvalues that are less than one span the subspace Ea+

defined in (21).

Remark 13 The vectors αiℓ, 1 ≤ ℓ ≤ ni, 1 ≤ i ≤ m0

span the subspace Ea+, but it is important to note that they
are not necessarily eigenvectors of GaGT

a . However,in
the special but not uncommon case when m = 1, it is true
that α1 is an eigenvector of GaGT

a .

Proof. The proof is given in an appendix.

From the above theorems, it can be seen that the Sin-
gular Value Decomposition (SVD) of an all pass system
Ga has the following form

Ga =















p0

p1 p0

...
. . .

. . .

pN−1 · · · p1 p0















= U



























δ1

. . .

δm

1

. . .

1



























V T ,

where U, V are orthogonal matrices, m is the order of the
system (also the number of NMP zeros) and δ1, · · · , δm

are the singular values which are less than one. The next
theorem shows the important fact that these m singular
values will tend to zero as N → ∞.

Theorem 3 For the above all pass system Ga, if there
are m singular values δ1, · · · , δm strictly less than one,
then

max(δ1, · · · , δm) = O
(

|z−N
0 |

)

, (23)

where |z0| > 1 denotes the magnitude of the NMP zero
possessing the least modulus and N is the trial length. As
a consequence,

lim
N→∞

δi = 0, 1 ≤ i ≤ m. (24)
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Proof. Please see appendix.

In the next section, the above results will be used to
analyze the slow convergence of ILC for non-minimum
phase systems.

3.3 Characterization of E+

In NOILC (assuming Q = R = I without loss of gener-
ality), the control updating law is

uk+1 = uk + GT ek+1 (25)

and the error evolution equation is

ek+1 − ek = −GGT ek+1. (26)

Substituting G = GmGa into (26), it follows that

ek+1 − ek = −GmGaGT
a GT

mek+1, (27)

which is equivalent to

G−1
m (ek+1 − ek) = −GaGT

a (GT
mek+1). (28)

Using the above results, the eigenvalues of GaGT
a consist

of m eigenvalues δ2
1 , · · · , δ2

m less than one and N + 1 −
k∗ − m eigenvalues equal to one, i.e.

GaGT
a = U



























δ2
1

. . .

δ2
m

1

. . .

1



























UT .

Ea+ is the invariant subspace corresponding to the eigen-
values less than to one. Denote its orthogonal subspace
(ie the span of eigenvectors corresponding to unity eigen-

values) as Ea
⊥
+. Note that, according to Theorem 2, Ea+

is spanned by {αiℓ} and Ea
⊥
+ is spanned by {ui}.

Rewrite GT
mek+1 uniquely as

GT
mek+1 = ek+1+ + ek+1

⊥
+, (29)

where ek+1+ ∈ Ea+ and ek+1
⊥
+ ∈ Ea

⊥
+. Then (28) can be

written as

G−1
m (ek+1 − ek) =−GaGT

a (GT
mek+1)

=−GaGT
a ek+1+ − GaGT

a ek+1
⊥
+

=−GaGT
a ek+1+ − ek+1

⊥
+ (30)

Denote δ(N) = max(δ1, · · · , δm). According to Theo-

rem 3, δ(N) = O(|z−N
0 |). Hence, using standard norm

inequalities and monotonicity of the error norm,

‖GaGT
a ek+1+‖ ≤ δ2(N)‖ek+1+‖ ≤ O(|z−2N

0 |)‖ek‖. (31)

Also, for any x ∈ Ea+, with ||x|| = 1,

|〈G−1
m (ek+1 − ek), x〉|= |〈−GaGT

a ek+1+, x〉|
≤ ‖GaGT

a ek+1+‖
≤O(|z−2N

0 |)‖ek‖ (32)

This, gives

|〈ek+1 − ek, (GT
m)−1x〉| ≤ O(|z−2N

0 |)‖ek‖
≤ O(|z−2N

0 |)‖e0‖ (33)

Remark 14 E+ = (GT
m)−1Ea+ and hence

βiℓ = (GT
m)−1αiℓ, 1 ≤ ℓ ≤ ni, 1 ≤ i ≤ m0 (34)

constitute a basis for E+.

The above discussion can be summarized in the following
theorem:

Theorem 4 With the above definitions and construc-
tions, assume that the operator G is generated from a
non-minimum phase asymptotically stable SISO system
possessing m NMP zeros with transfer function G(z).
Assume also that G(z) has the minimum-phase/all-pass
decomposition G = GmGa. Then, using the NOILC al-
gorithm, for all β ∈ E+ = span{βiℓ},

|〈ek+1 − ek, β〉| ≤ O(|z−2N
0 |)‖e0‖‖β‖, ∀k ≥ 0 (35)

where |z0| > 1 is the magnitude of the NMP zero with
the least modulus.

The following remark addresses the issue of how the re-
lation (35) can be interpreted as N increases.

Remark 15 Varying N implicitly changes the dimen-
sion of the underlying time series space so taking the limit
as N → ∞ needs careful definition. For our purposes it
is only necessary to observe that the right hand side of
(35) goes to zero when N → ∞ if the elements of ‖e0‖
remain uniformly bounded as we vary N . The growth on
the right hand side is then of the order of

√
NO(|z−2N

0 |)
which tends to zero as N → ∞.

The interpretation of the above is that, with |z−2N
0 | suf-

ficiently small, the change in the component of ek+1−ek

in the subspace (GT
m)−1Ea+ = E+ will be infinitesimally

small (relative to the norm of ‖e0‖). In geometric terms
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the space of error time series E can be divided into two
parts: E = E+ ⊕ E⊥

+ , where, if |z−2N
0 | is small enough,

(1) the change in error from iteration to iteration in
the subspace E+ is small and hence the error norm
of the projection onto this subspace decreases very
slowly.

(2) All substantial activity in error norm reduction can
be regarded as taking place in the orthogonal sub-
space E⊥

+ .
(3) As the error norm is monotonically decreasing, the

error norm will ”plateau” out once the activity in
E⊥
+ is completed.

These observations, in the author’s opinion, convincingly
explain and parameterize what is happening in the case
of NOILC applied to NMP systems. The analysis is not
relevant to minimum phase systems as, in this case, it is
natural to take Ga(z) = 1, Ga = I and hence Ea+ = {0}.

Remark 16 Note that the basis for the validity of above
results is that δ2(N) = O(|z−2N

0 |) is sufficiently small ,
which is clearly related to the positions of NMP zeros, as
well as the time interval N . A simple interpretation of the
condition that |z−2N

0 | is small is that the underlying time
interval [0, N ] is long relative to the ”time constants”
associated with the zeros of the system. This is consistent
with the observations in [11].

Finally, for the special, but important, case of m = 1,
consider the following all pass system

Ga(z) =
1 − z−1

1 z

z − z−1
1

= −z−1
1 +

∞
∑

j=1

bjz
−j , z0 > 1 (36)

Its matrix form is

Ga =















−z−1
1

b1 −z−1
1

...
. . .

. . .

bN−1 · · · b1 −z−1
1















= U















δ1

1

. . .

1















V T

Taking determinants, gives the smallest singular value
as σ(Ga) = δ1 = |z1|−(N+1−k∗). It follows that δ(N) =
|z1|−(N+1−k∗) which provides a useful explicit relation-
ship with the position of the zero z1 and the time interval
N .

4 Modelling Slow Convergence using Linear
Constraints

The analysis and interpretation presented in the previ-
ous section is now used to motivate the construction of

an approximate mathematical model of the onset of slow
convergence behaviour of NOILC for a non-minimum
phase system G under the assumption that the time in-
terval N is sufficiently long (or, more precisely, |z−2N

j |
is sufficiently small for all 1 ≤ j ≤ m). Details are given
below.

4.1 Construction of an approximate model of slow con-
vergence

To construct the approximate model, motivated by (35)
it is assumed that, to a good approximation, and for
the purposes of calculation, a good prediction of be-
havior over a large number of trials can be described
by replacing O(|z−2N

0 |) by zero (equivalent to setting
δi = 0, 1 ≤ i ≤ m). That is, the approximate model of
NOILC performance up to the onset of slow convergence
will assume that the error sequence satisfies the follow-
ing linear constraint(s) for a large number of iterations:

< ek+1 − ek, β >= 0, ∀β ∈ E+. (37)

Equivalently,

< ek+1 − ek, βi >= 0, 1 ≤ j ≤ m (38)

As ek+1 − ek = −G(uk+1 − uk) , this constraint can be
written as uk+1 ∈ Ωk+1 where

Ωk+1 = {u :< u − uk, ψj >= 0, 1 ≤ j ≤ m} (39)

Here ψj = GT βj , 1 ≤ j ≤ m span the subspace GTE+.

Remark 17 The introduction of these linear constraints
is the mechanism used to construct the proposed model of
algorithm evolution that explains and predicts the behav-
ior of NOILC when applied to plants with NMP zeros.
The implications of this are analyzed below. The approx-
imation will break down as iterations progress as, ulti-
mately, the error does go to zero. The model is proposed
as a good approximation over initial and possibly large
number of trials where onset of the plateau/stagnation
effect is seen in practice.

The model of NOILC behavior when applied to a non-
minimum phase system is that

(1) the signal uk+1 computed from NOILC can be ap-
proximated by the solution of the constrained op-
timization problem

uk+1 = arg min
uk+1∈Ωk+1

Jk+1(uk+1)

(2) and that the limit, as k → ∞, of these solutions
provides a good approximation to behavior on the
plateau.
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4.2 Lagrange multiplier solution of the approximate
model

The solution to the constrained optimization problem is
approached using Lagrange multiplier techniques i.e. by
minimizing the Lagrangian

Jλ
k+1 =

1

2
Jk+1 +

m
∑

j=1

λj < ψj , uk+1 − uk > (40)

over all uk+1 ∈ Ωk+1 and all scalars λj (the Lagrange
multipliers). The necessary condition for a minimum is
that Jλ

k+1 is stationary at the optimal uk+1 and suitable

values of λ = [λ1, λ2, · · · , λm]T .

Remark 18 The addition of these constraints will be
seen to retain all properties of the NOILC algorithm ex-
cept that the error sequence {ek}k ≥ 0 does not neces-
sarily converge to zero.

The solution of this problem is stated in the following
theorem which uses the definition of Pǫ to denote the
self-adjoint, orthogonal projection onto the span of m
linearly independent vectors ǫ1, · · · , ǫm. In more detail,

Pǫ = [ǫ1, ǫ2, · · · , ǫm]M−1
ǫ θǫ(x) (41)

where Mǫ is the symmetric, positive definite (and hence
nonsingular) m×m matrix with (i, j) element < ǫi, ǫj >
and θǫ(x) is the m×1 vector with ith element < ǫi, x >.
Pǫ has the properties:

Pǫx = x ∀x ∈ span{ǫj : 1 ≤ j ≤ m} (42)

Pǫx = 0 ∀x ∈ span{ǫj : 1 ≤ j ≤ m}⊥ (43)

‖Pǫ‖= 1 (44)

(I − Pǫ)≥ 0 (45)

Theorem 5 Using the above notation and construc-
tions, the solution of the constrained NOILC algorithm
on the (k + 1)th iteration takes the form

uk+1 − uk = (I − Pψ)GT ek+1 (46)

and the error evolution

ek+1 = Lek, L =
(

I + G (I − Pψ) GT
)−1

ek (47)

The error norm has the monotonicity property

‖ek+1‖ ≤ ‖ek‖, ∀k ≥ 0 (48)

In addition, ek converges to e∞ (in the norm topology)
and it can be computed from the formula e∞ = Pβe0, or,
equivalently,

e∞ =
m

∑

j=1

γjβj , γ = [γ1, · · · , γm]T = M−1
β θβ(e0) (49)

The limiting norm can be computed using

‖e∞‖2 = θβ(e0)
T M−1

β θβ(e0) (50)

Proof. Firstly note that the choice u = uk is subopti-
mal and the monotonicity property is easily proved. The
conditions for a stationary point of the Lagrangian con-
sists of the constraint equations and, taking the Fréchet
derivative with respect to uk+1, the equality

uk+1 − uk = GT ek+1 −
m

∑

j=1

λjψj (51)

Taking the inner product with ψi and using the con-
straints,

0 =< ψi, G
T ek+1 > −

m
∑

j=1

λj < ψi, ψj >, 1 ≤ i ≤ m (52)

which is just 0 = θψ(GT ek+1) − Mψλ. It follows that

uk+1 − uk = GT ek+1 −
m

∑

j=1

λjψj = (I − Pψ)GT ek+1(53)

Now operate with G to give

ek+1 − ek = −G(I − Pψ)GT ek+1,

which can be written as

ek+1 =
(

I + G (I − Pψ) GT
)−1

ek = Lek (54)

with the natural identification of the Learning Operator
L. This gives

ek =
(

I + G (I − Pψ) GT
)−k

e0 = Lke0 (55)

The following three important invariance properties are
now demonstrated

L|E+ = I, LE⊥
+ ⊂ E⊥

+ , ‖L|E⊥
+ ‖ < 1 (56)

where L|S denotes the restriction of the linear operator
L to the subspace S.

Consider the above error evolution equation and write

e0 = e0+ + e⊥0+,

e0+ = Pβe0 ∈ E+,

e⊥0+ = (I − Pβ)e0 ∈ E⊥
+

(57)
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By construction, (I − Pψ)GTE+ = {0} so that

(

I + G (I − Pψ) GT
)

e0+ = e0+. (58)

It immediately follows that the restriction L|E+ of learn-
ing operator L to E+ is the identity i.e. L|E+ = I. In
particular, Lke0+ = e0+ for all k ≥ 0.

Now let ṽ ∈ E⊥
+ be arbitrary and set v = Lṽ or, equiv-

alently, ṽ = L−1v. Taking the inner product with arbi-
trary w ∈ E+ then gives

0 = < w, ṽ >

= < w, (I + G(I − Pψ)GT )v >

= < (I + G(I − Pψ)GT )w, v >

= < w, v > .

(59)

It follows that v ∈ E⊥
+ and hence that LE⊥

+ ⊂ E⊥
+ .

Now examine the quadratic form < x, L−1x > with
x ∈ E⊥

+ arbitrary but non-zero. Note that < x, G(I −
Pψ)GT x >≥ 0, equality holding if, and only if, (I −
Pψ)GT x = 0 i.e. x ∈ E+. As E+ ∩ E⊥

+ = {0}, it follows
that x = 0 which is a contradiction. Hence there exists
σ2 > 0 such that

< x, L−1x >≥ (1 + σ2)‖x‖2. (60)

It follows that ‖L|E⊥
+ ‖ ≤ 1

1+σ2 < 1.

The error evolution equation can now be written as

ek = Lke0 = Lke0+ + Lke⊥0+

= (L|E+)ke0+ + (L|E⊥
+ )ke⊥0+

= e0 + (L|E⊥
+ )ke⊥0+ (61)

from which, using ‖L|E⊥
+ ‖ < 1 from the above, gives

lim
k→∞

ek = e0+ = Pβe0. (62)

According to the definition of E+, it immediately fol-
lows that e∞ =

∑m
j=1 γjβj where γ = [γ1, · · · , γm]T =

M−1
β θβ(e0) and hence the error norm ‖e∞‖2 can be com-

puted as required. This completes the proof of the the-
orem.

The theorem is a precise description of properties of the
proposed constrained NOILC model. In what follows,
these ideas are interpreted in terms of anticipated per-
formance of the real NOILC algorithm.

Summary and Interpretation of the Results: Con-
sider a single input single output, stable non-minimum

phase system with NMP zeros zj , 1 ≤ j ≤ m, outside
the unit circle satisfying the condition that all values of
|z−2N

j |, 1 ≤ j ≤ m are sufficiently small. Then, conver-
gence takes the form of initial reductions in error norm
in E⊥

+ followed by a ’plateau’ where error norms in E+ re-
duce infinitesimally from iteration to iteration. The cho-
sen model of the effect of these zeroes as linear equal-
ity constraints on the dynamics of NOILC characterizes
predicts the error e∞ on the ’plateau’ as follows

e∞ =
m

∑

j=1

γjβj , γ = [γ1, · · · , γm]T = M−1
β θβ(e0) (63)

and the value of error norm along the plateau using

‖e∞‖2 = θβ(e0)
T M−1

β θβ(e0). (64)

The real (unconstrained) NOILC algorithm moves along
this plateau for many iterations but ultimately drifts away
from the plateau to converge to zero error. This can typ-
ically take more iterations than are practical for applica-
tions purposes and will not be observed.

Remark 19 In the case when the plant has only one
NMP zero z1 the equations simplify to produce

e∞ =
βT

1 e0

(βT
1 β1)

β1, ‖e∞‖2 =
(βT

1 e0)
2

(βT
1 β1)

(65)

where β1 = (GT
m)−1α1 = (GT

m)−1zN−k∗

1 γ0(z
−1
1 ).

This formula can be simplified using an approximation
replacing β1 by γ0(z

−1
1 ) (increasingly valid as the z−N

1 →
0) motivated by the asymptotic characterization

lim
N→∞

z
−(N−k∗)
1 β1 = z−k∗

1 G−1
m (z1)γ0(z

−1
1 ) (66)

and the fact that the formulae are unchanged if β1 is
scaled. This result is proved in an Appendix.

Using this approximation,

e∞ ≈ (γ0(z
−1
1 )T e0)

1 − z−2
1

(1 − z
−2(N+1−k∗)
1 )















1

z−1
1

...

z
−(N−k∗)
1















(67)

and

‖e∞‖2 ≈ (γ0(z
−1
1 )T e0)

2 (1 − z−2
1 )

(1 − z
−2(N+1−k∗)
1 )

, (68)

The above can be used to complete this section. More
precisely, it is noted that the error seen on the plateau
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is small only when θβ(e0) is small. This can be achieved
under two conditions only:

(1) The initial tracking error signal e0 is small in norm
or, more generally,

(2) the quantities < βj , e0 >, 1 ≤ j ≤ m are all small,
which can be true if e0 is not small but is small in
some time interval [0, N0] ⊂ [0, N ] with |zN0

j | ≫
1, 1 ≤ j ≤ m. This could be achieved naturally if,
for example, the plant has zero initial conditions
and the reference r is zero in [0, N0]. Choosing u0(t)
to be zero in this interval achieves the objective
with no effort.

5 Numerical Simulation

In this section, numerical examples are provided to verify
the analysis results. The simulation compare the predic-
tion with real simulation using different time intervals,
as well as different initial input choices.

Consider the following non-minimum phase system

G(s) =
5(s − 1)

(s + 2)(s + 1/2)
, (69)

which is sampled using zero-order hold and a sampling
time of 0.1s. The consequent discrete time model is

G (z) =
0.4186 (z − 1.1055)

(z − 0.8187) (z − 0.9512)

and there is a single NMP discrete zero at z1 = 1.1055
(so that z0 = z1).

Example 1 The trial length is set to the relatively small
value of T = 3 (only 50% more than the slowest time
constant and only three times the time constant associ-
ated with the NMP zero). The number of sample intervals
N = T/step = 30 and the reference is a sampled version
of the sine-wave sin( 4π

3 t) shown in Figure 4. The initial
input is chosen to be u0(t) = 0, t = 0, · · · , N − 1. The
simulation was run over 20 iterations which is sufficient
to demonstrate the main performance characteristics.

In this case, the critical value δ2(N) = z−2N
0 = 0.0024.

The simulation results are shown in Figure 5 and Fig-
ure 6, where slow convergence is not observed as there are
substantial differences between the approximate model
predictions and the simulation results over this iteration
range. The algorithm does however provide a good indi-
cation of where convergence begins to slow (between it-
erations 3 and 5) but the plateau effect is not strong in
this case. This is explained intuitively by the observation
that the trial length T = 3 is not large compared with the
’time constant’ Tz = 1 associated with the zero. The next
example increases T to verify this.

0 0.5 1 1.5 2 2.5 3
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1

T ime

r
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)

Fig. 4. The Reference Signal r(t)
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Fig. 5. Comparison of Convergence for T = 3s
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Fig. 6. Comparison of the Final Tracking Error e20(t) with
its estimate
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Fig. 7. The Reference Signal r(t)
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Fig. 8. Comparison of Convergence

Example 2 The trial length is now increased to the
value T = 8 and the reference signal is the sine-wave in-
put r(t) = sin( 4π

3 t) shown in Figure 7. The initial input
is chosen to be u0(t) = 0, t = 0, · · · , N − 1. The simula-
tion was now run over 40 iterations and the results are
shown in Figure 8 and Figure 9.

It can be seen the approximated model proposed now pro-
vides a good, accurate description of the slow conver-
gence phenomenon over the iteration range displayed, the
plateau is well defined visually and this ’final’ tracking
error on the plateau is estimated to a high accuracy.

Finally, the proposed model predicts that the plateau value
‖e∞‖2 depends on the initial error e0 and hence the initial
control input u0. To verify this and also to show again
that the results can predict observed behaviour accurately
for different initial inputs, the inputs u0(t) = 0, u0(t) =
100, u0(t) = t, were considered. The results are shown in
Figure 10 again confirming the validity of the analysis
results.
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Fig. 9. Comparison of the Final Tracking Error e40(t) with
its estimate
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Fig. 10. Comparison of Convergence for T = 8s

The above examples show that the theory is capable of
accurately predicting the effect of NMP zeros on track-
ing accuracy when that effect is substantial. The next
example shows that this remains true even when the ef-
fect is small.

Example 3 The trial length is again T = 8 and the ref-
erence signal is generated by the sine-wave input u∗(t) =
sin( 4π

3 t) shown in Figure 7. The initial input is chosen
to be u0(t) = 0, t = 0, · · · , N−1. The simulation was run
over 150 iterations and the results are shown in Figure 11
and Figure 12.

In this example, the optimal input u∗ doesn’t contain any
exponentially increasing components and hence the ef-
fect of NMP zero was intuitively expected to be small but
non-zero. From the figure, this is seen to be the case.
It can be seen that even, in this case, the approximated
model proposed provides a quite accurate description of
the slow convergence phenomenon. The convergence per-
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Fig. 12. Comparison of the Final Tracking Error e200(t) with
its estimate

formance is well predicted and the ’final’ tracking error
on the plateau is estimated to a high accuracy.

Finally, different initial inputs are used to verified the
results of the analysis. Figure 13 again confirms the va-
lidity of the analysis results.

6 Conclusion

The paper has modelled observed behavior of norm op-
timal iterative learning control (NOILC) when the plant
has a number of non-minimum phase (NMP) zeros. This
observed behavior consists of two phases of convergence.
The first occurs in the first few iterations where the al-
gorithm normally exhibits good (and potentially rapid)
error norm reductions. The second phase then sets in
and exhibits extremely slow reductions, typically so slow
that, to all practical intents and purposes, the algorithm
is not converging. The plot of error norm ‖ek‖ against
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Fig. 13. Comparison of Convergence for T = 8s

k appears to form a plateau at a constant value that
represents the best experimental accuracy that can be
achieved in practice.

Based on the belief that it is important that this phe-
nomenon and its implications for design are understood,
the analysis has been used to motivate the construction
of a model of the phenomenon. This was initiated by
writing the plant as a product G = GmGa where Ga

is an all-pass network arising from the NMP zeros and
Gm is minimum-phase. It was then proved that the self-
adjoint operator GaGT

a almost annihilates well-defined
signals associated with the zeros. The span of these sig-
nals is an m-dimensional subspace Ea+ of the output
signal space. It has then been proved that convergence
of error projections into E+ = (GT

m)−1Ea+ is inevitably
slow whilst, in contrast, convergence of the component
in the orthogonal complement E⊥

+ can be rapid.

Based on this analysis, it has been proposed that, to a
good approximation, the NOILC algorithm is behaving
as if it is subject to m equality constraints (orthogonal-
ity conditions). These constraints are identified and the
model has been used to predict both the values of the
tracking error and error norm value associated with the
plateau using Lagrangian methods. The model provides
some insight into the effects of initial error e0 and refer-
ence signal on the algorithm behavior and suggests that
a small initial error and/or a reference signal with an
initial period of inactivity are simple practical ways of
improving performance and accuracy. Finally the pre-
dictions of the model have been shown to be good in
various numerical simulations.

Further work is needed to generalize the ideas to the case
of multi-input multi-output systems (where the same
phenomenon occurs but the characterization of zeros is
much more complex).

Finally, the formulae in this paper have been given for
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the case of weightings Q = R = I. The relevant formulae
for the more general case of Q = qI, R = rI (where
q > 0, r > 0 are scalars) are obtained by replacing the
matrix representation G by q1/2Gr−1/2.
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A Proof of Theorem 1

Proof. For any time series vector u = [u(1), u(2), · · · , u(N−
k∗)]T ∈ RN+1−k∗

, define

u(z) =
N−k∗

∑

i=0

u(i)z−i.

Using Parseval’s theorem with |Ga(z)| = 1,∀|z| = 1,
yields

uT GT
a Gau≤ 1

2πi

∮

|z|=1

|Ga(z)u(z)|2 dz

z

=
1

2πi

∮

|z|=1

|u(z)|2 dz

z
= uT u, (A.1)

which implies

I − GT
a Ga ≥ 0, ∀N ≥ k∗. (A.2)

Hence, all the eigenvalues of GT
a Ga are less than or equal

to one i.e. all singular values of Ga are less than or equal
to one.

Consider the following equation

uT (I − GT
a Ga)u = 0. (A.3)
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All non-zero solutions u are eigenvectors of GT
a Ga cor-

responding to eigenvalues equal to one, and they span
a subspace of RN+1−k∗

whose dimension is identical to
the number of singular values that are equal to one.

From (A.1), it can be seen that (A.3) holds if and only
if the time series response Ga(z)u(z) is zero for t ≥ N +
1−k∗. It is necessary to consider the following two cases.

Case 1: N + 1 − k∗ > m. Consider the choice u0(z) =
a0 + a1z

−1 + . . . + amz−m, then

Ga(z)u0(z) = am + am−1z
−1 + . . . + a0z

−m. (A.4)

It can be seen that the response Ga(z)u0(z) is zero
for all t > m and hence for all t ≥ N + 1 − k∗.
Therefore the equality in (A.1) holds. Hence u0 =

[ a0 a1 · · · am 0 · · · 0 ]T is a solution of (A.3). Similarly,

it can be found that the choices of

ui(z) = z−(i−1)u0(z)

= a0z
−(i−1) + a1z

−i + . . . + amz−(m+i−1) (A.5)

where i = 2, · · · , N +1−k∗−m, also satisfy the equality
in (A.1) and the corresponding vector time series {ui}
are also solutions of (A.3). This provides N +1−k∗−m
linear independent solutions of (A.3).

Next, it is shown that there are no other solutions inde-
pendent of ui, i = 1, 2, · · · , N +1−k∗−m. This is proved
by contradiction. Suppose there exists such a non-

zero solution with transform x(z) =
∑N−k∗

i=0 x(i)z−i,
then there must exist a non-zero solution x0(z) =
∑N−k∗

i=N+1−k∗−m x0(i)z
−i (obtained by subtracting linear

combinations of ui(z), i = 1, 2, · · · , N +1− k∗ −m from
x0(z). This, as will be seen, is impossible. To prove this
notice that

Ga(z)x0(z) =
a0 + a1z + . . . + amzm

am + am−1 + . . . + a0zm

×
N−k∗

∑

i=N+1−k∗−m

x0(i)z
−i (A.6)

is finite length if and only if x0(z) cancels all the poles of
Ga(z). This, however, cannot happen because x0(z) has
m− 1 non-zero zeros while Ga(z) has m non-zero poles.

It follows that there are exactly N + 1 − k∗ − m linear
independent solutions of (A.3) and these correspond to
N +1−k∗−m singular values equal to one, which means

σ
(N+1−k∗)
i < 1 for 1 ≤ i ≤ m and σ

(N+1−k∗)
i = 1 for

m + 1 ≤ i ≤ N + 1 − k∗.

Case 2: N +1−k∗ ≤ m In this case, it can be seen from
the discussion above that no solutions exist that satisfy

(A.3). Hence all the singular values must be less than
one.

The proof is now complete.

B Proof of Theorem 2

Before proving Theorem 2, the following lemma is
proved.

Lemma 1 For the given all pass system Ga, when N +
1 − k∗ > m, the eigenspace of GT

a Ga has the following
structure:

(i) the following N + 1 − k∗ − m linearly independent
vectors are eigenvectors of GT

a Ga corresponding to the
N + 1 − k∗ − m eigenvalues of 1:

v1 =
[

a0 a1 · · · am 0 · · · 0
]T

v2 =
[

0 a0 a1 · · · am · · · 0
]T

...

vN+1−k∗−m =
[

0 · · · 0 a0 a1 · · · am

]T

each of which can be identified with time series with Z-
transforms

vi (z) = z−(i−1)(a0 + a1z
−1 + · · · am−1z

−(m−1)

+amz−m), i = 1, · · · , N + 1 − k∗ − m

(ii) The m eigenvectors of GT
a Ga corresponding to

the m eigenvalues that are less than one form an
m−dimensional subspace Sa.

(iii) If the zeros {zi} are distinct, then Sa is spanned by

γi =
[

1 zi · · · zi
N−k∗

]T

, i = 1, · · · ,m

each of which can be identified with the first N + 1 − k∗

terms of the impulse response of the transfer functions

γi (z) =
1

1 − ziz−1
, i = 1, · · · ,m.

(iv) If one or more zeros has multiplicity ni > 1, Sa is
spanned by vectors, 1 ≤ ℓ ≤ ni, 1 ≤ i ≤ m0, computed
from the vectors

γiℓ =
dℓ−1

dzℓ−1
γ0(z)|z=zi

,
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where γ0(z) = [1, z, z2, · · · , zN−k∗

]T . Equivalently these
vectors have elements equal to the first N+1−k∗ elements
of the impulse response of

z−(ℓ−1)(ℓ − 1)!

(1 − ziz−1)ℓ
, 1 ≤ ℓ ≤ ni, 1 ≤ i ≤ m0.

Proof. The first part (i) of this theorem follows di-
rectly from the proof of Theorem 1.Denote the subspace
spanned by vi, i = 1, 2, · · · , N + 1 − k∗ − m as V . Part
(ii) follows from matrix algebra.

To prove parts (iii) and (iv), note that the eigenvectors
of GT

a Ga corresponding to the m eigenvalues that are
less than one span a subspace orthogonal to V, which is
denoted as V ⊥.

Examining part(iii), note first that, as the zi are distinct,
the vectors γi, i = 1, · · · ,m are linearly independent (as
they then form the columns in a nonsingular Van der
Monde matrix). It only remains to prove that γi ⊥ V, 1 ≤
i ≤ m, when it follows that they span the subspace V ⊥

of interest. This follows as

vT
j γi = zj−1

i (a0 + a1zi + a2z
2
i + · · · + amzm

i ) = 0

from the definition of zi.

The proof of (iv) requires more effort. For notational
convenience, let n(z) = a0 + a1z + a2z

2 + · · · + amzm

from which it can be deduced that, for all j ≥ 1,

dℓ−1

dzℓ−1

[

zj−1n(z)
]

|z=zi
= 0, 1 ≤ ℓ ≤ ni, 1 ≤ i ≤ m0

Now define, 1 ≤ ℓ ≤ ni, 1 ≤ i ≤ m0,

γiℓ =
dℓ−1

dzℓ−1
γ0(z)|z=zi

, γ0(z) = [1, z, z2, · · · , zN−k∗

]T

A simple calculation then yields the orthogonality con-
ditions, for all j, 1 ≤ ℓ ≤ ni and 1 ≤ i ≤ m0

vT
j γiℓ =

dℓ−1

dzℓ−1

[

vT
j γ0(z)

]

|z=zi
= 0

as

dℓ−1

dzℓ−1

[

vT
j γ0(z)

]

|z=zi
=

dℓ−1

dzℓ−1

[

zj−1n(z)
]

|z=zi
= 0.

It remains to relate these vectors to the transfer func-
tions stated. To do this, note initially that the result fol-
lows trivially for ℓ = 1 as γi1 has elements that are equal
to the coefficients in the power series expansion of

1

1 − ziz−1
= 1 + ziz

−1 + z2
i z−2 + z3

i z−3 + · · · .

For ℓ > 1, note that

γiℓ =
dℓ−1

dzℓ−1
γ0(z)|z=zi

=
dℓ−1

dzℓ−1
i

γ0(zi)

has elements that are the coefficients of 1, z−1, z−2, z−3, · · ·
in the power series expansion of

∂ℓ−1

∂zℓ−1
i

[

1

1 − ziz−1

]

=
z−(ℓ−1)(ℓ − 1)!

(1 − ziz−1)ℓ

That completes the proof of the lemma.

Moving on to the proof of Theorem 2.

Proof. Denote

F =





















0 · · · · · · 0 1

0 · · · · · · 1 0

0 · · · 1 0 0
...

...
...

. . .
...

1 0 · · · · · · 0





















= FT , F 2 = I (B.1)

as the Euclidean norm preserving ”time reversal matrix”
(the matrix that reverses the order of elements in a time
series vector), then [17] GT

a = FGaF . It follows that, if
v is an eigenvector of GT

a Ga corresponding to eigenvalue
λ, i.e. GT

a Gav = λv, then GaGT
a has an eigenvector Fv

corresponding the eigenvalue λ,. This statement follows
from the identity

GaGT
a Fv = FFGaFFGT

a Fv = FGT
a Gav

= Fλv = λFv. (B.2)

The proof is completed by defining ui = FvN+2−k∗−i as
the eigenvectors with eigenvalue unity and setting αiℓ =
Fγiℓ as the basis for the orthogonal invariant subspace
spanned by eigenvectors with eigenvalues less than unity.

C Proof of Theorem 3

This section uses the notation of previous sections.

Proof. Consider the case when all zeros are distinct so
that

γi = γ0(zi), & αi = Fγi = zN−k∗

i γ0(z
−1
i ) (C.1)
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According to the Courant-Fischer theorem,

max(δ1, · · · , δm) ≤ ‖GT
a x‖

‖x‖ , (C.2)

where x ∈ span{αi}. Write x as x =
∑m

i=1 ciαi from
which

‖GT
a x‖= ‖FGaFx‖ = ‖GaFx‖ = ‖

m
∑

i=1

ciGaFαi‖

= ‖
m

∑

i=1

ciGaγi‖ ≤ M‖c‖, (C.3)

for some M > 0 with c = [c1, · · · , cm]T . Moreover M
can be chosen to be independent of N as, from the def-
initions, each Gaγi is uniformly bounded in norm over
N as its elements are the first N + 1 − k∗ elements of
the impulse response of Ga(z) 1

1−ziz−1 which is stable by
construction.

Consider now the situation where ‖x‖ = 1 i.e. for some
Γ > 0

1 = ‖x‖= ‖[α1, · · · , αm]c‖
= ‖[γ0(z

−1
1 ), · · · , γ0(z

−1
m )]c‖

≥ Γ‖c̃‖
≥ Γ|z0|N−k∗‖c‖ (C.4)

where c̃ = diag{zN−k∗

i }c. Moreover, Γ can be chosen to
be independent of N as the Hermitian matrix

[γ0(z
−1
1 ), · · · , γ0(z

−1
m )]∗[γ0(z

−1
1 ), · · · , γ0(z

−1
m )]

is nonsingular and monotonically increasing with N +
1 − k∗ ≥ m. Under these conditions,

‖c‖ ≤ Γ−1|z0|−(N−k∗) (C.5)

so that

‖GT
a x‖ ≤ M‖c‖ ≤ MΓ−1|z0|−(N−k∗) = O(|z0|−N )(C.6)

This completes the proof.

D Characterization of the Behaviour of β1 as
N → ∞

Note: The following calculations relate to the case where
there are only distinct NMP zeroes i.e. m0 = m and all
ni = 1. For notational simplicity, only β1 is considered
but similar calculations can be used for any βi.

Using the properties of the time reversal matrix F ,

β1 = (GT
m)−1α1 = (G−1

m )T α1

= FG−1
m Fα1 = FG−1

m γ0(z1) (D.1)

Note that Gm(z) is minimum phase and hence G−1
m (z) is

asymptotically stable. Also G−1
m γ0(z1) can be identified

with the first N +1−k∗ terms in the impulse response of
z−k∗

G−1
m (z) 1

(1−z1z−1) and hence, using partial fraction

expansion, takes the form

G−1
m γ0(z1) = ỹ + z−k∗

1 G−1
m (z1)γ0(z1)

where ỹ is the stable part of the response and is uniformly
bounded in norm over N . It follows that

β1 = FG−1
m γ0(z1) = F ỹ + z−k∗

1 G−1
m (z1)Fγ0(z1)

= F ỹ + z−k∗

1 G−1
m (z1)z

N−k∗

1 γ0(z
−1
1 )

and hence

lim
N→∞

z
−(N−k∗)
1 β1 = z−k∗

1 G−1
m (z1)γ0(z

−1
1 ) (D.2)

That is, in any formula where scaling of β1 does not
affect the computations, β1 can be replaced by γ0(z

−1
1 )

with good accuracy if N is large.
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