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Abstract

The subject of this paper is modeling of the influence of non-minimum phase plant
dynamics on the performance possible from gradient based norm optimal iterative
learning control algorithms. It is established that performance in the presence of
right-half plane plant zeros typically has two phases. These consist of an initial
fast monotonic reduction of the L2 error norm followed by a very slow asymptotic
convergence. Although the norm of the tracking error does eventually converge to
zero, the practical implications over finite trials is apparent convergence to a non-
zero error. The source of this slow convergence is identified and a model of this
behavior as a (set of) linear constraint(s) is developed. This is shown to provide
a good prediction of the magnitude of error norm where slow convergence begins.
Formulae for this norm are obtained for single-input single-output systems with
several right half plane zeroes using Lagrangian techniques and experimental results
are given that confirm the practical validity of the analysis.
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1 Introduction

Iterative learning control (ILC) is a technique for controlling systems operat-
ing in a repetitive (termed trial-to-trial, iteration-to-iteration or pass-to-pass)
mode with the requirement that a reference trajectory r(t) defined over a fi-
nite interval (trial or pass length) 0 ≤ t ≤ α is followed to a high precision.
Examples of such systems include robotic manipulators that are required to
repeat a given task to high levels of accuracy, chemical batch processes or,
more generally, the class of tracking systems.

Since the original work [1] in the mid 1980s, the general area of ILC has been
the subject of intense research effort. An initial source for the literature here
are the survey papers [2], [3] and [7]. A key point here is that many linear
model based algorithms have also seen experimental benchmarking.

One class of widely considered algorithms (e.g. [5] and [6]) are “gradient
based” i.e. iterate to produce the desirable property of reducing error norm
magnitudes from trial-to-trial. One wide class of such algorithms using both
function and parameter optimization methods is reviewed in [7]. As in all
control algorithms, including the familiar feedback control paradigm, there
are limitations as to what ILC can achieve depending on the characteristics
of the plant. In particular, the structural properties of the plant are critical to
what can be achieved. This paper, motivated by results first given in [4], uses
standard tools from functional analysis in a Hilbert space to investigate the
effects of non-minimum phase zeros on the convergence behavior of gradient
based algorithms using the so-called norm optimal ILC (NOILC) approach [5].
This algorithm has the property of guaranteeing, for a wide class of linear
systems, convergence of tracking errors to zero (in norm) but has been observed
to exhibit a slow convergence behaviors for non-minimum-phase systems. The
aim of the analysis in this paper is to provide a model of this observed behavior
with a view to predicting its main parameters. The validity of the theoretical
results in predicting observed phenomena is verified by experimental results
obtained from an electro-mechanical testbed.

2 Background

Definition 1 Consider a dynamic system with input u and output y. Let Y
and U be the output and input function spaces respectively and let r ∈ Y be
a desired reference trajectory for the system. An ILC algorithm is successful
if, and only if, it constructs a sequence of control inputs {uk}k≥0 which, when
applied to the system (under identical experimental conditions), produces an
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output sequence {yk}k≥0 with the following properties of convergent learning

lim
k→∞

yk = r, lim
k→∞

uk = u∞ ∈ U

Here convergence is interpreted in terms of the topologies assumed in Y and
U respectively.

Note that this general description of the problem allows a simultaneous de-
scription of linear and nonlinear dynamics, continuous or discrete plant with
either time-invariant or time varying dynamics.

Let the space of output signals Y be a real Hilbert space and U also be a real
(and possibly distinct) Hilbert space of input signals. The respective inner
products (denoted by 〈·, ·〉) and norms ‖ · ‖2 = 〈·, ·〉 are indexed in a way that
reflects the space if it is appropriate to the discussion e.g. ‖x‖Y denotes the
norm of x ∈ Y .

The dynamics of the systems considered here are assumed to be linear and
represented in operator form as

y = Gu+ d

where G : U → Y is the system input/output operator (assumed to be
bounded and typically a convolution operator) and d is a term describing
initial condition or other trial independent effects such as disturbances. If
r ∈ Y is the reference trajectory or desired output then the tracking error is
defined as

e = r − y = r −Gu− d

This paper considers the NOILC algorithm of [5] which, on completion of
trial k, calculates the control input signal on trial k + 1 as the solution of the
minimum norm optimization problem

uk+1 = arg min
uk+1

{Jk+1(uk+1) : ek+1 = r − yk+1, yk+1 = Guk+1 + d}

where the performance index, or optimality criterion, is

Jk+1(uk+1) = ‖ek+1‖
2
Y + ‖uk+1 − uk‖

2
U (1)

The initial control u0 ∈ U can be arbitrary in theory but, in practice, will be
a good first guess at the solution of the problem.
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This problem can be interpreted as the determination of a sequence of control
inputs with the properties that, on trial k+1, (i) the tracking error is reduced
in an optimal way; and (ii) this new control input does not deviate too much
from the control input used on trial k. The relative weighting/importance of
these two objectives can be absorbed into the definitions of the norms in Y and
U . The control input on trial k+1 is obtained from the stationarity condition,
necessary for a minimum, by Fréchet differentiation of (1) with respect to uk+1

as

uk+1 = uk +G∗ek+1, ∀k ≥ 0 (2)

where G∗ is the adjoint operator for G. This leads easily, using y = Gu+d and
e = r − y, to the following formulae for the change in error from trial-to-trial

ek+1 − ek = −GG∗ek+1, ∀k ≥ 0 (3)

and hence

ek+1 = (I +GG∗)−1ek, uk+1 = uk +G∗(I +GG∗)−1ek, ∀k ≥ 0 (4)

Now consider the special case of a differential linear time-invariant plant mod-
eled by the state-space triple {A,B,C} operating over a time interval [0, α]
(with state, input and output y(t), x(t), and u(t) respectively). In this case,
with input and output spaces being L2[0, α] spaces with appropriate norms,
G is defined by the equation

(Gu)(t) = C

t∫

0

eA(t−τ)Bu(τ)dτ, d(t) = CeAtx(0) (5)

and the cost function takes the form

Jk+1 =

α∫

0

{eTk+1(t)Qek+1(t) + (uk+1(t) − uk(t))
TR(uk+1(t) − uk(t))}dt (6)

where the weighting matrices Q and R are symmetric positive definite.

The adjoint operator G∗ in the solution (2) is often an anti-causal operator but
in the case of (5) it can be converted into a causal algorithm [5] using familiar
Riccati methods. The route is to consider the cost function as a variation of
the linear quadratic regulator problem and, in particular, as a problem of
combined tracking (of r(t) and disturbance accommodation (regarding uk(t)
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as a known disturbance on trial k + 1). If we assume full knowledge of the
state vector, the optimal input on trial k + 1 is then

uk+1(t) = uk(t) − R−1BT [K(t)xk+1(t) − ξk+1(t)] (7)

where the feedback gain matrix K(t) satisfies the Riccati differential equation

K̇(t)=−ATK(t) −K(t)A+K(t)BR−1BTK(t) − CTQC

K(α)= 0 (8)

and the predictive or feedforward term ξk+1(t) is generated by

ξ̇k+1(t) = −
(
A−BR−1BTK(t)

)T
ξk+1(t) − ζ CTQek(t)

with terminal coniditon

ξk+1(α) = 0

The predictive term in this algorithm driven by a combination of the tracking
error and the input on the previous trial k and also the reference signal. This is
therefore a causal ILC algorithm consisting of current trial full state feedback
combined with feedforward from the previous trial output tracking error data.
This representation of the solution is causal in the ILC sense because the
costate system can be solved off-line, between trials, by reverse time simulation
using available previous trial data. The differential matrix Riccati equation for
the feedback matrix K(t) needs to be solved only once before the sequence of
trials begin. Also by reducing R to infinitesimally small values, high gain state
feedback can be achieved which generates, intuitively, maximum convergence
rates whilst satisfying the stability constraint. This is in contrast to high gain
output feedback which cannot be used in practice due to instabilities arising
from right-half plane zeros.

Norm optimal ILC has been shown ([5]) to have the following convergence
properties for the error sequence {ek} and input sequence {uk} :

(1) The change in input uk+1 − uk converges in norm to zero.
(2) If the input {uk} converges, the limit is the input that minimizes the

error norm ||r − Gu − d||2 (where for ease of notation we have omitted
explicit mention of the underlying function space(s)).

(3) The error sequence generated by (1) is monotonically decreasing in norm.
(4) The error norm converges monotonically to zero if the reference signal is

in the range of the plant or arbitrarily close to it.
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The algorithm [5] is hence universally convergent and universally applicable in
theory and is known to be capable of excellent convergence properties. This has
been seen in extensive simulation work and, most importantly, in experimental
benchmarking on a gantry robot [11] and experimental applications including
an accelerator based free electron laser [12]. Both applications are minimum-
phase. Non-minimum phase properties are the subject of this paper which also
provides experimental verification of these results using a non-minimum-phase
electro-mechanical system.

For a simple simulation example, Figure 1 shows the results of applying this
ILC algorithm to the minimum-phase plant

G(s) =
s+ 1

(s+ 2)(s+ 3)

with r(t) = 5 sin (π
2
t) and in the cost function Q = 20, and R = 1. The

good convergence behavior is clearly visible with several orders of magnitude
reductions in J (and hence error norm) in the first 10 trials before convergence
rates reduce.

0 1 2 3 4 5 6
−3

0 

3 

Time (s)

E
rr

or
, e

k

0 5 10 15 20
10

−4

10
0

Trial, k

C
os

t f
un

ct
io

n,
 J

k

0 2 4 6

−25

0  

25 

Time (s)

C
on

tr
ol

 in
pu

t, 
u k

 

 

0 1 2 3 4 5 6

−5

0

5

Time (s)

O
ut

pu
t, 

y k

 

 

r(t) k = 2 k = 4 k = 10 k = 20

a) b)

c) d)

Fig. 1. NOILC performance from a typical minimum phase system: a) error, ek, b)
cost function, Jk, c) control input, uk and d) output, yk.

Convergence can, however, be associated with poor performance when the
plant is non-minimum phase. More precisely, if the plant is non-minimum
phase convergence to zero is still guaranteed but the convergence behavior is
very different. For example, Figure 2 shows, with the same reference signal and
cost function weighting as Figure 1, the convergence behavior for the transfer-
function above with the numerator polynomial replaced by s − 1. From this
data, the algorithm is seen to reduce errors rapidly in the first few trials but
then “stagnates”, moving along a “plateau” of almost constant error norm
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with only very small changes from trial-to-trial. For all practical purposes, (i)
the input after the 6th trial barely changes and hence (ii) the error appears
to be converging to a non-zero value. The problem is that the non-zero error
“achieved” is, in this case, only an improvement of a factor of approximately
10 in norm over the initial error norm, an entirely unsatisfactory outcome.
The task undertaken by this paper is to explain why this is happening and to
model the behavior with the intention of predicting the stagnated values and
signals.
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Fig. 2. Non-minimum phase example with apparent convergence to a non-zero, large
error: a) error, ek, b) cost function, Jk, c) control input, uk and d) output, yk.

In the analysis which follows, attention is focussed primarily on the case of
single-input single-output systems withm right half-plane zeros {zj : Re(zj) >
0, 1 ≤ j ≤ m}. It will be shown that the NOILC algorithm exhibits two dif-
ferent convergence rates characterized by factoring the space of all possible
error signals into two subspaces. One of these is associated with the span of
functions generated by the signals e−zjt, 1 ≤ j ≤ m. This subspace will be de-
noted here by E+ and will be seen to be associated with slow convergence if the
trial length [0, α] is “long”. The other subspace is taken to be its orthogonal
complement E⊥

+ . The desired input producing zero error normally has compo-
nents in both subspaces. The rate of convergence of the error will be seen to
be different for these two subspaces where, in particular, the convergence rate
is much higher for components of error signals in E⊥

+ than those in E+.

3 Characterization of E+

Suppose that G has m right-half plane zeros described by the list {zj : 1 ≤
j ≤ m0} with zj having multiplicity nj and

∑m0

j=1 nj = m. The analysis is

7



initiated by consideration of the action of the operator GG∗ on the signals

θji(t) =
1

(i− 1)!
ti−1e−zjt = L−1

[
1

(s+ zj)i

]
, 1 ≤ i ≤ nj , 1 ≤ j ≤ m0 (9)

In this case

E+ = span{θji : 1 ≤ i ≤ nj , 1 ≤ j ≤ m0}, dim(E+) = m (10)

In the generic case of nj = 1, ∀j, these functions have the notationally simpler
form

θj(t) = e−zjt = L−1

[
1

(s+ zj)

]
, 1 ≤ j ≤ m (11)

and this case

E+ = span{θj : 1 ≤ j ≤ m}, dim(E+) = m (12)

The zeros can be real or complex. In the complex case the function θji and its
complex conjugate are replaced by the real and imaginary parts. The details
are omitted for brevity.

In what follows, it is necessary to have an explicit representation of G∗ when
the input and output vector spaces are L2(0, α) Hilbert spaces with inner
products

< u1, u2 >U=

α∫

0

uT1 (t)Ru2(t)dt, < y1, y2 >Y=

α∫

0

yT1 (t)Qy2(t)dt (13)

The following theorem (which applies also to multi-input multi-output sys-
tems) follows from the definitions

Theorem 1 With the above definitions, the adjoint operator of the linear
map y = Gu corresponding to the linear, time-invariant state space model
S(A,B,C,D)

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), x(0) = 0 (14)

is the map v = G∗z corresponding to the linear system

ṗ(t) = −AT p(t) − CTQz(t), v(t) = R−1(BTp(t) +DT z(t)) (15)
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with a terminal boundary condition p(α) = 0.

For the purposes of this paper, the case of single-input, single-output (SISO)
systems will be considered. In this case, the identity QR−1C(sI + A)−1B ≡
R−1BT (sI + AT )−1CTQ proves that v = G∗z also has the realization

ṗ(t) = −Ap(t) − Bz(t), v(t) = QR−1(Cp(t) +Dz(t)), p(α) = 0 (16)

Using the notation f̃(t) ≡ f(α− t) to denote the time reversed signal, it is a
simple matter to show that ||f || = ||f̃ || and, for SISO systems,

v = G∗z ⇔ ṽ = QR−1Gz̃ (17)

i.e. (in a similar manner to the discrete time gradient methods [6]) the response
of G∗ to the input z is just QR−1 times the time reversal of the response of G
to the time reversed z. This observation will be used in the following analysis.

The next step is the analysis of asymptotic behaviors of G∗θji and GG∗θji as
α→ ∞. More precisely, the following theorem can be proved:

Theorem 2 Assume only simple zeros of multiplicity nj = 1. With the above
definitions and constructions and assuming that the operator G is an asymp-
totically stable SISO system with transfer function G(s), then

(G∗θj)(t) = e−zjαQR−1(ỹzj
)(t), 1 ≤ j ≤ m (18)

where yzj
is defined as the response of the plant G from zero initial conditions

to the input signal ezjt i.e.

yzj
(t) = L−1

[
G(s)

1

s− zj

]
(19)

As a consequence,

lim
α→∞

||G∗θj || = 0, lim
α→∞

||GG∗θj || = 0, 1 ≤ j ≤ m (20)

It is important to note the following.

(1) The result applies for complex zeros where the appropriate θj functions
are taken as the real and imaginary parts of e−zjt.

(2) The result also applies to multiple non-minimum phase zeros with the
function {θj} replaced by the set {θji} in a natural way. The proof of this
is similar to the above and is omitted for brevity.
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Proof: The proof follows from the equation

(G∗θ)(t) = QR−1 ˜
[Gθ̃](t) = QR−1e−zjαỹzj

(t) (21)

so that

||G∗θ|| = QR−1||
˜
[Gθ̃]|| = QR−1e−zjα||ỹzj

|| = QR−1e−zjα||yzj
|| (22)

and, in a similar way,

||GG∗θ|| = QR−1e−zjα||Gỹzj
|| ≤ QR−1||G||L2[0,α]e

−zjα||yzj
|| (23)

and is completed by the observation that

supα>0||yzj
||L2[0,α] <∞ & supα>0||G||L2[0,α] <∞ (24)

(as G is asymptotically stable) and Re[zj ] > 0 (by definition). �

It is important to interpret this theorem in terms of its implications for algo-
rithm performance when G is non-minimum phase. In norm optimal ILC, the
change in error is just ek+1−ek = −GG∗ek+1. The theorem hence states clearly
that, when the time interval α is large in the sense that all non-minimum
phase zeros satisfy αzj ≫ 1, the change in error due to the component of
ek+1 in the subspace E+ spanned by θj , 1 ≤ j ≤ m is extremely small. As a
consequence, the error norm sequence {||ek+1||}k≥0, although monotonic, will
ultimately ”plateau” out in the way seen in the examples of Section 2 and the
experimental results seen in Section 5.

The theorem can be summarized in the form

lim
α→∞

||GG∗θ)|| = 0 ⇐ θ ∈ E+ (25)

i.e. θ ∈ E+ is sufficient to produce the required observed property. In what
follows. the following (unproven) hypothesis will be assumed to be true.

The m-dimensional subspace E+ spanned by the functions θj defined above is
both necessary and sufficient to describe the slow convergence behavior. That
is,

lim
α→∞

||GG∗θ|| = 0 ⇔ θ ∈ E+ (26)

Evidence to support the truth of this hypothesis has been seen in many sim-
ulations and is also implied by the success of the experimental results later in
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this paper. It can also be supported by examining the response of GG∗ to the
signal f(t) = e−zt where z is any complex number with strictly positive real
part. Similar calculations to those used in the proof of the theorem then yield
the formula

(GG∗f)(t) = f0(t) +G(z)e−zt, lim
α→∞

ezα||f0|| <∞ (27)

which does not vanish as α→ ∞ unless z is equal to one of the zj. That is the
right-half plane zeros of G are the only values of z with the desired property.

4 Modeling Slow Algorithm Convergence using Linear Constraints

The analysis and interpretation of the previous section can be used to mo-
tivate the construction of an approximate mathematical model of the slow
convergence behavior of NOILC for a non-minimum phase system G under
the assumption that the time interval [0, α] is long enough (or, more precisely,
zjα≫ 1 for 1 ≤ j ≤ m). Details are given below.

To construct the approximate model, use the identity ek+1 − ek = −GG∗ek+1

and write the error signal space as E+
⊕

E⊥
+ where E⊥

+ is the orthogonal comple-
ment of E+. The choice of E⊥

+ as a complement to E+ is a crucial construction
for what follows and is motivated by the fact that GG∗ is self adjoint and maps
elements of E+ into points arbitrarily close to {0}. This can be interpreted as
suggesting that E+ is ”almost a kernel of GG∗” and hence ”almost invariant”.
As a consequence it is concluded that ek+1 − ek evolves predominantly in the
subspace E⊥

+ .

Note: To provide additional support for this construction, suppose that a
bounded linear operator H is such that HH∗ has finite dimensional (and
hence closed) kernel S (i.e. it maps S ”exactly” into the point set {0}), then
it is easily proved that HH∗S⊥ ⊂ S⊥. More precisely, let y ∈ S⊥ be arbitrary
and write HH∗y = z + z⊥ with z ∈ S and z⊥ ∈ S⊥. Let x ∈ S be arbitrary
and note that < x,HH∗y >=< HH∗x, y >=< x, z >= 0 ∀x ∈ S. It follows
that z = 0 and hence HH∗S⊥ ⊂ S⊥ as stated.

Motivated by the above and assuming that, to a good approximation, and
for the purposes of our calculations, GG∗E⊥

+ ⊂ E⊥
+ , then the error sequence

satisfies the following linear constraint(s) for a large number of iterations

< ek+1 − ek, θ >= 0, ∀θ ∈ E+, α ≫ 0 (28)
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This can be rewritten as the set of linear constraints

< ek+1 − ek, θj >= 0, 1 ≤ j ≤ m (29)

or, as ek+1 − ek = −G(uk+1 − uk), as

uk+1 ∈ Ωk+1 = {u :< u− uk, ψj >= 0, 1 ≤ j ≤ m}, ψj = G∗θj (30)

The introduction of these linear constraints as described is the mechanism used
below to construct the proposed model of algorithm evolution introduced in
this paper to explain and predict the behavior of NOILC applied to plants
with open right-half plane zeros. The implications of this are analyzed below.

Note: the approximation will break down as iterations progress as, ultimately,
the error does go to zero but the model is proposed as a good approximation
over initial and possibly large number of trials where the plateau/stagnation
effect is seen in practice.

Proposed Model: The model of NOILC behavior when applied to a non-minimum
phase system is that the signal uk+1 computed from NOILC can be approxi-
mated by the solution of the constrained optimization problem

uk+1 = arg min{Jk+1 = ||ek+1||
2 + ||uk+1 − uk||

2 : uk+1 ∈ Ωk+1} (31)

and that the limit, as k → ∞, of these solutions provides a good approximation
to behavior on the plateau.

Next the solution to this optimization problem is approached using Lagrange
multiplier techniques i.e. by minimizing the Lagrangian

Jλk+1 =
1

2
Jk+1 +

m∑

j=1

λj〈ψj , uk+1 − uk〉 (32)

over all uk+1 ∈ U (the change in input) and all scalars λj (the Lagrange
multipliers). The necessary condition for a minimum is that Jλk+1 is stationary
at the optimal uk+1 and λ = [λ1, λ2, ..., λm]T .

Note: The addition of these constraints retains all properties of the NOILC
algorithm except that the error sequence {ek}k≥0 does not necessarily converge
to zero.

The solution of this problem is stated in the following theorem which uses the
notation Pǫ to denote the self-adjoint, orthogonal projection operator onto the
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span of m linearly independent vectors ǫ1, .., ǫm. In more detail,

Pǫx = [ǫ1, ǫ2, ...., ǫm]M−1
ǫ βǫ(x) (33)

where Mǫ is the symmetric, positive definite (and hence nonsingular) m ×m

matrix with (i, j) element < ǫi, ǫj > and βǫ(x) is the m × 1 vector with ith
element < ǫi, x >.

Theorem 3 With the above construction, suppose that G is injective. Then
the solution of the constrained Norm Optimal ILC algorithm on the (k + 1)th

iteration takes the form

uk+1 − uk = (I − Pψ)G∗ek+1 (34)

and has the monotonicity property

||ek+1|| ≤ ||ek|| ∀k ≥ 0 (35)

In addition, if ek converges to e∞ (in the norm topology), then it can be com-
puted from the formulae

e∞ =
m∑

j=1

γjθj , γ = [γ1, ...., γm]T = M−1
θ βθ(e0) (36)

and the limiting norm is just

||e∞||2 = βθ(e0)
TM−1

θ βθ(e0) (37)

Proof: Firstly note that the choice u = uk is suboptimal and the monotonic-
ity property is easily proved. Next, the conditions for a stationary point of
the Lagrangian consists of the constraint equations and, taking the Fréchet
derivative with respect to uk+1, the equalities

uk+1 − uk = G∗ek+1 −
m∑

j=1

λjψj

Taking the inner product with ψi and using the constraints,

0 =< ψi, G
∗ek+1 > −

m∑

j=1

λj < ψi, ψj >, 1 ≤ i ≤ m
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which is just 0 = βψ(G∗ek+1) −Mψλ. It follows that

uk+1 − uk = G∗ek+1 −
m∑

j=1

λjψj = (I − Pψ)G∗ek+1 (38)

Now operate with G to give ek+1 − ek = −G(I − Pψ)G
∗ek+1. Assuming that

ek → e∞ then gives 0 = G(I − Pψ)G∗e∞ or, as G is injective,

G∗e∞ = PψG
∗e∞ ∈ span{ψj}1≤j≤m (39)

Write PψG
∗e∞ =

∑m
j=1 γjψj = G∗

∑m
j=1 γjθj and note that G being injective

implies that G∗ is injective. It follows that

e∞ =
m∑

j=1

γjθj (40)

It is trivially true that e∞ = Pθe∞ where Pθ is the orthogonal projection onto
the m-dimensional subspace spanned by {θj}1≤j≤m. It follows therefore that

γ = [γ1, ..., γm]T = M−1
θ βθ(e∞) (41)

The result follows if it is proved that βθ(e∞) = βθ(e0). To do this rewrite
the constraints < uk+1 − uk, ψj >= 0, 1 ≤ j ≤ m, k ≥ 0, in the form <

ek+1 − ek, θj >= 0, 1 ≤ j ≤ m, k ≥ 0. This is just < ek+1 − e0, θj >=
0, 1 ≤ j ≤ m, k ≥ 0. Taking the limit, the conclusion now follows from
< e∞, θj >=< e0, θj >, 1 ≤ j ≤ m and the definition of βθ(e).

Finally, the norm ||e∞||2 is computed from

< e∞, e∞ >=< [θ1, .., θm]M−1
θ βθ(e0), [θ1, .., θm]M−1

θ βθ(e0) >

which gives

||e∞||2 = (M−1
θ βθ(e0))

TMθ(M
−1
θ βθ(e0)) = βθ(e0)

TM−1
θ βθ(e0) (42)

This completes the proof of the theorem. �

The theorem is a precise description of properties of the proposed constrained
NOILC model. In what follows, these ideas are interpreted in terms of antici-
pated performance of the “real” NOILC algorithm.

Summary and Interpretation of the Results: For a single-input single output,
stable non-minimum phase system with zeroes zj, 1 ≤ j ≤ m, in the right-half
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plane and zjα ≫ 0, 1 ≤ j ≤ m, convergence takes the form of initial reductions
in error norm in E⊥

+ followed by a “plateau” where error norms in E+ reduce
infinitesimally from trial-to-trial. The chosen model of the effect of these zeroes
as linear equality constraints on the dynamics of NOILC characterizes and
predicts the error e∞ on the plateau component as follows

e∞ =
m∑

j=1

γjθj , γ = [γ1, ..., γm]T = M−1
θ βθ(e0) (43)

and the value of error norm along the plateau using

||e∞||2 = βθ(e0)
TM−1

θ βθ(e0) (44)

Note: In the case when the plant has only one right-half plane zero z the
equations simplify to produce

e∞ = e−zt
2z

1 − e−2zα

α∫

0

e−zte0(t)dt, ||e∞||2 =
2z

1 − e−2zα
[

α∫

0

e−zte0(t)dt]
2

which shows more clearly the interaction between the basis function e−zt and
the initial error e0. Note also that the experimental system used in the next
section has this property

The above can be used to complete this section. More precisely, it is noted
that the error seen on the plateau is small only when βθ(e0) is small. This can
be achieved under two conditions only:

(1) The initial tracking error signal e0 is small in norm or, more generally,
(2) the quantities < θj , e0 >, 1 ≤ j ≤ m are all small, which can be true

if e0 is not small but is small in some time interval [0, α0] ⊂ [0, α] with
Re[zj ]α0 ≫ 1, 1 ≤ j ≤ m. This could be achieved naturally if, for ex-
ample, the plant has zero initial conditions and the reference r is zero in
[0, α0]. Choosing u0(t) to be zero in this interval achieves the objective
with no effort.

5 Application to a Physical Example

Application of ILC to experimental systems is an important part of the devel-
opment and evaluation of the subject area and a number of results are available
as in [8], [11] and [12]. It is also clearly necessary to test the practical value
and robustness of these results in physical experiments where, inevitably, the
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transfer function used in analysis is only an approximation to the actual plant
dynamics. Here the (rotary) electro-mechanical, non-minimum phase test fa-
cility shown in Figure 3 is used to assess the validity of the methods and
results of this paper.

Fig. 3. Experimental Setup.

qo

qi

JrBr

Kr

Jg

Gr

Fig. 4. Non-minimum phase characteristic.

The experimental test-bed has previously (see, for example, [10]) been used to
evaluate a number of ILC schemes and consists of a rotary mechanical system
of inertias, dampers, torsional springs, a timing belt, pulleys and gears.

The non-minimum phase characteristic is achieved by using the arrangement
shown in Figure 4 where θi and θo are the input and output positions, Jr and
Jg are inertias, Br is a damper, Kr is a spring and Gr represents the gearing.
A further spring-mass-damper system is connected to the input in order to
increase the relative degree and complexity of the system. Frequency response
test measurements have been used to obtain continuous-time plant transfer-
function (including a proportional plus integral plus derivative stabilizer)

G(s) =
165.95(4 − s)

s4 + 21.5s3 + 170.28s2 + 368.52s+ 663.82
(45)

This system is non-minimum phase with one zero at s = 4 (giving z = 4)
in the right-half of the complex plane. The one dimensional subspace E+ is
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hence spanned by the single vector e−4t. Choosing a time interval t ∈ [0, 6],
the factor αz = 4 × 6 = 24 so e−αz = e−24 is extremely small suggesting that
the theoretical results of this paper should apply with good accuracy.

To show the close agreement existing between predicted and measured results,
40 trials of NOILC, using cost function weights Q = 5, and R = 1, and a
sampling frequency of 250Hz, have been performed, using the reference, r(t),
shown in Figure 5d). The reference comprises a sinusoidal positional movement
(in radians), which is both preceded and followed by periods where it is set at
zero. Following the discussion under (1) and (2) at the end of Section 4, there
exists a time interval for this case [0, 1.5] ⊂ [0, 6] where the reference r is zero
and the plant has zero initial conditions. Hence the error e0 will be zero in
this interval leading to a low predicted final error, e∞, and associated norm
‖e∞‖. These predicted values are shown in Figure 5a) and b) respectively, and
accurately match the experimental results obtained.
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Fig. 5. Experimental results with initial zero period: a) error, ek, b) error norm,
‖ek‖, c) control input, uk and d) output, yk

In order to examine a case where a significant non-zero final error is predicted,
the reference is now replaced with that shown in Figure 6d). This corresponds
to the same movement as the previous reference, however the starting point
has now been changed to half way along its length. The initial period of r(t)
is now not zero so, recalling again the discussion under (1) and (2) at the end
of Section 4, the e0 will not be small in this interval, leading to predicted error
values significantly different from zero, as shown in Figure 6 a) and b). Again,
40 trials of NOILC, using cost function weights Q = 5, and R = 1, have been
performed, and the experimental error results, ek and ‖ek‖ obtained can be
seen to closely match their predicted counterparts e∞ and ‖e∞‖. In particular,
the error norm ||ek|| enters the plateau at ||ek|| ≈ 2 (plot b) in Figure 6) and
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the predicted error is modeled by e∞ ≈ 6e−4t (plot a) in Figure 6).
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Fig. 6. Experimental results without initial zero period: a) error, ek, b) error norm,
‖ek‖, c) control input, uk and d) output, yk

6 Conclusions

The paper has modeled observed behavior of norm optimal iterative learning
control when the plant has a number of open right-half plane zeros. This ob-
served behavior consists of two phases of convergence. The first occurs in the
first few iterations where the algorithm normally exhibits good (and poten-
tially rapid) error norm reductions. The second phase then sets in and exhibits
extremely slow reductions, typically so slow that, to all practical intents and
purposes, the algorithm is not converging. The plot of ||ek|| against k ap-
pears to ”plateau” at a constant value that represents the best experimental
accuracy that can be achieved.

This phenomenon has been explained by proving that the self-adjoint plant
operator GG∗ almost annihilates well-defined signals associated with the ze-
ros e.g. one such signal for a zero z is e−zt. The span of these signals is an
m−dimensional subspace E+ of the output signal space where convergence is
inevitably slow. In contrast, convergence of the component in the orthogonal
complement E⊥

+ can be rapid.

The analysis has been used to motivate a model of the phenomenon. More
precisely, it has been proposed that the NOILC algorithm is behaving as if it
is subject to m equality constraints (orthogonality conditions). This model is
used to predict the values of error and error norm associated with the plateau
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using Lagrangian methods. The model provides some insight into the effects
of initial error e0 and reference signal on the algorithm behavior and suggests
that a small initial error and/or a reference signal with an initial period of
inactivity are simple practical ways of improving performance and accuracy.
Finally the predictions of the model have been shown to be good in practice
using an electro-mechanical benchmarking experiment.

Further work is needed to generalize the ideas to the case of multi-input multi-
output systems (where the same phenomenon occurs).
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