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Abstract

This paper considers the use of matrix models and the robustness of a gradient-based Iter-

ative Learning Control (ILC) algorithm using both fixed learning gains and gains derived from

parameter optimization. The philosophy of the paper is to ensure monotonic convergence with

respect to the mean square value of the error time series. The paper provides a complete and

rigorous analysis for the systematic use of matrix models in ILC. Matrix models make analysis

clearer and provide necessary and sufficient conditions for robust monotonic convergence. They

also permit the construction of sufficient frequency domain conditions for robust monotonic con-

vergence on finite time intervals for both causal and non-causal controller dynamics. The results

are compared with recent results for robust inverse-model based ILC algorithms and it is seen

that the algorithm has the potential to improve robustness to high frequency modelling errors

provided that resonances within the plant bandwidth have been suppressed by feedback or series

compensation.

Keywords: Iterative learning control, robust control, parameter optimization, positive-real

systems

−−−−−−−−−−−−−−−−−−−−−−−

1 Introduction

Iterative Learning Control (abbreviated to ILC in the sequel) is concerned with the performance of

systems that operate in a repetitive manner and includes examples such as robot arm manipulators and
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chemical batch processes, where the task is to follow some specified output trajectory in a specified

time interval with high precision. ILC uses information from previous executions of the task in

an attempt to improve performance from repetition to repetition in the sense that the tracking error

(between the output and the specified reference trajectory) is sequentially reduced to zero (see [1] and

[9]). Note that repetitions are often called trials, passes or iterations in the literature.

This paper introduces the idea of gradient-based ILC algorithms for discrete-time systems and

analyses the behaviour and robustness of these algorithms. Note that the analysis of continuous-time

gradient based algorithms have been carried out in [3] and [8]. In this paper, robustness is defined in

terms of a new concept of Robust Monotone convergence introduced by the authors in [4]:

Definition: An ILC algorithm has the property of robust monotone convergence with respect to a

vector norm || · || in the presence of a defined set of model uncertainties if, and only if, for every

choice of control on the first trial (and hence for every choice of initial error) and for any choice of

model uncertainty within the defined set, the resulting sequence of iteration error time signals con-

verges to zero with a strictly monotonically decreasing norm.

The requirement of monotonicity is representative of a practical requirement to improve tracking

from trial to trial. The mean square value of the error time series is used as a norm as it will be seen

that it has useful analytical properties in generating checkable design conditions.

A companion paper [4] uses the idea of an inverse model-based algorithm with learning gain β ∈

(0, 1) with excellent results if the plant model mismatch is zero but, in the presence of a multiplicative

uncertainty (with transfer function U(z)), robust monotone convergence is ensured if

| 1
β
− U(z)| <

1

β
, ∀ |z| = 1 (1)

A simple analysis of this expression indicates that:

1. significant high frequency errors such as high frequency parasitic resonant modes will require

small values of learning gain β and hence slow convergence of the algorithm.

2. In addition, the phase of the uncertainty must lie in the open range (−π
2 , π

2 ), a fact that con-

strains the form of uncertainty that can be tolerated. It arises from the monotonicity requirement

and is equivalent to U(z) being strictly positive real.

3. If U(z) is not known but is known to belong to the set characterized by an inequality of the
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form

| 1

β∗
− U(z)| <

1

β∗
, ∀ |z| = 1 (2)

then robust monotone convergence is guaranteed for all choice of gains in the range 0 < β < β∗

(see [11] for a more extensive review of this topic).

In contrast, for a process with transfer function G(z) = G0(z)U(z) where G0(z) is a nominal model

used for control purposes, this paper will show that the proposed gradient-based algorithm is robust

monotone convergent if

| 1
β
− |G0(z)|2U(z)| <

1

β
, ∀ |z| = 1 (3)

This does not remove the need for a strictly positive real U(z). It can however remove the destabiliz-

ing effect of high frequency errors as, in practice, both G(z) and G0(z) are low pass filters and hence

G0(z) will be small at high frequencies.

This paper derives the basic relationships for robust monotone convergence in the two cases of:

1. A constant learning gain β.

2. A sequence of learning gains {βk+1}k≥0 obtained using a parameter optimization method sim-

ilar to that introduced in [10].

Following a formal definition of the problem, a "static" matrix model of the dynamic process is

introduced. This model makes analysis simpler than analysis using the state space model directly but

requires the derivation of a number of algebraic properties of such models. These properties are very

useful for manipulation and interpretation purposes.

The gradient- based algorithm is then introduced firstly in the absence of modelling errors and

then in the presence of multiplicative modelling errors. The results are expressed initially in terms

of matrix inequalities and then in frequency domain terms using the transfer function description of

plant model and uncertainty. These ideas are then shown to extend easily to the case of parameter

optimal ILC. The monotonicity requirement is then relaxed using the notion of exponential weighting

introduced in [4]. This analysis shows that all of the benefits of mean square error case transfer to the

weighted case except that convergence may now be associated with increases in mean square error in

early iterations. This phenomenon can be regarded as a degradation in performance (which may or

may not be acceptable in a given application) but it does allow robust convergence in the presence of

a larger class of modelling error, namely, those satisfying

| 1
β
− ǫ−2k∗ |G0(z)|2U(z)| <

1

β
, ∀ |z| = ǫ−1 (4)
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for a given integer k∗ and some choice of parameter 0 < ǫ ≤ 1.

Where appropriate, the paper compares the inverse-model and gradient-based algorithms with the

conclusion that the gradient-based approach will be more robust both in theory and in practice. Some

notes on the use of series compensation and future work conclude the paper.

2 Problem definition

As a starting point consider a standard discrete-time,linear, time-invariant single-input, single-output

state-space representation defined over a finite, discrete time interval, t ∈ [0, N ] (in order to simplify

notation it is assumed that the sampling interval, ts is unity). The system is assumed to be operating

in a repetitive mode where at the end of each repetition, the state is reset to a specified repetition-

independent initial condition for the next operation during which a new control signal can be used. A

reference signal r(t) is assumed to be specified and the ultimate control objective is to find an input

function u∗(t) so that the resultant output function y(t) tracks this reference signal r(t) exactly on

[0, N ]. The process model is written in the form:

x(t + 1) = Ax(t) + Bu(t) x(0) = x0

y(t) = Cx(t) + Du(t)
(5)

where t is the sample number, the state x(·) ∈ R
n, output y(·) ∈ R and input u(·) ∈ R. The operators

A,B and C are constant matrices of appropriate dimensions and D is a scalar. From now on it will

be assumed that either D 6= 0 or that CAj−1B = 0, 1 ≤ j < k∗ and CAk∗−1B 6= 0 for some k∗ ≥ 1

(trivially satisfied in practice) and that the system (5) is both controllable and observable. If D 6= 0,

then take k∗ = 0. By construction, k∗ is then the relative degree of the transfer function G(z) of the

system. Also, the notation fk(t) will denote the value of a signal f at sample interval t on iteration k.

The repetitive nature of the problem opens up possibilities for modifying iteratively the input

function u(t) so that, as the number of repetitions increases, the system asymptotically learns the

input function that gives perfect tracking. To be more precise, the control objective is to find a causal

recursive control law typified by a relationship of the form

uk+1(t) = f(uk(·), uk−1(·), . . . uk−r(·), ek+1(·), ek(·), . . . , ek−s(·)) (6)

with the properties that, independent of the control input time series chosen for the first trial, the

resultant sequence of error and input signals satisfy

limk→∞ ‖ek(·)‖ = 0 limk→∞ ‖uk(·) − u∗(·)‖ = 0 (7)
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where ‖ · ‖ denotes any norm for the time series. In what follows, this norm is taken to be the

Euclidean norm ||f || =
√

fT f in Rp which is related to the mean square error of the time series by

the multiplier
√

p.

3 Matrix Representations of Plant Dynamics

The state space model is a natural description for the dynamic process. For this paper, it is argued that

an equivalent "static" matrix description is more suited to the method of analysis. More precisely, as

the linear system maps input time series into output time series, it follows that there exists a matrix

relating these time series. This matrix is an equivalent description of the systems dynamics.

To construct this matrix model in R
N+1, define the time series "super-vectors" on the kth trial via

uk = [uk(0), uk(1), . . . , uk(N)]T (8)

yk = [yk(0), yk(1), . . . , yk(N)]T (9)

r = [r(0), r(1), . . . , r(N)]T (10)

ek = [ek(0), ek(1), . . . , ek(N)]T = r − yk (11)

Furthermore, let u∗ be the input sequence (in time series or supervector form) that gives r(t) =

[Gcu
∗](t) where Gc is the convolution mapping corresponding to the process model (5).

Note that if the mapping f in (6) is not a function of ek+1, then it is typically said that the

algorithm is of feedforward type. If it does not depend on any of the ej , 0 ≤ j ≤ k, it is of feedback

type. Otherwise it is of feedback plus feedforward type.

With the above definitions, the relevant formulae for the input-output response of the system can

be written in the form, k ≥ 0,

yk = Geuk + d0 (12)

where Ge has dimension (N + 1) × (N + 1) and the lower triangular band structure (Ge)ij =

(Ge)(i+1)(j+1) that is required by causality and time invariance of linear time-invariant convolution

systems i.e.

Ge =

























D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0

...
...

...
. . .

...

CAN−1B CAN−2B . . . . . . D

























(13)
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Also d0 = [Cx0, CAx0, ..., CANx0]
T .

The elements CAjB of the matrix Ge are the Markov parameters of the plant (5). Suppose that

the plant transfer function G(z) = C(zI−A)−1B+D has relative degree (pole-zero excess) k∗ ≥ 0.

Assume also that the reference signal r(t) satisfies r(j) = CAjx0 for 0 ≤ j < k∗ (or, alternatively,

that tracking in this interval is not important). Then (in a similar manner to [7]) it is noted that, for

analysis, it is sufficient to analyse a ’lifted’ plant equation that is just the above if k∗ = 0 or, if k∗ ≥ 1,

yk,l = Ge,luk,l + d1 (14)

where the signals u, y, e, r etc are modified to reflect these changes. For example,

uk,l = [uk(0), uk(1), . . . , uk(N − k∗)]T , yk,l = [yk(k
∗) yk(2) . . . yk(N)]T etc and

Ge,l =

























CAk∗−1B 0 0 . . . 0

CAk∗

B CAk∗−1B 0 . . . 0

CAk∗+1B CAk∗B CAk∗−1B . . . 0

...
...

...
. . .

...

CAN−1B CAN−2B . . . . . . CAk∗−1B

























(15)

with d1 = [CAk∗

x0, ..., CANx0]
T . For notational convenience, the subscripts e, l are dropped and

the model is written in all cases k∗ ≥ 0 in the simplified notational form

yk = Guk + d (16)

which has the structure of discrete dynamics in R
N+1−k∗

. Note that:

1. G is invertible by construction which confirms that, for an arbitrary reference r on 0 ≤ j ≤ N ,

there exists a time series u∗ on 0 ≤ j ≤ (N + 1− k∗) such that r = Gu∗ + d on k∗ ≤ j ≤ N .

2. A comparison of G with Ge indicates that G can be identified with a plant with transfer function

G∗(z) = zk∗

G(z) operating on an interval 0 ≤ j ≤ N + 1 − k∗.

3. An examination of Ge or G indicates that higher order Markov parameters do not appear in

the matrix model. As a consequence, the system is indistinguishable from any of the Finite

Impulse Response (FIR) models with transfer function

GM (z) = D + ΣM
j=1CAj−1Bz−j , M ≥ N (17)

As a consequence, in what follows, it is always possible to replace transfer functions by FIR

equivalents during analysis and/or design.
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From now on this lifted plant model will be used as a starting point for analysis and the identification

of the matrix G with the transfer function G∗(z) will be used as required.

Let F be the (right-shift) matrix with elements Fij = δi,j+1

F =

























0 0 0 . . . 0

1 0 0 . . . 0

0 1 0 . . . 0

...
...

...
. . .

...

0 0 . . . 1 0

























(18)

so that

F j 6= 0, 0 ≤ j ≤ N − k∗ , F j = 0 ∀ j ≥ N + 1 − k∗ (19)

A simple calculation then indicates that

G = ΣN+1−k∗

j=1 gjF
j−1 (20)

for suitable choice of scalars {gj}. It is also true that all such matrices can be identified (non-uniquely)

with linear time invariant systems. Let

Ll = {G ∈ Rl×l : ∃{gj}1≤j≤l s.t. G = Σl
j=1gjF

j−1} (21)

Then the following statements are easily proven:

{G1 ∈ Ll & G2 ∈ Ll} =⇒ {G1 + G2 ∈ Ll} (22)

{G1 ∈ Ll & G2 ∈ Ll} =⇒ {G1G2 ∈ Ll} (23)

{G1 ∈ Ll & G2 ∈ Ll} =⇒ {G1G2 = G2G1} (24)

{G ∈ Ll & |G| 6= 0} =⇒ {G−1 ∈ Ll} (25)

In effect, matrix representations obey all of the normal rules of transfer functions in series and parallel

connections (provided that they operate on the same underlying time series).

For the purposes of this paper, Ll has additional useful structure described using the matrix F0

defined to be the (time-reversal) matrix with elements Fij = δi,N−k∗−j i.e.

F0 =

























0 . . . . . . 0 1

0 . . . 0 1 0

0 . . . 1 0 0

...
...

...
. . .

...

1 0 . . . . . . 0

























(26)
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If s ∈ Rl is the column vector of a time series of length l, then F0s is a column vector of the same

time series but reversed in time i.e. (F0s)j = sl+1−j for 1 ≤ j ≤ l. Note that

F0 = F T
0 , F 2

0 = I (27)

and hence, after a little manipulation, it is seen that G and GT are related by the expression

G ∈ Ll =⇒ F0GF0 = GT (28)

The important point is that these definitions enable the interpretation of GT as a dynamical system

or simulation. More precisely it is easily proved that:

{ỹ = GT ũ} ⇔ {(F0ỹ) = G(F0ũ)} (29)

In simulation terms: Suppose that G ∈ Ll. Then the time series ỹ = GT ũ is simply the time reversed

response of the linear system G (with zero initial conditions) to the time reversal of ũ.

This result is valuable for this paper which considers the basic algorithm described by the feed-

forward ILC update rule

uk+1 = uk + Kek, K ∈ R
(N+1−k∗)×(N+1−k∗) (30)

If feedback is required in the algorithm, it is assumed to have been implemented on the plant and

included in G(z) and hence G.

Note: in element by element form, this relation is simply

uk+1(t) = uk(t) + ΣN+1−k∗

j=1 Kt+1,jek(t + j − 1 + k∗), 0 ≤ t ≤ N − k∗ (31)

For example, with K = I the update law is just

uk+1(t) = uk(t) + ek(t + k∗), 0 ≤ t ≤ N − k∗ (32)

The matrix K can, in principle, be arbitrary but, in practice, it is assumed that it will be connected

with a dynamical system. As a consequence, it is assumed either that

1. K ∈ LN+1−k∗ generated from a linear, time invariant system model. Ke can then be computed

as the time series generated by the response of the state space model of K from zero initial

conditions to the time series e or
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2. K is the transpose of the matrix description of a linear time invariant system i.e. KT ∈

LN+1−k∗ is derived from a linear time invariant model. Any quantity Ke can hence be com-

puted from a simulation although, in real time, the operation would be anti-causal if it were not

for the fact that it is applied to already known signals.

The calculations associated with case two above are simple. The first case covers many situations

such as the inverse model approach described in [4]. The second covers the case considered in this

paper where the choice of

K = βk+1G
T (33)

will be seen to improve robustness, particularly with respect to high frequency modelling errors.

4 A Gradient-based ILC algorithm

The purpose of this section is to introduce the gradient-based algorithm and to provide necessary and

sufficient conditions for monotonic convergence of the mean square error to zero in the presence of

a specific multiplicative modelling error. These conditions take the form of matrix inequalities that

define constraints both on the learning gain that can be used and on the modelling error that can be

tolerated. These conditions will be transformed into more useful frequency domain conditions in the

following sections.

Using the notation of the previous sections, consider the matrix model yk = Guk + d, k ≥ 0,

where r is the desired reference time series vector, ek = r − yk is the error on the kth trial, and the

initial control input time series u0 has been specified with e0 as the corresponding error. The resultant

error is ek = r − d − Guk. A simple analysis of ||ek||2 = eT
k ek indicates that the steepest descent

direction for the error is just GT ek and hence that the feedforward ILC algorithm

uk+1 = uk + βGT ek (34)

may be capable of ensuring a monotonic sequence of Euclidean error norms provided that the learning

gain β > 0 is chosen to be sufficiently small.

Note: GT ek can be computed from a state space model of G using simulation methods as dis-

cussed in the last section. The matrix representation of the problem therefore is not required for

practical implementation.

In the following sections, an analysis is undertaken of the effects of the choice of learning gain β.

It generates an estimate of an appropriate range in both the case of zero and non-zero modelling errors.
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Initially, the analysis is in the from of matrix inequalities. Subsequently these will be converted into

easily checked expressions in the frequency domain.

5 The Gradient Algorithm: The Case of No Modelling error

A simple calculation reveals that the ILC algorithm evolves from its initial error e0 as follows

ek+1 = (I − βGGT )ek, k ≥ 0 (35)

Noting that β > 0 by assumption and that

||ek+1||2 = ||ek||2 − β2eT
k GGT ek + β2eT

k GGT GGT ek (36)

it follows that, as G is nonsingular by construction,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Theorem: Suppose that β > 0. A necessary and sufficient condition for the gradient-based ILC

algorithm to have the monotonicity and convergence properties

1. ||ek+1|| < ||ek||, ∀ k ≥ 0 ∀ e0 ∈ R
N+1−k∗

2. limk→∞ ek = 0 ∀ e0 ∈ R
N+1−k∗

in some range 0 < β < β′ is that

2I > βGT G > 0 (37)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Proof: 2I > βGT G implies the existence of a number ǫ > 0 such that βGGT GGT − 2GGT <

−ǫI . Monotonicity follows from the discussion preceding the statement of the theorem. To prove

convergence to zero, simply note that

||ek+1||2 ≤ ||ek||2(1 − βǫ) ∀ k ≥ 0 (38)

This completes the proof as ||ek|| goes to zero faster than (1 − βǫ)
k
2 . 2

The following corollary is easily proved and provides an estimate of the desired range of the

learning gain β:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Corollary: Under the conditions of the theorem above, monotone convergence to zero is achieved

if, and only if, 0 < βσ̄2(G) < 2 where σ̄(G) is the largest singular value of G.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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6 The Gradient Algorithm: Robust Monotone Convergence Conditions

Now let G(z) and G0(z) be transfer functions of the plant and a nominal model respectively. The

relative degree of the model G0 is denoted k∗ and the lifted representations (and associated input and

output supervectors) are based on this parameter. To ensure that the matrix representations of plant,

nominal model and multiplicative perturbations are causal, it is assumed that the relative degree of

the plant is equal to or exceeds that of the nominal model.

If there is mismatch between the plant and model, then the gradient-based ILC algorithm is natu-

rally replaced by the approximation

uk+1 = uk + βGT
0 ek (39)

where G0 is the lifted matrix representation of a model of G0(z). The error evolution equation

becomes

ek+1 = (I − βGGT
0 )ek (40)

Suppose now that plant and model are related by the expression

G(z) = G0(z)U(z) (41)

and U(z) is assumed to be proper and stable. It follows that, if U(z) has a matrix representation Ue

(without lifting), then

G = G0Ue = UeG0 (42)

Note that β > 0 by assumption and that

||ek+1||2 = ||ek||2 − βeT
k (G0UeG

T
0 + G0U

T
e GT

0 )ek + β2eT
k G0G

T
0 UT

e UeG0G
T
0 ek

= ||ek||2 − βeT
k G0[Ue + UT

e − βGT
0 UT

e UeG0]G
T
0 ek

(43)

It follows that:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Theorem (Robust Monotone Convergence): The gradient-based ILC algorithm is robust mono-

tone convergent in the presence of the multiplicative modelling error U(z) if, and only if,

Ue + UT
e > βGT

0 UT
e UeG0 > 0 (44)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Proof: Monotonicity follows trivially from the above noting that Go is nonsingular by construc-

tion. The proof of convergence to zero error follows in a similar way to the previous case. 2
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Corollary: A necessary condition for monotone robust convergence is that the modelling error

matrix representation Ue is positive definite in the sense that Ue + UT
e is positive definite.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Proof: The proof follows trivially from the observation βGT
0 UT

e UeG0 > 0. 2

Note: The case of no modelling error is retrieved by choosing U = I in the above.

In the next section, more useful frequency domain conditions are provided to check the matrix

inequalities derived above.

7 Robustness: Frequency Domain Conditions

In this section the matrix inequalities of the previous sections are converted into sufficient conditions

for robust monotone convergence in terms of the transfer functions of the system, model and uncer-

tainty. The practical benefit is that the frequency domain conditions are more easily checked and

throw more light on to the benefits and issues facing the application of the gradient-based algorithm.

The approach taken is based on the analysis of matrix inequalities in R
l×l of the form

HT
1 H1 < H2 + HT

2 (45)

where both H1 ∈ Ll and H2 ∈ Ll are matrix representations of single-input/single-output linear

time-invariant systems H1(z) and H2(z) on the resultant interval 0 ≤ j ≤ l − 1.

The development of frequency domain conditions is based on the idea of examining dynamics

on the infinite half interval [0,∞). Complex integration, positivity and causality then provide the

necessary connections.

Let e = [e(0), e(1), . . . , e(l− 1)]T be a time series of length l and interpret H1e as the restriction

(to 0 ≤ j ≤ l − 1) of the response of H1(z) (on [0,∞)) to the input with Z-transform e(z) =
∑l−1

j=0 e(j)z−j i.e. to an infinite sequence ẽ consisting of the l elements of e followed by zeros. Using

the fact that the mean square error on a finite interval is always less than or equal to that on the infinite

interval, Parseval’s Theorem then gives

eT HT
1 H1e = ||H1e||2 ≤ 1

2πi

∮

unitcircle
|H1(z)|2|e(z)|2 dz

z
(46)

A simple calculation then indicates that

||H−1
1 ||−1

∞ ≤ σ(H1) ≤ σ(H1) ≤ ||H1||∞ (47)
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where σ(H) and σ(H) denote the smallest and largest singular values of a matrix H ∈ Ll respectively

and ||H||∞ denotes the H∞ norm of the associated transfer function H(z) on the region |z| ≥ 1.

In a similar manner, eT H2e is the inner product in l2 (the space of square summable infinite se-

quences) of ẽ with the response of H2(z) to ẽ and hence the exact expression follows from elementary

complex variable theory

eT (HT
2 + H2)e =

1

2πi

∮

unitcircle
[H2(z) + H2(z

−1)]|e(z)|2 dz

z
(48)

The matrix inequality describing robust monotone convergence hence is satisfied if, for all choices

of e,

1

2πi

∮

unitcircle
|H∗

1 (z)|2|e(z)|2 dz

z
≤ 1

2πi

∮

unitcircle
[H2(z) + H2(z

−1]|e(z)|2 dz

z
(49)

It is now possible to state the following theorem:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Theorem(Robust Monotone Convergence): The gradient-based ILC algorithm using the nomi-

nal model G0(z) is robust monotone convergent in the presence of the multiplicative modelling error

with transfer function U(z) if (a sufficient condition)

| 1
β
− |G0(z)|2U(z)| <

1

β
∀z ∈ {z : |z| = 1} (50)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Proof: The discussion preceding this result and the matrix inequality condition of the previous

section indicates that a sufficient condition for robust monotone convergence is that

U(z) + U(z−1) > β|G∗
0(z)U(z)|2 ∀|z| = 1 (51)

Noting that G∗
0 can be replaced by G0 on |z| = 1, multiplying by β|G0(z)|2 and rearranging yields

the required result. 2

Note: Simple calculations indicate that the frequency domain conditions have a simple and easily

checked graphical interpretation, namely that:

The plot of the frequency response function |G0(z)|2U(z) on the unit circle |z| = 1 lies in the

interior of the circle of centre 1
β and radius 1

β

Recent work by the authors [4] using the inverse model algorithm produced the condition:

| 1
β
− U(z)| <

1

β
∀z ∈ {z : |z| = 1} (52)

At its simplest level, the difference between the two results is the replacement of U by |G0|2U . With

this in mind, the use of the gradient-based algorithm can be seen to have the following properties as

compared with the inverse-model algorithm:
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1. Both approaches require a strictly positive real U(z) for monotone robust convergence. This

condition is connected very closely with the monotonicity property of the mean square error

and it is expected, as with the inverse-model-based approach, that violation may lead to lack

of convergence/instability. Another possibility is that asymptotic convergence may be retained

but it may also be associated with error norm sequences that can increase from trial to trial.

2. In both cases, the positive real requirement on U(z) will tend to require that it is proper but not

strictly proper i.e. that G and G0 have the same relative degree.

3. The gradient-based algorithm will however reduce performance limitations due to the effect of

high frequency errors such as high frequency resonances in G not modelled in G0. In such

circumstances U(z) will tend to take large gain values at frequencies close to these resonances.

This will then require the use of small values of learning gain β to satisfy the monotone con-

vergence criterion for the inverse model algorithm. This does not occur for the gradient-based

algorithm because, in practice, G is typically a low pass filter and hence both G(z) and G0 will

be small at high frequencies. The magnitude of |G0|2U will then be substantially reduced (as

compared with U ) and permit increased learning gains leading to improved convergence rates.

4. In contrast with the beneficial high frequency effects of the gradient-based algorithm, it is

possible that it could reduce performance if G (and hence G0) has a substantial resonance

peak within its bandwidth. A similar argument to the above suggests that the learning gains

permitted will be reduced (as compared with the inverse model algorithm). As a consequence,

it is desirable for a feedback control to be incorporated into the plant (and hence G) before the

ILC analysis is undertaken. The feedback controller could be designed along classical lines

and, in particular, designed to remove or reduce the resonance peak. In such circumstances, the

high frequency benefits of the gradient-based approach indicate that it will, in practice, often

be superior to the inverse-model algorithm in terms of its performance and robustness.

5. The above analysis has considered a specific uncertainty U . It can easily be extended to cover

sets of multiplicative uncertainties such as any subset of all proper multiplicative uncertainties

satisfying an inequality of the form

| 1

β∗
− |G0(z)|2U(z)| <

1

β∗
∀z ∈ {z : |z| = 1} (53)

for some choice of parameter β∗. Clearly robust monotone convergence is achieved in the

presence of any model error in this set if β ∈ (0, β∗).
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In conclusion, the analysis of monotone convergence has been seen to have elegant solutions in terms

of inequalities between matrix representations of the plant and associated models. These inequalities

can be converted into simple frequency domain (sufficient) conditions that indicate that the gradient-

based approach has real potential for both performance and robustness.

Finally, note that, when U(z) ≡ 1 and hence Ue = I , the above results produce conditions for

monotone convergence when there is no plant-model mismatch.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Corollary: Under the conditions of the theorem above, monotone convergence to zero is achieved

in the absence of modelling errors if 0 < β||G||2∞ < 2 where ||G||∞ = sup|z|=1 |G(z)| is the familiar

H∞ norm of G on {z : |z| ≥ 1}.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Proof: Setting U = I , U(z) ≡ 1 and G0(z) ≡ G(z) in the previous result, monotone convergence

follows if | 1β − |G(z)|2| < 1
β ∀z ∈ {z : |z| = 1}. The result follows from simple complex algebra.

2

In particular, the result shows that, in the absence of mismatch, monotone convergence is not

dependent on the phase characteristics of the plant (an observation that links these results to the

continous-time methodology described in [12]).

8 Gradient-based Parameter Optimal ILC (POILC)

In [10], the benefits of using parameter optimization-based approaches to ILC design were introduced.

A review of these ideas is provided in the IFAC Review article [11] with some extensions in the

Automatica paper [6]. The basis of the parameter optimal ILC approach (POILC) is to examine the

feedforward control update law

uk+1 = uk + βk+1Kek (54)

where K is a fixed matrix operation on the time series ek and βk+1 is an iteration-dependent gain.

The resultant error dynamics is described by

ek+1 = (I − βk+1GK)ek (55)

The learning gain βk+1 is chosen to minimize an objective function of the quadratic form

J(βk+1) = ||ek+1||2 + wk+1β
2
k+1 (56)
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where the proposed form of the weight wk+1 is iteration dependent i.e.

wk+1 = w1 + w2||ek||2, w1 ≥ 0, w2 ≥ 0, w1 + w2 > 0 (57)

A simple calculation indicates that the required choice of βk+1 is just

βk+1 =
eT
k GKek

wk+1 + ||GKek||2
(58)

and optimality ensures that the mean square error is reduced monotonically from iteration to iteration

i.e.

||ek+1||2 ≤ ||ek||2 ∀k ≥ 0 (59)

with equality holding if, and only if, βk+1 = 0.

In addition, using the results of [10] and [6], convergence of the error to zero is guaranteed for all

initial input guesses u0 (and hence all initial errors e0) if, and only if, the symmetric part of GK is

strictly positive or strictly negative definite. This is guaranteed for the gradient-based algorithm with

zero modelling error G = G0 but may not be the case for the case of non-zero modelling error.

The case of non-zero modelling error sets K = GT
0 but, as the plant model G is presumed not

known, the gain parameter cannot be updated using the above formula. It can however be estimated

in a natural way if βk+1 is obtained by replacing G by G0 i.e. the implemented gain is computed

from the formula

βk+1 =
eT
k G0G

T
0 ek

wk+1 + ||G0GT
0 ek||2

=
||GT

0 ek||2
w1 + w2||ek||2 + ||G0GT

0 ek||2
(60)

The ideas used in the analysis of the fixed main parameter case can now be used to prove the following

theorem :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Theorem (Robust Monotone Convergence of POILC): The gradient-based ILC parameter op-

timal algorithm described above has the mean square error monotonicity property that, on iteration

k + 1, ||ek+1|| < ||ek|| (independent of ek) if, and only if, the matrix representation Ue of the multi-

plicative modelling error satisfies the matrix inequality

Ue + UT
e > βk+1G

T
0 UT

e UeG0 > 0 (61)

In addition, if

β̂ = sup{β =
||GT

0 e||2
w1 + w2||e||2 + ||G0GT

0 e||2 : ||e|| ≤ ||e0||} (62)

and

Ue + UT
e > β̂GT

0 UT
e UeG0 (63)
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then 0 < βk+1 ≤ β̂, ∀k ≥ 0 and the error sequence {ek}k≥0 is guaranteed to converge monotoni-

cally in mean square norm to zero.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The matrix inequality can be converted into a frequency domain condition in a similar manner to

the constant gain case to obtain:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Corollary (POILC - A Frequency Domain Condition): The mean square error sequence con-

verges to zero monotonically if (a sufficient condition)

| 1
β̂
− |G0(z)|2U(z)| <

1

β̂
∀z ∈ {z : |z| = 1} (64)

Equivalently, it is sufficient that the plot of the frequency response function |G0(z)|2U(z) on the unit

circle |z| = 1 lies in the interior of the circle of centre 1/β̂ and radius 1/β̂.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Proof of above Theorem: Monotonicity on the (k + 1)th iteration follows in a similar manner

to the proof of monotonicity for the constant gain case. The replacement of βk+1 by β̂ also ensures

monotonicity for all iterations as an induction argument indicates clearly that 0 < βk+1 ≤ β̂ for all

k ≥ 0. The theorem and corollary are hence proved if it can be proved that the error sequence always

converges to zero. At optimality, it is easily seen that

||ek+1||2 = ||ek||2 − βk+1e
T
k G0(Ue + UT

e − βk+1U
T
e GT

0 G0Ue)G
T
0 ek (65)

and hence

||ek+1||2 ≤ ||ek||2 − βk+1e
T
k G0(Ue + UT

e − β̂UT
e GT

0 G0Ue)G
T
0 ek (66)

The assumptions of the theorem guarantee the existence of ǫ > 0 such that

||ek+1||2 ≤ (1 − βk+1ǫ)||ek||2, ∀k ≥ 0 (67)

If {ek}k≥0 does not converge to zero, then it is easily seen that lim supk→∞ βk+1 ≥ δ for some

δ > 0. It follows that ||ek||2 ≤ (1 − δǫ)k||e0||2 and hence that ek converges to zero. The theorem is

now proved as this is a contradiction. 2

The result provides a simple test for convergence of the parameter optimal algorithm that requires

only that β̂ (or an upper bound) be computed. Once obtained, the robustness analysis is essentially

identical to that of the constant gain case. In particular, the observations made about the implications

for the modelling error U(z) and the model G0(z) in the constant gain case remain valid for this
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parameter optimal ILC algorithm. They are hence not repeated here for brevity. Two new observations

are however worthy of emphasis:

1. Noting that, with w1 and w2 fixed, lim||e0||→0 β̂ = 0. It follows that robustness of the parameter

optimal algorithm increases as the initial error e0 decreases i.e. a good initial input guess u0

will improve the robustness of the methodology considerably.

2. Also, with e0 6= 0 fixed, lim|w1|+|w2|→∞ β̂ = 0 and hence an increase in either of the weights

will tend to increase the robustness of the algorithm. Increasing weights is expected however

to reduce performance by slowing convergence rates.

The estimation of an appropriate value for β̂ can be approached as summarised in the next section.

9 Estimation of β̂

To estimate β̂, note that the supremum in

β̂ = sup{β(e) =
||GT

0 e||2
w1 + w2||e||2 + ||G0GT

0 e||2 : ||e|| ≤ ||e0||} (68)

is achieved on the boundary eT e = ||e0||2. It is therefore described by stationary points of the

Lagrangian

L = β(e) + λ(eT e − eT
0 e0) =

eT Me

w1 + w2eT e + eT M2e
+ λ(eT e − eT

0 e0) (69)

where, for simplicity M = G0G
T
0 . the stationary points are described by the equations ∂L

∂λ = 0 and

∂L
∂e = 0 i.e. eT e = eT

0 e0 and

2

[

Me

w1 + w2eT e + eT M2e
− eT Me

(w1 + w2eT e + eT M2e)2
(w2e + M2e) + λe

]

= 0 (70)

which is just

[

βM − β2(w2I + M2) + λeT Me
]

e = 0 (71)

A spectral argument then indicates that, if M has eigenvalues 0 < σ2(G0) = σ2
1 ≤ σ2

2 · · · ≤

σ2
N+1−k∗ = σ2(G0) (the squared singular values of G0), then, for some σj ,

βσ2
j − β2(w2 + σ4

j ) + λeT Me = 0 (72)

In addition,

βeT Me − β2(w2||e0||2 + eT M2e) + λeT Me||e0||2 = 0 (73)
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Using the definition of β to eliminate eT M2e implies that

β2w1 + λeT Me||e0||2 = 0 (74)

and, eliminating λ gives the desired formula for β̂

β̂ =
σ2

j ||e0||2

w1 + w2||e0||2 + σ4
j ||e0||2

(75)

The remaining question is to estimate the relevant σj to maximize β̂. This could be done by numerical

search mechanisms but a simpler approach uses an examination of the continuous function

f(µ) =
µ||e0||2

w1 + w2||e0||2 + µ2||e0||2
(76)

in the range µ ∈ [0, +∞). This function is positive with a single stationary point (a maximum) when

||e0||2µ2 = w1 + w2||e0||2 with f(µ) = ||e0||

2(w1+w2||e0||2)1/2
. Introducing the necessary constraint that

µ ∈ [σ2(G0), σ
2(G0)] it follows that the value of β̂ is defined by three relations:

Case 1: If ||e0||2σ4(G0) ≥ w1 + w2||e0||2 then

β̂ =
σ2(G0)||e0||2

w1 + w2||e0||2 + σ4(G0)||e0||2
(77)

Case 2: If ||e0||2σ4(G0) ≤ w1 + w2||e0||2 then

β̂ =
σ2(G0)||e0||2

w1 + w2||e0||2 + σ4(G0)||e0||2
(78)

Note: This is trivially satisfied if w2 > σ4(G0). A sufficient condition for this is that w2 > ||G0||4∞
which can be computed from the transfer function G0.

Case 3: In all other cases

β̂ ≤ ||e0||
2(w1 + w2||e0||2)1/2

(79)

the right-hand-side of the inequality being a very good estimate of the actual value if N is large and

the values σ2
j+1 − σ2

j are all small (relative to σ2(G0)).

Note the following observations:

1. As the above estimate is a monotonically increasing function of ||e0||, it indicates that the

parameters w1 and w2 play different roles in robustness. This is because it is always possible to

regard ek as the initial iteration for the rest of the algorithm. In principle a value of β̂ (denoted

β̂k) can be computed for each iteration.. If this sequence decreases in value, then the algorithm

is seen to be able to tolerate uncertainty of increased magnitude as the algorithm progresses.

In terms of the three cases above, suppose that ek → 0, then, if w1 > 0, case 1 plays no role
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asymptotically. Case 2 is however always valid asymptotically and is valid for all iterations if

w2 > σ4(G0). Otherwise case 3 may play a role in earlier iterations.

If w1 = 0, the estimated β̂ remains constant at the value 1

2w
1/2

2

i.e there is no change in the

robustness conditions. If w2 = 0 then clearly β̂k computed at this iteration will converge to

zero as k → ∞ i.e. the region of permissible uncertainty increases. This can be explained

intuitively by thinking of the introduction of the term in w2 as a systematic reduction of w1

from iteration to iteration. Such a reduction tends to increase the value of the learning gain

and hence potentially increase performance. The price paid for this bonus is that the range of

permitted modelling error does not increase with iteration index.

2. For a given U(z) satisfying the POILC robustness conditions for a known value of β̂, the for-

mula can alternatively be used to provide candidate weights w1 and w2 to satisfy the inequality

β̂ ≥ ||e0||

2(w1+w2||e0||2)1/2
. the discussion above of the relative effects of w1 and w2 will, in princi-

ple, aid this choice.

10 Use of Exponential Norms

In the paper [4], the results for the mean square error were extended to ("exponentially") weighted

norms of the form

||f ||ǫ = ||Ef || =
√

ΣN+1−k∗

j=1 ǫ2(j−1)f2
j = ||fǫ|| (80)

induced by the inner product 〈f, g〉ǫ = fT ET Eg = fT
ǫ gǫ. Here ǫ > 0, E = diag(1, ǫ, ǫ2, . . . , ǫN−k∗

)

and fǫ = Ef (with elements fǫ,j = fjǫ
j−1) is the exponentially weighted time series vector obtained

from the time series vector f . Any algorithm that guarantees monotonic convergence of the weighted

norm to zero also ensures that the mean square error will also converge to zero (as all norms on

R
N−k∗+1 are topologically equivalent) but, if ǫ < 1, such monotonicity permits increases in mean

square error in the initial ILC iterations. Using weighted norms is therefore a relaxation of the pre-

vious analysis of monotonic mean square error convergence. In what follows, an analysis for the

gradient-based algorithm for an ǫ-norm is outlined.
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For simplicity. let k∗ ≥ 1 and define modified model matrices as follows

Gǫ = EGE−1 =

























CAk∗−1B 0 0 . . . 0

ǫCAk∗

B CAk∗−1B 0 . . . 0

ǫ2CAk∗+1B ǫCAk∗B CAk∗−1B . . . 0

...
...

...
. . .

...

ǫN−k∗

CAN−1B ǫN−k∗−1CAN−2B . . . . . . CAk∗−1B

























(81)

(with similar definitions for G0,ǫ = EG0E
−1 and Ue,ǫ = EUE−1). A simple calculation indicates

that the process model then takes the form yǫ = Gǫuǫ + dǫ with the reference signal r replaced by rǫ

and ek replaced by eǫ,k = rǫ − yǫ,k.

The natural input update law for a constant gain gradient-based algorithm for an exponentially

weighted norm takes the form

uǫ,k+1 = uǫ,k + βGT
0,ǫeǫ,k (82)

The results of the previous sections can be applied to this formulation to obtain necessary and suf-

ficient conditions for robust monotone convergence with respect to the ǫ-norm in terms of matrix

inequalities associated with the appropriate matrix representations of G0,ǫ and Ue,ǫ. More usefully,

as the exponentially weighted signals are associated with transfer functions Gǫ(z) = G(zǫ−1)ǫ−k∗

,

G0ǫ(z) = G0(zǫ−1)ǫ−k∗

and Uǫ(z) = U(zǫ−1) the frequency domain condition for robust monotone

convergence with respect to the weighted norm || · ||ǫ becomes

| 1
β
− |G0ǫ(z)|2Uǫ(z)| <

1

β
, ∀|z| = 1 (83)

or, equivalently,

| 1
β
− ǫ−2k∗ |G0(z)|2U(z)| <

1

β
, ∀|z| = ǫ−1 (84)

i.e. the unit circle is replaced by a circle of radius ǫ−1 and the extra factor of ǫ−2k∗

appears in the

inequality. The Principle of the Maximum indicates that reducing ǫ will increase the range of values

of β that satisfy this condition. In practical terms, this implies that increased values of the learning

gain are permitted if increases in the mean square error can be tolerated before convergence to zero

is achieved. Letting ǫ → 0+, it is easily seen that Uǫ(z) approaches the value U(∞) uniformly on

the region {z : |z| ≥ 1} and hence Uǫ(z) is positive real for all sufficiently small values of ǫ if

U(∞) > 0. It follows that if the condition

| 1
β
− |G∗

0(∞)|2U(∞)| <
1

β
(85)
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is satisfied then the algorithm is robust monotone convergent with respect to all ǫ-norms in a some

non-empty range 0 < ǫ < ǫ∗. Interpreting |G∗
0(∞)|2U(∞) = G0(∞)G(∞) as the product of high

frequency gains, it is typically seen to be very small. The possibility of using higher learning gains β

follows immediately.

It is expected that the implemented form of the algorithm will use unweighted rather than expo-

nentially weighted signals. The real input update formula is easily seen to be

uk+1 = E−1uǫ,k = uk + βE−1GT
0ǫEek = uk + βGT

0ǫ2ek (86)

and hence is computed using the time reversed response of a linear system G0ǫ2 to the time reversal

of ek. For simulation purposes this linear system is obtained from G0 using the map (A,B, C,D) 7→

(ǫ2A, ǫ2B, ǫ−2k∗

C, ǫ−2k∗

D).

The above analysis can be extended to the case of POILC using the modified problem

uǫ,k+1 = argmin{||eǫ,k+1||2 + wk+1β
2
k+1} (87)

subject to the constraints

uǫ,k+1 = uǫ,k + βk+1G
T
0ǫeǫ,k, yǫ,k+1 = G0ǫuǫ,k+1 + dǫ (88)

The solution to this problem is seen to be

uk+1 = uk + βk+1G
T
0ǫ2ek, βk+1 =

||GT
0ǫeǫ,k||2

wk+1 + ||G0ǫGT
0ǫeǫ,k||2

(89)

where, after some manipulation, the identities GT
0ǫeǫ,k = EGT

0ǫ2ek and G0ǫG
T
0ǫeǫ,k = EG0G

T
0ǫ2ek

give the formula

βk+1 =
||GT

0ǫ2ek||2ǫ
wk+1 + ||G0GT

0ǫ2
ek||2ǫ

(90)

The control update law and parameter choice are now related in terms of the two models G0 and G0ǫ2 .

These models are used, with appropriate simulations, to undertake all computations.

11 Illustrative Example

To illustrate the results of the above theory, a simple example is constructed using a plant model G(z)

constructed to contain simple nominal first order dynamics with a high frequency resonance defined

by the parameterized data

G0(z) =
1 − γ

z − γ
, U(z) =

(z2 + a)

(z2 + λ2)

(1 + λ2)

(1 + a)
, N = 50 (91)
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Although a theoretical example, the authors believe that it represents similar performance problems

to those that are be met in applications to mechanical systems where available nominal models do not

include structural high frequency resonances. For simplicity, the data is normalized so that G0(1) =

G(1) = U(1) = 1 and 0 < λ < 1. Clearly, the relative degree of G0(z) is k∗ = 1 and it is easily

checked that U(z) is positive real (i.e. its Nyquist plot lies in the open right-half complex plane) for

a ∈ (−1, 1).

For illustrative purposes, choose λ = 0.9, a = 0.1 and γ = 0.5. For reasons of space, the 50× 50

matrix representations of G(z), G0(z) and U(z) are not presented here. The unit step response of

G is provided in Fig. 1, top graph, with the Bode plots of G, G0 and U plotted in Fig. 1, bottom

graph. The high frequency resonance in G is clearly seen. As this phenomenon is not modelled in

G0, U has a substantial resonance at a frequency well beyond the bandwidth of the nominal model

(substantiated by the simple hand calculation U(i) = 9.5).

Two fixed gain algorithms are considered, namely the inverse-model algorithm and the gradient-

based algorithm

uk+1 = uk + βG−1
0 ek, β = 0.5 (92)

uk+1 = uk + βGT
0 ek, β = 0.6 (93)

with initial control input supervector u0 = 0. These algorithms are first applied to the nominal model

G0 with the parameters β (shown above) being chosen in each case to achieve an approximate halving

of the tracking error from iteration to iteration. Zero initial conditions are assumed and the demanding

reference signal, 0 ≤ j ≤ 50,

r(j) =

[

1 + 0.1 sin(
20πj

50
)

]

cosh(j/50) sin(6π

[

j

50
(2 − j

50
)

]

) (94)

is chosen as a growing exponential oscillation with variable, increasing frequency and additional

amplitude modulation (see Fig. 2). The signal is believed to be demanding as it contains a sufficiently

rich frequency content to ensure that the high frequency resonance will ultimately be excited.

The simulation results are shown in Fig. 3 for the first 50 iterations (top graph) and for he

first 10 iterations (bottom graph). This figure plots the superimposed logarithmic mean square error

log10

[

(N + k∗ − 1)−1eT
k ek

]

against iteration index k for the two algorithms. The conclusion drawn

is that it is relatively easy to choose parameters to produce acceptable performance from both algo-

rithms, particularly in the crucial initial iterations. The more important second question is whether

or not these predicted performances degrade when the algorithms are applied without change to the

plant G. The relevant plot is given in Fig. 4 (iterations 0 − 40 on top graph and iterations 0 − 10 on

bottom graph) where it is seen that:
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Figure 1: Step response and Bode plots

1. The inverse-model-based algorithm suffers from substantial increases (around 10-fold in mag-

nitude) in the mean square error in iterations 5 − 10. This is regarded as a substantial overall

degradation in performance as, for most practical situations the large errors involved will be

unacceptable and possible even disastrous for systems operation. The situation does begin to

improve after around 15 iterations with ultimate rapid convergence to zero. In practice, the op-

erator would have terminated the method before this iteration and hence, despite the ultimately

rapid asymptotic convergence, it is concluded that the modelling error has induced unaccept-

able behaviour. The inverse-model-based algorithm should be regarded as having failed.

2. The gradient based algorithm copes much better with the modelling error present, producing

monotonic mean square errors and only a minor degradation in performance (as seen in Fig.

4). Fig. 5 shows the FFT of the initial error (the reference signal) and that of the final error

at iteration 50 whilst Fig. 6 shows the the time series for the final error. It is seen that the

algorithm has successfully learnt to track the reference to a high accuracy over the bandwidth

of the plant although learning of the high frequency component is slow.

The results are examples of the evidence available to substantiate the claim that the gradient-based

algorithm has a greater tolerance to modelling errors of the class considered. The outcome can
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Figure 2: Reference signal r(t) and optimal input u∗ = (GoU)−1r

be explained by plotting the "Nyquist" plots of the two frequency response functions U(z) and

|G0(z)|2U(z) in the complex plane with their associated circles of centre β and radius β super-

imposed. these are shown in Fig. 7. Note that the plot of U(z) leaves its circle hence violating the

inverse model condition for robust monotone convergence [4]. In contrast, the plot of |zG0(z)|2U(z)

is contained within the circle and hence robust monotone convergence is guaranteed by the results of

this paper (and has been seen in the simulation results).

Note that the gradient-based algorithm has also been applied successfully to industrial systems.

Details of this work can be found from [5] and [2] where similar conclusions are reached on the bases

of observed experimental data.

12 A Note on Series Compensation

The theoretical results of the previous sections permit, and indeed encourage, the use of feedback

compensation of the plant before ILC design is undertaken. A simple trick allows the use of a series

compensator to be included in the theory. The simplest approach is to suppose that K(z) is a com-

pensator applied to the input of the plant. The previous theory can now be applied with little change

just by replacing G0(z) by G0(z)K(z) and k∗ by the relative degree of G0(z)K(z). The frequency
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Figure 3: Convergence behaviour in the nominal case

domain conditions for robust monotone convergence become

| 1
β
− |G0(z)K(z)|2U(z)| <

1

β
∀z ∈ {z : |z| = 1} (95)

which clearly indicates the potential to usefully use K(z) to shape the gain characteristics of either

G0(z)K(z) or |K(z)|2U(z) and hence |G0(z)K(z)|2U(z). For example, the use of notch filters may

permit robustness to be increased by reducing the effects of residual resonances in G0. Alternatively,

they could be used to cancel the effects of resonances in the mismatch U(z). Note that the phase

characteristics of K(z) do not affect the robust monotone convergence analysis.

Finally an alternative matrix description of the modified algorithm is as follows: consider the

typical case when K(z) has relative degree zero and suppose that K is its matrix representation, then

the update law takes the form

uk+1 = uk + βKKT GT
0 ek (96)

which can be realized in the form of forward and reverse time simulation calculations.
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Figure 4: Convergence behaviour with uncertainty
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Figure 5: Power spectrum (dB) of e0(t) and e50(t)
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13 Conclusions

The paper has provided a complete analysis of the robust monotone convergence of a gradient-based

Iterative Learning Control algorithm in terms of necessary and sufficient matrix inequalities and fre-

quency domain conditions that can be easily checked in terms of plant model and modelling error

transfer functions. The method of analysis was the use of matrix models relating the time series of

input, output and error signals. A complete analysis of these models is provided which demonstrates

that the relative degree of the plant and model are crucial parameters in the analysis of ILC dynamics

and hence, it is argued, in the construction of feedforward learning laws. In addition, they clearly

show that the use of the "non-causal" gradient operator can be implemented using a plant model and

time reversal operations i.e. state space models rather than the matrix models used in the analysis are

all that is required for implementation purposes.

The work parallels that published by the authors in a recent paper [4] on inverse-model-based ILC.

A comparison with those results indicates that, whereas both approaches require that the multiplica-

tive modelling error has positivity properties (a consequence of the requirement for monotonicity of

the mean square error), the gradient approach offers considerable benefits for robustness, particularly

in the presence of high frequency modelling errors such as parasitic structural resonance(s).
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The benefits of the approach have also been shown to transfer to the use of Parameter-Optimal

ILC with the additional benefits that robustness can be improved by either ensuring that the initial

tracking error is small and/or by using larger weighting coefficients in the quadratic objective function

chosen. The analysis provides formulae that can guide the application of these principles although

more experience in the choice of weights will be needed to aid inexperienced practitioners.

In a similar manner to [4], the use of exponentially weighted norms has been analysed with a

view to using monotonicity of these norms as a design principle. Stability and the ideas of robust

monotone convergence extend trivially to this case which, with 0 < ǫ < 1, can be regarded as a

relaxation of the ideas of robust monotone convergence (with respect to the mean square error) to

permit some increases in mean square error in initial iterations whilst still ensuring asymptotically

convergent learning.

Future work in the area will examine the issues that face the control of multi-loop ILC installations

(where concepts such as relative degree are much more complex) and the effect of nonlinearities and

noise on performance. The work presented in this paper provides a firm bedrock for these future

studies.
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