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A Method to Assess Demand Growth Vulnerability of Travel Times
on Road Network Links

David Watling & Chandra Balijepalli
Institute for Transport Studies, University of Leeds, Leeds, England

ABSTRACT

Many national governments around the world have turned their recent focus to monitoring the
actual reliability of their road networks. In parallel there have been major research efforts aimed at
developing modelling approaches for predicting the potential vulnerability of such networks, and in
forecasting the future impact of any mitigating actions. In practice—whether monitoring the past or
planning for the future—a confounding factor may arise, namely the potential for systematic growth
in demand over a period of years. As this growth occurs the networks will operate in a regime
closer to capacity, in which they are more sensitive to any variation in flow or capacity. Such
growth will be partially an explanation for trends observed in historic data, and it will have an
impact in forecasting too, where we can interpret this as implying that the networks are vulnerable
to demand growth. This fact is not reflected in current vulnerability methods which focus almost
exclusively on vulnerability to loss in capacity. In the paper, a simple, moment-based method is
developed to separate out this effect of demand growth on the distribution of travel times on a
network link, the aim being to develop a simple, tractable, analytic method for medium-term
planning applications. Thus the impact of demand growth on the mean, variance and skewness in
travel times may be isolated. For given critical changes in these summary measures, we are thus
able to identify what (location-specific) level of demand growth would cause these critical values to
be exceeded, and this level is referred to as Demand Growth Reliability Vulnerability (DGRV).
Computing the DGRV index for each link of a network also allows the planner to identify the most
vulnerable locations, in terms of their ability to accommodate growth in demand. Numerical
examples are used to illustrate the principles and computation of the DGRV measure.

1. INTRODUCTION

In the last decade, two complementary considerations have emerged in the analysis of road
transport networks:

Monitoring reliability: Empirically, typically based on measurements of travel times, how reliable
has a transport network been in the past in delivering repeatable levels-of-service to its users? Such
a consideration has particularly attracted the attention of local and national government agencies,
who wish to assess changes over time (days, months, years) to such level-of-service repeatability,
and to gauge the impact of any past measures that have been taken.

Forecasting reliability: How reliable is a transport network likely to be in the future, taking into
account its connectivity (availability of alternatives), potential failures (e.g. in capacity), and any
proposed remedial measures to improve its reliability? This has largely attracted the attention of the
research community in developing suitable network modelling methods, but clearly holds
significant interest for transport planners who wish to select among potential measures and policies
based on their potential for reliability improvements.
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If our focus is relatively short-term, then in monitoring a network we may be interested to know in
detail what has happened to reliability over the past few hours, days or weeks, and our forecasts
may pertain to only the immediate future. In the longer-term, on the other hand, we may be
interested in monitoring reliability more widely in order to ‘benchmark’ it against the levels seen in
previous years, or to forecast how it might change over future horizons in the order of years. While
the practical division between ‘short-term’ and ‘longer term’ is arbitrary, a key element that
distinguishes them is that in the longer term we have the possibility of systematic, confounding
changes to the underlying transport system, which may have major consequences for any
comparisons made between states of reliability observed or predicted many years apart from one
another. This kind of consideration serves as the context in which the present paper is written, with
a focus beyond the short-term, and motivated by both the monitoring and forecasting issues
described above.

Looking to the literature, it is apparent that this emerging research field of transport network
reliability has provided a new focus for transport planning (e.g. Bell & Cassir, 2000). Rather than
only focusing on ‘typical’ or ‘average’ performance of a transport system, in studies of network
reliability we are able to focus on the impact of variability in the factors that affect the system, be
they frequently-occurring or abnormal events. While the origins of the field drew from the study of
major natural disasters such as earthquakes, the remit has broadened to encompass a range of
factors affecting both the capacity of the transport system (from accidents and man-made disasters
to weather conditions), the demand for travel on the system (from normal daily fluctuations in
commuting patterns to special events), and the behaviour of the actors involved in the system (from
individual travellers adapting their behaviour to agencies providing information, planning remedial
measures or designing robust transport networks). For various recent reviews of special issues in
this field, the interested reader is referred, for example, to the literature cited in Clark & Watling
(2005) and Sumalee & Kurauchi (2006).

Within this field, we may identify two complimentary perspectives that are developing. The first of
these perspectives begins by representing the variability in the system components, typically
through some probability distribution, and aims to compute some measure of reliability that the
system would attain. For example, in studying Travel Time Reliability we may assume link
capacities or origin-destination demands to be stochastic, then based on some behavioural response
of travellers to such stochasticity we may infer a probability distribution for the travel times on the
network, and thereby obtain a measure such as the probability that the OD travel time will exceed
some value (for examples, see Clark & Watling, 2005; Shao et al, 2006; Sumalee & Watling, 2008).
Many variants on this approach exist, ranging from the initial work on Connectivity Reliability,
where our interest is in the probability of a given OD pair remaining connected even when some
links are unavailable in a degraded network (Bell and Iida 1997), to the work on Capacity
Reliability by Yang et al (2000) and Chen et al (2002) whereby the probability of catering for a
given level of demand is computed in the face of stochastic network capacities. In spite of the many
variations on this theme, the key common element is the premise that we have sufficient
information to be able to specify both (a) the component probability distributions and (b) the
responses of travellers to the variable conditions.

The second perspective starts from an alternative viewpoint that, instead of trying to estimate how
unreliable is the system under assumptions about the unreliability of its components, the focus
should be on identifying potential weak-points; this is the area of Vulnerability Analysis. Such
works aim to identify vulnerable elements of a network based on what could happen under
pessimistic assumptions (e.g. Bell, 2000; D’Este & Taylor, 2001; Berdica, 2002; Nicholson &
Dalziell, 2003; Taylor et al, 2006; Jenelius et al, 2006; Szeto et al, 2006; Jenelius, 2008). As in the
first earlier theme, this grouping of papers comprises quite a diverse range of approaches, though
commonly focused on the problem from a supply (capacity) point of view. For example, D’Este &
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Taylor (2001) and Taylor et al (2006) analysed network-related socio-economic impacts based on
reduced accessibility in a degraded network, whereas Nicholson & Dalziell (2003) considered the
impacts of network degradability in the event of natural disasters such as volcanic eruptions.
Berdica (2002) considered vulnerability from the viewpoint of how well the transport system
performs when exposed to interruptions to critical links, general capacity reductions and variability
of the demand, using equilibrium models to assess the sensitivity of networks to such potential
interruptions. Bell (2000) and Szeto et al (2006), on the other hand, directly represented an evil
entity that aims to degrade system performance, suggesting that we might evaluate worst-case
scenarios by examining a game played about between the evil entity and the travellers in the
network. The common theme in these papers is that we do not aim to evaluate how reliable is the
transport system, and therefore do not need to provide as input the probability distributions of the
degraded components. This is particularly attractive in cases of rare events, where it is extremely
difficult as a modeller to give a reliable estimate of the input probability distribution.

In spite of the differing perspectives of reliability and vulnerability analyses, a common theme
running through these works is the examination of a transport system under conditions of variability
or potential failure, but in a context where the transport system essentially stays constant. That is to
say, the laws governing variability or failure (and their impacts) are constant, be they probability
laws, behavioural responses or the background network/demands against which potential failures
are explored. In practice, however, there are likely to be underlying systematic changes to a
transport system over the longer term, and these changes may not be neutral to an assessment of
reliability/vulnerability. As we shall discuss later (section 2), this has particular practical relevance
for organisations wishing to benchmark against previous years’ performance, or to plan for robust
systems in the longer term.

The focus of the present paper is from the perspective of vulnerability, yet we shall make several
departures in our methodology from approaches proposed previously, especially motivated by the
issue of longer-term systematic change mentioned above:
 Firstly, our focus will be on the role of demand in network vulnerability, whereas previous

vulnerability analyses have almost exclusively focussed on link capacities.
 Secondly, we shall explore the impact of systematic growth in demand (that might occur over a

period of years) on vulnerability. To our knowledge, this is not an issue that has previously been
addressed in either reliability or vulnerability analyses. In essence, the thesis is that demand
growth will lead our transportation system to operate in a regime where it is more vulnerable to
fluctuations (in either flows or capacities). Therefore, identifying the links of a network that are
most vulnerable to demand growth should allow us to direct policy interventions to design more
robust networks. For example, we may choose to divert traffic away from an area that has little
capacity to accommodate demand growth, even if conventional economic analysis of current
conditions directs us otherwise.

 Thirdly, our assessment of vulnerability will be a stochastic one, in the sense that we shall
assess vulnerability not just with respect to mean performance, but also with respect to higher
order moments. In this respect, it might be said that we aim to assess Vulnerability of
Reliability.

 Fourthly, our focus will be on a component-wise, link-by-link assessment of network
vulnerability. An alternative approach, more in line with previous studies, would have been to
integrate this link-by-link assessment with a network assessment through use of some network
equilibrium model, e.g. a kind of vulnerability counterpart of the approach in Clark & Watling
(2005). The reason for not adopting this approach is that we wished to devise a method that
made minimal assumptions. As noted earlier, techniques such as Travel Time Reliability,
Connectivity or Capacity Reliability all need to make two kinds of assumptions: not only
assumptions about the probability distributions of the input components (capacities, demands)
but also assumptions about how the system/travellers respond (typically assuming self-
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organisation through a network equilibrium approach). Past vulnerability analyses have
typically only removed the need for the first kind of assumption.

In essence the thinking behind the approach is that it will be a simple means of providing transport
planners with a way to assess the vulnerability of travel time reliability on a link to growth in
demand for using that link. It is anticipated that this could be the first stage in an assessment, which
may subsequently lead to a network assessment of vulnerability.

The structure of the paper is as follows. In section 2, we briefly discuss the practical context of our
work, introducing the measures of reliability of travel time as used in practice in various countries
such as the USA, the Netherlands and England. We then develop our analytical approach in two
stages. Our focus initially will apparently not be on vulnerability at all, but rather on a retrospective
analysis of past, observed conditions. This is the calibration-phase of the model, where we historical
data being used to estimate the parameters of the model. Thus sections 2-7 all take this
retrospective, historical perspective. It is not until section 8 that we then use the same techniques in
a forward-looking context; effectively the methods are the same, but are instead used to estimate the
(future) vulnerability to demand growth of the network links. Preceding this, then, in section 3 a
theoretical model is proposed to explain flow-related variations in travel times and the role of
systematic traffic growth, alongside residual, unexplained sources of travel time variation. It is then
shown, in sections 4-6, how this method may be applied to retrospectively adjust observed travel
times for growth in traffic. The essential simplicity of the method, which can be lost in the algebraic
manipulations required for the most general case, is illustrated by reference to a special case in
section 7, where travel times follow a second order relationship in flows, and where very simple
explicit relationships can be derived. Finally, section 8 moves on to the final objective of assessing
vulnerability to demand growth, including a numerical illustration

2. CONTEXT: MEASURES OF TRAVEL TIME RELIABILITY IN PRACTICE

In this section, we shall briefly set out the practical motivation for our work, by considering the
measures and approaches to reliability presently proposed by several governments around the
world, and in particular will examine the extent to which a longer-term temporal dimension plays a
part in such measures and policy objectives.

In the USA, the FHWA (2005) suggests several statistical measures to be used in the monitoring of
travel time reliability, including both simple statistical summary measures such as the standard
deviation, coefficient of variation, or 95th percentile, as well as measures in which a traveller is
assumed to compare their experience against an expectation, such as the buffer index and planning
time index, both of which consider the time cushion needed by travellers to ensure on-time arrival.
In making the case for such measures, Figure 2 of this paper (the Figure entitled ‘Reliability
measures capture the benefits of traffic management’) illustrates how the tracking of such reliability
measures over a period of two years, before and after some network improvement, allows such
reliability benefits to be estimated. However, implicit in the comparison made is that the changes
are only attributable to the measure introduced; the comparison not be appropriate, for example, if
there had been significant systematic change in travel demand levels over the period monitored.
This is a perfect example of the issue of interest to the present paper, namely that simple monitoring
of reliability may not be sufficient to isolate the effects of scheme impacts, if other confounding
factors are at work at the same time.

The Rijkswaterstaat (2005) in the Netherlands interestingly start with a policy target that has an
explicit time dimension with respect to reliability, namely ‘a specific ambition to have 95% of rush-
hour movements arriving on time by 2020’. Given such a relatively long-term (15 year) target, there
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is clearly considerable potential for systematic changes in several factors to confound any
monitoring exercise of journey time repeatability. The measure suggested for monitoring reliability
over this period, simply the standard deviation of travel times, will clearly be sensitive to systematic
changes in demand that may make the network more or less sensitive to day-to-day and within-day
fluctuations in demands and capacities. While it may be that policies aimed at reducing the overall
level of demand on the road network could indeed be said to fall within the remit of a measure to
achieve this ambition, and so be a quite legitimate factor to capture in the monitoring, it is not clear
that any counter-effect of other exogenous factors which may increase demand are also intended to
be part of this assessment.

In England, the Highways Agency is responsible for monitoring and delivering an agreed level of
service on the strategic road network in England comprising Motorways, A roads and trunk roads.
The level of service provided is measured by a certain PSA (Public Service agreement) target
(known as PSA target1) for the strategic network. This target is defined as effectively that the
slowest 10% journeys in the reference year 2007/8 should not be worse off when compared to the
slowest 10% journeys in the base year 2004/5 (DfT 2007). PSA target1 requires computing what is
referred to as ‘Average Vehicle Delay’ in both the reference year and the base year. AVD is
measured in minutes per 10 vehicle-miles travelled, which is equal to the sum of the total delay on
the slowest 10% of the daytime journeys divided by the sum of the vehicle-miles, on each of the
identified routes on the strategic network over each 15-minute departure period between 6am and
8pm for each day of the week (DfT, 2007).In order to account for the day-to-day variability in
travel time, the slowest 10% journeys are identified based on a distribution of the average journey
times for each route within each 15-minute window on each week day. For every route in each route
direction, for a given week day within each 15-minute departure period, the total delay is computed
as the product of the average flow and the difference between the experienced journey time in the
reference year and the journey time in the base year (August 2004 – July 2005). Vehicle-miles is
equal to the product of the average flow (for which the travel time exceeds the 90th percentile travel
time) and the route length in miles. Experienced journey time is the average journey time in each
15-minute departure period, whereas the journey time in the base year is based on the weekday off-
peak median speed. Reference journey times are set at lower than the speed limits because on an
average, vehicle speeds are less than the speed limits. Finally, average vehicle delay is obtained by
dividing the total delay by the vehicle-miles. The reliability index on which PSA target1 for
England is based holds special interest for the present paper, since it includes within it an explicit
baseline timeframe, of the reliability measured some several years previously.

In summary, from these three examples we see diverse reasons as to why a consideration of
systematic change in demand over time is relevant in a reliability context: i) identifying from a data
monitoring exercise the impact of a past intervention on reliability (as in the FHWA example); ii)
allowing for future demand changes as part of a longer term policy objective to improve reliability
(as in the Netherlands example); and iii) as part of a more complex measure of reliability itself
which incorporates an idea of a baseline level of reliability in some past year (as in the example of
the Highways Agency in England). The purpose of our research, having identified this gap, is to
address it by developing a practically useable methodology based on a sound mathematical footing,
as we shall describe in the subsequent sections.

3. MODEL ASSUMPTIONS

In monitoring the performance of a highway facility over a course of years, it is natural to examine
observations of travel times, recorded at similar times of day for similar types of day, compared
between some base year and a current year. Since travel times, even when distinguished by time-of-
day and day-type, are rather variable from day-to-day, then this comparison naturally takes the form
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of comparing elements of the distribution of travel times, e.g. the mean, variance and percentiles
between the base- and current-year. In observing any differences in such distributions, a natural
objective is to attempt to attribute them to some underlying factors, and this is the topic of the
present paper. In particular, the primary aim of the paper is to develop a methodology to adjust for
the confounding effect of systematic traffic growth over time, as is observed in many developed and
developing countries around the world.

We consider a particular stretch of road, a ‘link’, where it is supposed that repeated observations of
travel times are made over a number of days. These observations are grouped according to time
periods within the day, and day-types, the latter to account for systematic patterns within the week,
e.g. differences of Saturdays to Mondays. We shall henceforth focus on one particular time period
within the day (representing, say, a period of 5-15 minutes duration), and a particular day type, and
suppose that the observations for each particular day are used to form a mean for that day for that
particular period of the day (intra-period mean). For example, if a particular day-type were ‘Friday’,
and we observed all Fridays for a year between the times of 8:00-8:15, then we would obtain 52
observations (one for each Friday in the year) of the intra-period mean travel time for 8:00-8:15.
When we refer to ‘travel time observations’ below, then, we are referring to the observations of
such intra-period mean travel times over a sequence of days of the same type, for the same period of
the day.

The day-to-day variability in these intra-period mean travel times is modelled by a random variable
T with two components of variation:

1. Flow–related sources of day-to-day travel time variability t(F), where F is a random variable
denoting day-to-day variability in flow for the period of the day being modelled, and t(.) is some
deterministic (generally, non-linear) function.

2. Residual sources of travel time variability:

 )f(t)fF(T (1)

where  is a random variable denoting the additional day-to-day variability in travel time that
arises, even given knowledge of a given day’s flow level f.

Based on this basic model, several specific assumptions are now made for the purposes of
subsequent analysis.

Assumption 1
The function t(.), known as the travel time function, is of a polynomial form:





n

1i

i
i0 fbb)f(t (2)

for some constants n10 b,...,b,b .

Assumption 2
The flow f denotes total flow measured in Passenger Car equivalent Units (PCUs) per hour1:





K

1k
kkgf (3)

1 The precise definition of flow can be varied depending on the circumstances, providing that a consistent definition is
adopted throughout. Thus, for example, we could define flow as PCUs per hour per lane for a multi-lane highway,
which may be a convenient definition when reference is made to standard speed-flow relationships in these units.
However, when any transformation is made to the base units of flow, care needs to be taken to transform both the flow
mean and variance required as part of (2.4).
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where kg denotes the flow of vehicle type k and k denotes the passenger car equivalent of

vehicle type k.

Assumption 3
Day-to-day variation in flow may be approximated by a Normal distribution:

),(Nor~F 2 (4)

where  and  respectively denote the mean and standard deviation in traffic demand levels.

Assumption 4
 is a zero-mean2 random variable.

The assumptions above apply to a particular link, for a particular time period of the day; any of the
parameters in the assumptions may vary by link and time period of the day, given sufficient data.

4 STATISTICAL FOUNDATION: TRAVEL TIME MOMENTS

The method that will be developed for understanding the role of traffic growth will be based on two
stages. Firstly we aim to understand how the theoretical travel time distribution, arising from the
assumptions in section 3, depends on various parameters of the model (sections 4 and 5). We do not
specifically mention a base year and reference year, but it is through these latter parameters that we
will be able to reflect changes between the observation years, e.g. traffic growth. This leads to the
second stage, in section 6, where we are able to compare changes in the theoretical distribution with
changes in the observed data between the reference and current year, and thereby derive a method
for adjusting the current-year observations for traffic growth. In the present section, we focus on the
first part of the first stage of this process, monitoring changes to the theoretical distributions.

In practice, we can specify a probability distribution in many ways, not just as is standard through
the probability density function; one such specification is through its moments, which has an
advantage of allowing a more parsimonious description of given families of distribution. For
example, the Normal distribution is fully specified by its first two moments, the mean and variance,
and for arbitrary distributions we can fit the parameters of the distribution to observed moments (by
the ‘method of moments’), provided that we have as many moments as parameters. For our
subsequent analysis, we shall propose to make use of a three parameter, asymmetric distribution,
namely the lognormal, for representing the distribution of travel times, and this motivates the later
parts of the discussion below to focus attention on the first three moments of the travel time
distribution (as the fitted distribution has three parameters). However, the methods presented can be
extended to any other desired distribution with any number of parameters, by using the general
formulae below to generate as many moments as there are parameters.

Now, moments of the travel time distribution about the mean ,...)3,2m;( m  can be obtained from

the binomial expansion of its definition:

 







m

0j

jmjjmm
m ]T[E]T[E

)!jm(!j

!m
)1(]])T[ET[(E ,...)3,2m(  . (5)

The right-hand side of (5) therefore requires knowledge of the travel time moments about the
origin:

2 The assumption that  has zero mean is not restrictive, since if the additional sources of variation (unrelated to flow)
have an impact on mean travel time, then this may be accommodated in the constant term b0 of t(f).
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,...).2,1m(]T[E m
m  . (6)

Below, it is important to keep track of these two kinds of moments, those about the mean and those

about the origin, as we shall move between them several times. Note that from (6), the mean is 1

and from (5) the variance is 2 , and for higher values of m these moments describe other features

of a distribution such as its skewness. Using (6), and taking the convention that 10  , then we can

write (5) as:

 


 



m

0j

jm

1j
jm

m
)!jm(!j

!m
)1( ,...)3,2m(  . (7)

Now, let us turn to the specification of the distribution of travel time T under the assumptions
specified in section 3, comprising a component related to flow and a residual component. Using a
standard statistical identity and by taking expectations of powers of  )F(tF|T with respect to

 and then F, we obtain:

]]F))F(t[(E[E]]FT[E[E]T[E mmm
m  . (8)

It should be noted that, while the notation in (8) is standard, it hides a number of subtle points, in
particular the meaning of the expectation operator, where the meaning is taken to be implicit from

the context. Thus in writing ]T[E m the expectation is clearly the mean of travel times raised to the

mth power, taken across the distribution of the random variable T. However, ]F|T[E m might seem

less obvious in meaning, since it involves two random variables; however, since we condition on F
then this variation cannot be the subject of the expectation, and so the expectation must represent
the mean across the conditional distribution of T given F. The result of this expectation is itself a
random variable, depending on the distribution of F, and therefore the outer expectation of this term
must implicitly refer to the mean across the distribution of F.

Now, with a further expansion inside the last expectation in (8) we have:

  FE))F(t(E
)!km(!k

!m
F))F(t(

)!km(!k

!m
EE kmk

m

0k

m

0k

kmk
m





 

























  . (9)

For example, let us assume that ))F(w,0(Nor~F| for some function w(.), with this latter function

intended to reflect potential heteroscedasticity. Since, as mentioned in the opening paragraph, our
interest will be in travel time moments up to order m = 3, then we immediately know from standard
properties of the Normal distribution that:

0]F|[E]F|[E 3  )F(w])F|[E()F|var(]F|[E 22  (10)

leading to some considerable simplification in (9). If we follow this assumption through to compute
the first three travel time moments about the mean from the combination of expressions (9) and (10)

above, then firstly for the mean travel time 1 we have:

)]F(t[E)]F(t[E]F|[E1  . (11)
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For the second moment about the mean (variance) 2 we first have from (7):

2
122

2
1

2
12 )()(2)(  (12)

and in parallel from (9) and (10) we have:

]))F(t[(E)]F(w[E]))F(t[(E]]F|[E)F(t[E2]]F|[E[E 222
2  . (13)

Hence, combining (12) and (13):

2
1

2
2 )(]))F(t[(E)]F(w[E  . (14)

Finally, for the third moment about the mean 3 , we first have from (7), after some simplification:

3
11233 )(23  . (15)

The only term not yet computed in (15), namely 3 , is then given by (from (9) and (10)):

]))F(t[(E)]F(w)F(t[E3

]))F(t[(E]]F|[E))F(t[(E3]]F|[E)F(t[E3]]F|[E[E
3

3223
3




(16)

and substituting (16) into (15):

3
112

3
3 )(23]))F(t[(E)]F(w)F(t[E3  (17)

or writing 2
12 )( in place of 2 (from (12)):

3
121

3

3
11

2
12

3
3

)(3]))F(t[(E)]F(w)F(t[E3

)(2))((3]))F(t[(E)]F(w)F(t[E3




(18)

Thus we can collect together the results above into three sequentially defined expressions:

)]F(t[E1  (19)

2
1

2
2 )(]))F(t[(E)]F(w[E  (20)

3
121

3
3 )(3]))F(t[(E)]F(w)F(t[E3  . (21)

While w(F) reflects the possible presence of heteroscedasticity, we may also in cases accept a
simplifying assumption of a homoscedastic error variance; in this special case, if we let

2)F(w  (22)

for some constant 0 , then the moment expressions (19)-(21) reduce to:

)]F(t[E1  (23)
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2
1

22
2 )(]))F(t[(E  (24)

3
121

32
3 )(3]))F(t[(E)]F(t[E3  .

This expression for 3 may be further simplified, by substituting for )]F(t[E from (23) and

substituting for 2 from (24), yielding:

3
1

2
1

22
1

3
1

2
3 )())(]))F(t[(E(3]))F(t[(E3  .

which simplifies to a form that shows that in this case the effect of  on the third moment is

eliminated:

3
1

2
1

3
3 )(2]))F(t[(E3]))F(t[(E  . (25)

Now, as we have assumed t(.) to be of polynomial form, all the expectations of powers of t(F) in
(23)-(25) above, when expanded, can be expressed as expectations of polynomials in F. Since:
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1i

i
i0

n

1i

i
i0 ]F[EbbFbbE))]F(t[(E (26)

and for m = 2, 3:
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1i

i
mi0m

mn

1i

i
mi0m

mn

1i

i
i0

m ]F[EbbFbbEFbbE]))F(t[(E (27)

for some constants )mn,...,2,1,0k(bmk  that for each m are functions of n10 b...,,b,b . Therefore,

all required expectations may be evaluated if the flow moments about the origin, up to the mnth

power, may be evaluated. The same is also true of the heteroscedastic expressions (19)-(21), if we
assume w(.) is also of polynomial form, since the product w(F)t(F) will also be polynomial in F.

While writing the expansions of (27) to identify the constants is a little tedious, for special forms of
the kind we shall subsequently examine, their form is not so onerous. Specifically, if we assume a
power-law, BPR form of travel time function (for which we simplify the notation a little, by setting

ab0  and bbn  , with all other )1n,...,2,1i(0b i  ):

nbfa)f(t  integer)positivegivenan( (28)

then:

]F[bEa]bFa[E)]F(t[E nn  (29)

]F[Eb]F[Eab2a])bFa[(E]))F(t[(E n22n22n2  (30)

]F[Eb]F[Eab3]F[Eba3a])bFa[(E]))F(t[(E n33n22n233n3  . (31)
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Thus, drawing together the results of this section we have shown that in the case of a homoscedastic
residual variance and a power law, BPR travel time function, then the first three travel time
moments (mean, and second and third moments about the mean) are given by (23)-(25), and further
that the expectations in these expressions may in turn be expressed in terms of flow moments about
the origin through (29)-(31).

We have also shown that this method is extensible to more complex cases, with general nth order
polynomial travel time functions, whereby the travel time moments are given by (26) and (27), and
heteroscedastic residual variances whereby (19)-(21) apply.

As mentioned at the start of this section, the reason for wishing to compute the theoretical travel
time moments, and relating them to flows, is that such expressions will form the basis of the method
(described in section 6) for correcting observed travel times for growth in traffic flows. Therefore,
with the expressions derived so far, we are part of the way to achieving this goal. The remaining
element to address is how to evaluate the require flow moments. Specifically, focusing on the

homoscedastic/power-law case, how do we relate the computation of ]F[E],F[E n2n and ]F[E n3

required in (29)-(31) to the model assumptions made? This is addressed in section 5.

5 COMPUTATION OF FLOW MOMENTS

The result3 of section 4 is that we can relate the travel time moments to the flow moments about the

origin, ]F[E],F[E n2n and ]F[E n3 . In this section, we consider the computation of these flow

moments, which is quite straightforward given the model assumptions made, and uses several
similar processes of expansion to those used in section 4.

Now, define the mth order flow moment about the origin as:

]F[E m
m  ,...)2,1m(  . (32)

The moments in (32) can be calculated using a series of results. Firstly, we can relate these
moments to yet another kind of moment, namely the flow moments about the mean given by:

]])F[EF[(E m
m  ,...)3,2m(  . (33)

A Binomial expansion inside the outer expectation in (33) yields:

jmj
m

0j

jmm ])F[E(F
)!jm(!j

!m
)1(])F[EF( 






 ,...)3,2m(  (34)

and then taking expectations of (34) to give (33), and using substitution (32), gives:

jm
1j

m

0j

jm
m )(

)!jm(!j

!m
)1( 



 


  ,...)3,2m(  . (35)

3 We restrict attention, for ease of illustration, to the case of a power-law travel time function and homoscedastic
residual variance; the principles are just the same for the case of polynomial travel time function and heteroscedastic
residual variance, and still the method presented in this section applies.
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where we extend the definition of (32) naturally to the case m = 0, by assuming

10  . (36)

A second result we now use is that for a variable ),(Nor~F 2 , it can be shown that the mth order

moment about the mean is given by:









 evenmif
)!

2
m(2

!m
oddmif0

m

2
m

m ,...)3,2m(  . (37)

Taking these results together, since we can compute all moments about the mean directly from (37),
then we can relate them to the moments about the origin by (35). Examining (35), then for a given

value of m, then m is a linear combination of m21 ...,,,  ; looked at in reverse, if we already

knew the values of 1m21 ...,,,  (i.e. up to the th)1m(  moment about the origin), then we could

calculate the next moment about the origin m explicitly from re-arranging (35) and using

expression (37) for m . This suggests a recursive method for calculating the desired moments,

whereby ...,, 21  are calculated in order. From (29)-(31) we know that the highest such moment

we shall need is ]F[E n3
n3  , where n is the power of the travel time function (28), so that in fact

we generate all moments up to this point, namely n321 ...,,,  , and then at the end select those that

we need for substitution into (29)-(31).

In particular, we re-express (35) slightly, by taking out the term corresponding to j = m:

jm
1j

1m

0j

jm
mm )(

)!jm(!j

!m
)1( 





 


  ,...)3,2m(  (38)

and a slight re-arrangement of (38) yields:

jm
1j

1m

0j

jm
mm )(

)!jm(!j

!m
)1( 





 


  ,...)3,2m(  . (39)

The recursion suggested by (39) thus proceeds as follows:

1. Initialisation step. Set 10  (by convention) and 1 (the assumed mean). Initialise

iteration counter m to 1.

2. Iteration counter. Increment m by 1.

3. Flow moment about mean. Calculate the mth moment about the mean m from (37).

4. Flow moment about origin. Calculate the mth moment about the origin m from (39).

5. Next step. If m < 3n, then return to step 2.
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For small values of n, we might derive explicit expressions from this recursion; for example:
222

1
22

1
2

122 )()(2)( 

23223
2

33
33 3)(32033  .

However, the real point of the recursion is to provide an implicit definition for large values of n,
without having to derive explicit expressions for all moments up to order 3n. By this method we are

therefore implicitly expressing all such m as functions of  and . Thus, the recursion becomes a

very simple numerical procedure for successively generating all required flow moments, which is
applicable whatever value of n is used.

Having completed the recursion, we then select the appropriate flow moments for substitution into
(29)-(31), and in turn substitute these expressions into (23)-(25). This completes the process of
expressing the travel time mean, variance and third moment about the mean in terms of the assumed
distribution of traffic flows. Comparing the travel time distributions derived in the base/reference
year and in the current year, we will then obtain a basis for correcting the currently-observed travel
times for traffic growth: this process is explained in the following section.

6 METHOD OF CORRECTING FOR TRAFFIC GROWTH

Drawing together the results derived in sections 4 and 5, in the present section we present a method
that may be used to make ‘corrections’ to observed travel time data, to take out the effect of traffic
growth that has occurred since some reference year. Effectively, by analogy to re-basing of
monetary values, we re-base the current year travel time observations to be in comparable units to
the base year observations, if traffic growth had not occurred.

Taking the key results of sections 4 and 5 together, we have shown how the travel time moments
),,( 321  maythrough a combination of (23)-(25), (29)-(31) and the recursive method

exploiting (37) and (39)be related to the travel time function t(.), the probability distribution of
flows F, and the residual travel time variability. In terms of the parameters of these latter entities,

we have thus related ),,( 321  to: the parameters of the travel time function (28), namely, a and

b; the parameters of the flow distribution  and  ; and the residual variance as measured by  .

Although we do not derive explicit expressions relating these quantities, the combination of
relationships and recursive method together define an implicit relationship, and in order to reflect
this implicit dependence we may write (for some functions 321 handh,h ):














































),b,a,,(h

),b,a,,(h

),b,a,,(h

3

2

1

3

2

1

. (40)

The implicit relationships in (40) provide the opportunity to estimate how much the travel time
distribution (as measured by its moments 321 ,,  ) may be expected to change when any of the

parameters  ,b,a,, change.

This approach therefore has rather wide application. For example, it would be natural to reflect
capacity improvements relative to some base year through a reduction to the parameter b, and
therefore (40) provides the opportunity, say, to examine how the travel time distribution would be
expected to change from a base year to a current year, if growth in traffic occurs but the effect of
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the capacity improvement is taken out (i.e. how bad would conditions have become if the capacity
improvements had not taken place). We explore this interpretation further in sections 7.2 and 7.3.
There are clearly many variants on this kind of interpretation.

However, our focus in the present section will be on separating out the effect of growth in traffic
levels. Specifically, we shall write the mean flow level  relative to some flow level ~ in the

reference year:

 ~k

where 1k  may be used to reflect growth in mean flow since the reference year. While the mean
traffic level is our parameter of interest, we may also postulate whether (and if so, how) the other
parameters in (40) might have changed between the reference year and the current year, specifically

b,a, and  . For example, it might be argued that an increase in mean traffic levels would likely

lead to an increase in the variability in traffic levels through  . Alternatively, there may be
evidence that the amount of residual travel time variation, as measured by  , has changed since the

reference year. On the other hand, there may have been policy measures that have affected the free-
flow travel time a (such as enforcement policies on speed limiters in heavy goods vehicles) or
capacity-related parameter b . A natural first approach followed here, however, is that given the
lack of strong evidence to the contrary, it is sensible to hold all other parameters except the mean
traffic level constant, and aim only to separate out the effect of this change from the observed travel
time variability4. In this way, we may use (40) to decompose each of the current year travel time
moments into two components, namely the value of the moments in the reference year (when  ~

in (40)), and the amount to which they are expected to change in the current year due to growth in
mean traffic flow (when  ~k in (40)). Thus the travel time moments in the current year may be

written:

 
 
 









































































    
effectGrowth

33

yearreferenceinValue

3

222

111

3

2

1

3

2

1

),b,a,,~(h),b,a,,~k(h),b,a,,~(h

),b,a,,~(h),b,a,,~k(h),b,a,,~(h

),b,a,,~(h),b,a,,~k(h),b,a,,~(h

),b,a,,~k(h

),b,a,,~k(h

),b,a,,~k(h

. (41)

Suppose now that we observe sample estimates of the moments 321 ,,  in the current year, and

denote these estimates by 321
ˆ,ˆ,ˆ  . If we wish to correct these sample estimates for growth, then

we need to subtract the growth effects in (41) above. Thus we obtain corrected estimates, with the

effect of growth taken out, which we denote CORR
3

CORR
2

CORR
1

ˆ,ˆ,ˆ  and which are given by:

 
 
 














































),b,a,,~(h),b,a,,~k(hˆ
),b,a,,~(h),b,a,,~k(hˆ
),b,a,,~(h),b,a,,~k(hˆ

ˆ

ˆ

ˆ

333

222

111

CORR
3

CORR
2

CORR
1

. (42)

To apply (42), we therefore go through the process of deriving the theoretical travel time moments
twice, once for the case where the mean traffic level is ~ and once for the case where it is ~k , and

4 If traffic growth really does lead to increased variance in flows, not just increased mean flow, then by assuming a
constant variance we will systematically underestimate the true impact of growth on the travel time distribution, so this
can be claimed to be a rather conservative assumption.
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this provides the implicit evaluation of ),b,a,,~(h1  and ),b,a,,~k(h1  , as required in (42). The

extent to which these two quantities differ tell us the extent to which growth since the reference
year has affected the current observed travel times, and therefore provides the basis for subtracting
the impact of growth from the moments of the empirically observed distribution.

As a result, we end up with new estimates of the mean, variance and skewness that have the effect
of growth taken out. However, these summary measures are not exactly what is typically required
of an evaluation such as a reliability assessment, which would normally be based on percentiles of
the travel time distribution, such as the 90th percentile travel time. Therefore, the final stage of the
correction process will use these corrected moments to return to the original data, and correct the
individual data points in the light of growth5.

Thus, based on the corrected moment estimates, we begin by fitting a parametric family of
probability distributions to the travel time moments. While one could fit some quite flexible family
of curves, such as Johnson curves (see Clark & Watling, 2005) which may need an additional fourth
moment, it should be adequate for our purposes to fit something relatively easy such as a lognormal.
As described in this reference we can fit a three-parameter lognormal of the form:

)1,0(Nor~)Xln(  (43)

by the method of moments. The measures that we fit to are the mean CORR
1̂ , the variance CORR

2̂ ,

and a measure of skewness derived from the third moment:

2
3

CORR
2

CORR
3CORR

3

)ˆ(

ˆ
ˆ




 . (44)

To apply the method of moments, we first solve for  the equation:

CORR
3
ˆ)2)(1(  (45)

and if the solution is denoted by ̂ , we can then estimate the parameters of the lognormal
distribution (43) from:

2
1

)ˆ(lnˆ 
 (46)


















CORR
2

2
1

ˆ
)1ˆ(ˆ

lnˆˆ (47)




















 ˆ

ˆ2

1
ˆ
1

expˆˆ CORR
1 . (48)

5 An alternative to the process described would be, after fitting the parametric distribution, to compute the desired
percentile theoretically, without resort to the original data; however, we believe there to be an advantage in correcting
the individual data points, since the analyst may then be in a better position to judge the reasonableness of the correction
applied, and in practice it will make hardly any difference to the final computed percentile whichever method is used.
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From this fitted distribution, the final step is then to revise the observed intra-period mean journey
times for each day, through a normalisation method as follows:

1. Suppose that the uncorrected travel times for each of the N days are:

 N321 x,...,x,x,x .

2. For these uncorrected travel times, calculate sample estimates of the three moments, 321
ˆ,ˆ,ˆ  .

3. Fit a lognormal distribution to the uncorrected travel times by the method of moments, resulting

in parameter estimates of ),,(  , denoted )ˆ,ˆ,ˆ( 000  .

4. For the uncorrected travel times, form a sample of normalised uncorrected travel times
 N321 z,...,z,z,z , where:

).N,...,2,1i()ˆxln(ˆˆz 0i00i  (49)

5. Correct the sample moments for growth according to (42), yielding CORR
3

CORR
2

CORR
1

ˆ,ˆ,ˆ  .

6. Fit a lognormal distribution to the corrected moments from step 5. by the method of moments,

resulting in new parameter estimates of ),,(  , denoted )ˆ,ˆ,ˆ(  .

7. From the normalised uncorrected travel times, generate a sample of corresponding travel times
corrected for growth, denoted  N321 x~,...,x~,x~,x~ and given by:

).N,...,2,1i(
ˆ

ˆz
expˆx~ i

i 











 (50)

Note that the ‘normalisations’ correspond to the transformation of the assumed lognormal variable
that gives a standard Normal(0,1) distribution. The process below is probably the most useful for
implementing the method, though we could of course combine steps 1, 4 and 7, by which we can

see the relationship between each of the uncorrected data points ix and the corresponding corrected

data point ix~ , which after simplification can be expressed as:













 



ˆ

ˆˆ
exp)ˆx(ˆx~ 0ˆ

ˆ

0ii

0

. (51)

However, the process is probably more transparent as a series of steps. Once the corrected travel
times have been computed, it is then straightforward to calculate, say, percentiles or any other
measure from the corrected travel times, as if they were the observed data. The procedure of
adjusting the fitted distribution is illustrated in Figure 1.
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)(ba)]F(t[E 22  (56)

)36(b)(ab2a]))F(t[(E 422422222  (57)

)154515(b

)36(ab3)(ba3a]))F(t[(E
6422463

4224222233




. (58)

and substitution into (23)-(25) gives, after simplification:

)(ba 22
1  (59)

)2(b2 22222
2  (60)

)3(b8 2243
3  . (61)

Expressions (59)-(61) are the explicit form of the system (40), meaning that we can combine all
required expressions in sections 4 and 5 (including avoiding the need to implement the recursion
given by (37)/(39)). In principle, we could anticipate all values of the power n that might occur, and
repeat this process for all such values, giving explicit formulae like (59)-(61) for each such value of
n; however, the algebraic manipulation required would be enormous, and the implicit definition,
including the recursive definition of the flow moments, is then both algebraically and
computationally attractive. Returning attention to the special case of n = 2 we consider in this
section, the relatively simplicity of the expressions (59)-(61) is striking, making it possible to see
many plausible, logical features. For example, we may see the way in which an increase in flow
variability  would increase all of the travel time mean, variance and third moment (and therefore
the upper 90th percentile, for example).

We now examine the impact of traffic growth; as in section 6, we achieve this by assuming that ~

denotes the mean traffic flow level in some base/reference year, and that for given 1k  the mean
traffic flow in the current year is ~k . Since (59)-(61) define the functions in (40), we may apply

(41) to give the decomposition of the moments into growth-related and growth-independent parts,
which after some simplification gives:

Mean travel time:   
effectGrowth

22

yearreferenceinValue

22
1

~)1k(b)~(ba  (62)

Variance in travel time:
    

effectGrowth

2222

yearreferenceinValue

22222
2

~)1k(b4)~2(b2  (63)

Skewness numerator:
    

effectGrowth

2243

yearreferenceinValue

2243
3

~)1k(b24)~3(b8  . (64)

We may then apply (42) to yield the method of correcting observed estimates of the moments for
traffic growth, by subtracting the growth effects, which just comes down to the simple equations:
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1

CORR
3
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1

~)1k(b24ˆ

~)1k(b4ˆ

~)1k(bˆ

ˆ

ˆ

ˆ

. (65)

Given these corrected estimates, we may then apply the remainder of the procedure described in
section 6 to correct the individual observations, and thus compute percentiles from the corrected
observations as required.

7.2 Decomposition of capacity interventions in the light of traffic growth

Although the focus of this note has been on ultimately subtracting the effect of traffic growth from
observed travel time data, the methodology presented has wider applicability, as has been suggested
on a number of occasions. To illustrate this point, we consider again the second order form (52) in
order to derive explicit expressions, even though the principle is quite general. In particular, we will
now aim for a different kind of decomposition. We suppose now that capacity improvements have
been made since the reference year, and that this may be reflected by writing:

b
~

pb  (66)

where b
~

is the value in the reference year of the parameter multiplying 2f in (52), and b
~

p is the

value of this parameter in the current year, for some 1p  . That is to say, an increase in capacity is

naturally associated with a decrease in the b parameter in (52).
Our aim will now be to examine the effect of traffic growth since the base year (as in section 7.1)
with and without the capacity improvements; so that ultimately we can see what the travel time
distribution would have looked like (in the face of traffic growth), if the improvements actually
made had not been made. The general approach is to modify (41) to examine the effects with and
without the capacity improvements:
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. (67)

Note that in (67), all flows are evaluated at their current (growth) values, as we are now accepting
that growth occurs but factoring out the impact on the current year travel time distribution of the
capacity improvements. Following the same rationale as for the case of factoring out traffic growth,
it follows that in order to correct any currently-observed travel time moments for the effect of
capacity improvements (i.e. how bad would they have been without the capacity improvements),
then we need to subtract the ‘capacity improvement effects’ in (67) from the observed moment
estimates, to get a ‘capacity-corrected’ set of moments (denoted CC):
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. (68)

Turning attention to the special case of second-order travel time functions (52), then we may again
use expressions (59)-(61), to obtain in this case an explicit version of (67):
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Mean travel time:
    

effecttimprovemenCapacity
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1 ))~k((b

~
)p1())~k((b

~
a  (69)

Variance in travel time:
    

effecttimprovemenCapacity

22222
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2  (70)

Skewness numerator:
    

effecttimprovemenCapacity

22433
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~
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~
8  . (71)

Therefore for a second order travel time function, the correction in (68) takes the form:















































))~k(3(b
~

)p1(8ˆ
))~k(2(b

~
)p1(2ˆ

))~k((b
~

)p1(ˆ

ˆ

ˆ

ˆ

22433
3

22222
2

22
1

CC
3

CC
2

CC
1

. (72)

Note that in this case (in contrast to section 7.1) the correction adds something positive to all
moments rather than subtracts, since the correction is aiming to show how much worse things
would have become in the current year, without the capacity improvements.

7.3 Decomposition of variance components: capacity interventions and traffic growth

While we have dealt separately with traffic growth and capacity improvements in sections 7.1 and
7.2, it is only natural to ask whether we may deal with them simultaneously in any sensible way.
The answer is ‘yes’. While we could aim to make a correction to the observed data to show what
would have happened had growth not occurred and had the capacity improvements not occurred
(and such a correction naturally follows from the decomposition below), it is probably more
instructive to finish step before, by examining the decomposition of the moments in the light of
these factors.

The approach for making this decomposition follows a natural extension of the ideas already
presented in sections 7.1 and 7.2, and here we simply present and comment on the explicit results
(See Table 1) that can be readily derived from (59)-(61) for the case of a second order travel time
function:



Table 1 Impact of Capacity Improvements and Traffic Growth

Moment No growth, no
capacity improvement

Growth, but no
capacity improvement

No growth, but
capacity improvement

Growth and capacity
improvement together

Mean )~(ba 22  22 ~)1k(b  2b
~

)p1(  2)~k(b
~

)p1( 

Variance )~2(b2 22222  2222 ~)1k(b4  422 b
~

)p1(2  2222 )~k(b
~

)p1(4 

Skewness
numerator

)~3(b8 2243  2243 ~)1k(b24  633 b
~

)p1(8  2433 )~k(b
~

)p1(24 

Thus, depending on which correction term
may choose to correct (a) for growth onl
growth and capacity improvements. Note, h
the last column in the table above that invol
is to say, it is not correct to first adjust th
those corrected moments for capacity imp
the fourth term. Correcting for both growt
returning to the original, uncorrected obs
correction terms in columns 2-4 of the table

8. NUMERICAL APPLICATION OF T
OF TRAVEL TIMES TO NETWORK

This section illustrates the principles descri
the numerical illustrations take a retrospec
then assess the vulnerability of road links f
the method, we now need to consider speci
In transport modelling, commonly, we use
converted to travel time – flow relationship
procedure for converting standard speed-
described in the next section.

8.1 Fitting Flow-Delay Curves to NTM

In this research we have fitted flow-delay c
which are used in various transport modelli
Model (NTM; DfT, 2005). This approac
method in application to various common
A-roads, single, dual carriageways). Table
speed-flow curves for motorways by the NT

Total capacity
improvement effect
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s are applied to the observed travel time moments, we
y, (b) for capacity improvements only, or (c) for both
owever, that these effects are not purely additive due to
ves both growth and capacity improvement effects. That
e moments for growth, and then subsequently to adjust
rovements, since then we will effectively double-count
h and capacity improvements together is best done by
erved moments, and then subtracting all three of the
above.
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bed in section 6 of this paper. As described in section 1,
tive view initially to obtain the model parameters and
or growth in demand in the future. In order to illustrate
fic types of roads with known speed flow relationships.
standard speed-flow relationships which can be easily

s, provided the lengths of road sections are known. The
flow curves from the NTM FORGE (DfT 2005) is
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ng applications, and notably the UK National Transport
h facilitates us illustrating the travel time adjustment
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in England can be found in Table 9 of the NTM Report (DfT 2005) but in the following table, we
show the value for a Motorway.

Table 2: Motorway Speed – Flow Values Used to Derive Standard NTM Relation

Speed, kmph Flow, PCU/hour/lane

115.8 0

112.6 1398

55.6 2330

20 2913

Source: Table 9, NTM FORGE model (DfT, 2005)

The standard NTM relationship is derived by assuming a linearly decreasing speed between the
corresponding values of flow indicated in Table 2. In order to convert this speed – flow relationship
into a travel time – flow relationship, we need to identify the characteristics of each link, e.g. its
length. The travel time relationship to calibrate is an nth order power law of flow:

nfba)f(t 

where t(f) is the travel time in seconds at a flow f , a is the free flow time in seconds, f is the flow in
PCUs/hour/lane, and n is a positive integer. The constant b is calibrated from the knowledge of the
capacity (in PCUs/hour/lane) and the capacity time (travel time at capacity, in seconds) by
rearranging the travel time expression at a flow = capacity:

nCapacity

aTimeCapacity
b


 .

From Table 2 and for a given stretch of a Motorway, we are able to deduce the free flow time, i.e.
the travel time at no (or low) flow, and also the capacity expressed in PCUs/hour/lane and the
corresponding time at that capacity. Therefore, we know all other information to fit a travel time
function except the parameter n; for any given value of n, we can calculate the appropriate values of
a and b from the data given. The selection of an appropriate value of n was achieved by trial and
error method. Hence, the calibration is all about obtaining the values of a, b and n for any given
road link. It is easy to imagine that the value of b is likely to be very small (as we see in the results
below) for any given value of n, in fact, the larger the value of n, the smaller the value of b. A
typical travel time – flow relationship fitted to the NTM speed – delay curve is shown in Figure 2.
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Figure 2 Fitted Travel Time-Flow Relationship

8.2 Numerical Results

In this section, we consider some typical road stretches purely for illustration purpose, however,
they do not necessarily represent any existing roads. Numerical illustrations given below assume
road stretches of specific types with known characteristics such as road length, summaries of flow

(viz., mean flow, ~  in pcu/hr/lane and its variance, σ2) and travel time (viz., mean travel time 1̂

sec, its variance, 2̂ and skewness, 3̂ ). Each numerical example set out below considers various

scenarios of growth in traffic demand and assesses the vulnerability of a road stretch for demand
growth. For the purpose of this illustration, we define the Travel Time Reliability (TTR) as a
percentage change in mean, Standard Deviation (SD) and skewness, relative to the base. More
formally, TTR measures can be defined as below using the notation previously introduced.

% Change in Mean Travel Time, Ψଵ = ( CORR
1̂ − 1̂ ) × 100 1̂ൗ

% Change in SD of Travel Time, Ψଶ = ( CORR
2̂ − 2 ) × 100 2̂ൗ

% Change in Skewness of Travel Time, Ψଷ = ( CORR
3̂ − 3̂ ) × 100 3̂ൗ

Let the critical values of TTR for mean, SD and skewness be 1%, 10% and 1% respectively, which
means that in the future if the TTR exceeds any of the critical values, then the road stretch is said to
be vulnerable for growth in demand. Finally, let us define the term, Demand Growth Reliability
Vulnerability (DGRV) as the maximum growth rate κ% pa which can result in TTR being greater 
than the critical values identified earlier. For the purpose of illustration, we assume a horizon period
of three years, denoted by j (= 3 in all cases, unless stated otherwise) over which the vulnerability of
a road stretch being assessed. In the methodology section, we have defined a parameter k to indicate
the growth in demand which can be related to growth rate κ% pa by using a simple relation, 
k = (1 + .(ߢ
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Numerical Example 1: (B-road)

Firstly, let us consider a busy B-type road6 of length 3km (1.864 miles) connecting two A-type
roads. UK Department for Transport’s NTM FORGE Model (DfT 2005) specifies the speed-flow
relationships for a hierarchy of roads including B-type roads which can be readily converted into a
travel time - flow relationship of type (28) for the road stretch being considered. The parameters of
the relationship are given below. Note that the value of b depends on the units in which the flow has
been measured and hence due care should be taken to ensure their consistency with each other.

2

1081023.9
~

sec140

5









n

b

a

(up to 5 d.p.)

Let us assume that the mean flow on this road in the current year, ~ = 1000 pcu/hr/lane with a

variance, σ2 = 8000. Let us also assume that the ‘observed’ mean travel time 1̂ = 200 sec with a

variance 2̂ = 12000 sec2 and skewness 3̂ = 10. Considering various growth scenarios over the

horizon period of three years, TTR measures have been worked out and summarised in Table 3.
TTR measures were then compared to the corresponding critical values and vulnerability of the road
stretch is readily assessed for each growth scenario. The mean travel time marginally increases with
growth in demand, but the SD increases significantly over the base situation. The skewness reduces
slightly with increase in demand reflecting the significant increase in SD. When the traffic grows at
κ = 3% pa, Ψଶ exceeds the critical TTR value and hence the road stretch is considered to be
vulnerable to traffic growth at that level. A simple maximisation of κ has yielded the vulnerability 
of the road stretch, DGRV = 2.487 which means that the road is vulnerable to demand growth rates
above this value.

Table 3 Vulnerability Analysis of a B-road Stretch

TTR Measure Growth Rate of Demand  κ%pa 
1% 2% 3%

Ψଵ 0.00144 0.00283 0.00416

Ψଶ 4.52259 8.34861 11.61321

Ψଷ -0.02664 -0.05453 -0.08372
Assessment Not Vulnerable Not Vulnerable Vulnerable

Numerical Example 2: (Motorway Stretch)

A second numerical example has been constructed in much the same way as before, but this time
for a high capacity motorway stretch of 44 km in length. Using DfT’s NTM information, travel time
– flow relationship has been derived and the parameters for this stretch of motorway are as
indicated below.

6

1039537.1
~

sec170

18









n

b

a

(up to 5 d.p.)

6 B-roads in England are usually regional in nature connecting non-primary A-type roads. Essentially, they are low
capacity roads with undivided carriageways with at-grade junctions which may be signal controlled. A-type roads are
relatively higher capacity roads and primary A-roads may even have dual carriageways and grade separations.
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Let us assume that the rush hour flow and travel time summaries in the base year are known which
are given below:

~ = 1800 pcu/hr/lane

σ2 = 5000.

1̂ = 200 sec

2̂ = 15000 sec2

3̂ = 8.5.

Note that the traffic flow is very high relative to the previous example, and the variance in travel
time is also significantly high reflecting a large spread of travel times on this busy motorway
stretch. A slightly lower, but positive skewness indicates that some drivers have experienced
extremely long travel times on this road. TTR measures were then computed using identical
procedures as before considering various growth scenarios. However, the growth rate has been kept
to much lower levels compared to the previous example as the motorway stretch under
consideration cannot simply accommodate that high degree of growth. Table 4 shows the
assessment of vulnerability. Again, by maximising κ satisfying the condition that TTR measure is 
less than the critical TTR value yielded DGRV = 0.2357. This stretch of motorway can be classified
as vulnerable to growth in demand above the value of DGRV.

Table 4 Vulnerability Analysis of a Motorway Stretch

TTR Measure Growth Rate of Demand, κ% pa 
0.1% 0.25% 0.5%

Ψଵ 0.42967 1.05915 2.06952

Ψଶ 0.01282 0.03133 0.06034

Ψଷ -0.02134 -0.05344 -0.10719
Assessment Not Vulnerable Vulnerable Vulnerable

Motorway stretch, being extremely busy, seems to operate steadily during the rush hour with very
little spread of travel times. Any increase in traffic flow levels will significantly increase the mean
travel time on the road stretch rather than the SD as in the previous case. In a situation like this,
perhaps, a small increase in road capacity, rather than an addition of a complete lane, may help.
Modern management of highway operations involves increasing the throughput by adopting some
measures such as deploying traffic officers on motorways to dampen the unstable flow conditions.
Such measures can be assimilated to small increases in capacity of the roads. Let us denote the
%increase in capacity pa by ρ which can be related to the parameter p defined earlier following the 
simple relationship, p = [(1 + −(ߩ 1]. A 1% increase in motorway capacity, i.e. ߩ = 1%,
(together with assuming 0.5% increase in demand) would ease the situation by reducing the change
in mean travel time Ψଵ to 1.39647%. Corresponding changes in SD and skewness worked out as,
Ψଶ = 0.03709 and Ψଷ = -0.10718. A further increase in capacity to 2% will make the road stretch
less vulnerable to growth in demand by brining Ψଵto below 1% which is the critical TTR value. In
this later case with capacity expansion, DGRV works out to 0.5696 above which the road is
vulnerable to growth in demand. This analysis clearly shows that the interventions made by the
authorities could help beating the inflation in traffic flows, provided the interventions are
implemented at a suitable scale. Otherwise, any interventions may simply seem like little or no
value for money.
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9. CONCLUDING REMARKS

In this paper, we have argued that growth in demand is a relevant factor to consider when assessing
the vulnerability of a road network, since it will tend to mean the network will operate in a regime
closer to capacity, where small variations in flow or capacity may have major impacts on travel
times (and thus on the reliability of travel times). Based on this observation, a quite simple
methodology has been proposed, which effectively tracks moments of the flow and travel time
distribution, as a means of separating out the effect of traffic growth on link travel time moments.
Such a method can be applied to historic data, to identify the contribution of past growth in demand
on observed travel time moments. However, the focus of the present paper has been to utilise this
technique in a forward-looking manner, whereby the planner specifies critical changes in the travel
time moments, and the model is used to identify the vulnerability of links in terms of the demand
growth they can accommodate before breaching these critical levels. The resulting measure, termed
Demand Growth Reliability Vulnerability, may be attributed to each link of a transport network in
order to identify levels of flow growth to which each link is vulnerable. An example application of
this method has been given to two prototypical road links.

The method presented may be extended in a number of ways in the future. As noted earlier, the
link-level analysis of vulnerability may be integrated into a network-level analysis, by assessing
now the vulnerability to OD demand growth, following an adaptation of the methods in Clark &
Watling (2005) – developed for the case of Travel Time Reliability – to apply to the vulnerability
analysis. The method may further be developed by assuming within-day dynamic link travel time
functions, for which a Taylor series approximation may be used to derive polynomial relationships
between travel time and flow, utilising the calculus techniques developed in Balijepalli & Watling
(2005). Finally, we may bring together the analysis of capacity and demand growth vulnerability
into one combined framework, whereby both sources are simultaneously analysed.
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