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Abstract

Developing robust and reliable control code for autonomous mobile robots is difficult, because the interaction between a physical
robot and the environment is highly complex, subject to noise and variation, and therefore partly unpredictable. This means that
to date it is not possible to predict robot behaviour based on theoretical models. Instead, current methods to develop robot control
code still require a substantial trial-and-error component to the software design process.

This paper proposes a method of dealing with these issues by a) establishing task-achieving sensor-motor couplings through robot
training, and b) representing these couplings through transparent mathematical functions that can be used to form hypotheses
and theoretical analyses of robot behaviour.

We demonstrate the viability of this approach by teaching a mobile robot to track a moving football and subsequently modelling
this task using the NARMAX system identification technique.

1. Introduction

The behaviour of a robot (for example the trajectory
of a mobile robot) is influenced by three components: i)
the robot’s hardware, ii) the program it is executing and
iii) the environment it is operating in. Because this is a
complex and often non-linear system, in order to program a
robot task to achieve a desired behaviour, one usually has to
resort to empirical trial-and-error processes. Such iterative-
refinement methods are costly, time-consuming and error
prone [Iglesias et al., 2005].

One of the aims of the RobotMODIC project at
the universities of Essex and Sheffield is to establish a
scientific, theory-based, design methodology for robot
control program development. As a first step towards
this aim we “identify” a robot’s behaviour, using sys-
tem identification techniques such as ARMAX (Auto-
Regressive Moving Average models with eXogenous in-
puts) [Eykhoff, 1974] and NARMAX (Nonlinear ARMAX)
[Chen and Billings, 1989,Billings and Chen, 1998]. These
produce linear or nonlinear polynomial functions that
model the relationship between user-defined input and
output, both pertaining to the robot’s behaviour. The
representation of the task as a transparent, analysable
model enables us to investigate the various factors that
affect robot behaviour for the task at hand. For instance,
we can identify input-output relationships such as the

sensitivity of a robot’s behaviour to particular sensors
[Roberto Iglesias and Billings, 2005], or make predictions
of behaviour when a particular input is presented to the
robot. This, we believe, is a step towards the develop-
ment of a theory of robot-environment interaction that
will enable a more focused and methodical design of robot
controllers.

Fig. 1. The Magellan Pro mobile robot Radix and the orange–
coloured ball used in the experiments described in this paper.
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1.1. Identification of visual sensor-motor competences

In previous work [Iglesias et al., 2004,Iglesias et al., 2005]
and [Nehmzow et al., 2005] we presented and analysed
models for mobile robot tasks that used the laser and sonar
rangefinder sensors of our Magellan Pro mobile robot as
input modalities. Tasks included wall-following, obstacle
avoidance, door traversal and route-learning.

In this paper we show how the same modelling method-
ology can be applied for tasks using the vision sensor (video
camera) on our robot. The task that we model here is one
where the robot follows a bright orange ball in an open
space of more or less uniform grey colour. We use the NAR-
MAX system identification methodology (described briefly
in section 2.2) in order to model this task.

2. Experimental procedure and methods

2.1. Experimental procedure

The experiments described in this paper were conducted
in the 100 square metre circular robotics arena of the Uni-
versity of Essex, using a Magellan Pro mobile robot called
Radix (figure 1). The robot is equipped with 16 sonar, 16
infra-red and 16 tactile sensors, all uniformly distributed.
A SICK laser range finder is also present. This range sensor
scans the front semi-circle of the robot ([0◦, 180◦]) with a
radial resolution of 1◦ and a distance resolution of less than
1 centimetre. The robot also incorporates a colour video
camera on a pan/tilt mount. In the work presented here
only the video camera was used.

2.1.1. Acquisition of estimation and testing data
In order to collect training data for the estimation of the

task model a human driver manually drove the robot using
a joystick to set both linear and angular velocities, guiding
the robot to follow a moving orange ball (see figure 1). The
human driver had no visual contact with the robot itself
and used only the robot’s camera images to steer the robot
towards the ball. The robot’s camera was tilted to its lower
extreme so that the robot’s field of view covered the area
closest to the robot.

The robot was driven in this manner for 1 hour. Dur-
ing this time a coarse-coded robot camera image and the
robot’s translational and rotational velocities were logged
every 250 ms. The camera image was coarse-coded to a
minimal 8x6 pixel image by averaging neighbourhoods of
20x20 pixels in the original 160x120 pixel image. Figure 2
shows an example of a camera image and its coarse-coded
version. Coarse-coding of the camera image was done to
minimise hard disk access and memory requirements dur-
ing the robot’s operation and to reduce the dimensionality
of the input to the NARMAX model.

After the collection of the model estimation and valida-
tion data a polynomial model was obtained, expressing the
rotational velocity of the robot as a function of the colour

Fig. 2. An example of a robot camera image (left) and its
coarse-coded version (right). Note that the coarse-coded
image is shown enlarged by a factor of 20.

of each of the pixels in coarse-coded camera image. During
the experiments the linear velocity of the robot was kept
constant.

A brief explanation of the model estimation procedure
used is given in the following section.

2.2. The NARMAX modelling methodology

The NARMAX modelling approach is a parameter es-
timation methodology for identifying both the important
model terms and the parameters of unknown nonlinear dy-
namic systems. For multiple input, single output noiseless
systems this model takes the form:

y(n) = f(u1(n), u1(n − 1), u1(n − 2), · · · , u1(n − Nu),

u1(n)2, u1(n − 1)2, u1(n − 2)2, · · · , u1(n − Nu)2,

· · · ,

u1(n)l, u1(n − 1)l, u1(n − 2)l, · · · , u1(n − Nu)l,

u2(n), u2(n − 1), u2(n − 2), · · · , u2(n − Nu),

u2(n)2, u2(n − 1)2, u2(n − 2)2, · · · , u2(n − Nu)2,

· · · ,

u2(n)l, u2(n − 1)l, u2(n − 2)l, · · · , u2(n − Nu)l,

· · · ,

· · · ,

ud(n), ud(n − 1), ud(n − 2), · · · , ud(n − Nu),

ud(n)2, ud(n − 1)2, ud(n − 2)2, · · · , ud(n − Nu)2,

· · · ,

ud(n)l, ud(n − 1)l, ud(n − 2)l, · · · , ud(n − Nu)l,

y(n − 1), y(n − 2), · · · , y(n − Ny),

y(n − 1)2, y(n − 2)2, · · · , y(n − Ny)2,

· · · ,

y(n − 1)l, y(n − 2)l, · · · , y(n − Ny)l)

where y(n) and u(n) are the sampled output and input
signals at time n respectively, Ny and Nu are the regres-
sion orders of the output and input respectively, d is the
dimension of the input vector and l is the degree of the
polynomial. f() is a non-linear function and here taken to
be a polynomial multi-resolution expansion its arguments.
Expansions such as multi-resolution wavelets or Bernstein

2



coefficients can be used as an alternative to the polynomial
expansions considered in this study.

The first step towards modelling a particular system us-
ing a NARMAX model structure is to select appropriate
inputs u(n) and the output y(n). The general rule in choos-
ing suitable inputs and outputs is that there must be a
causal relationship between the input signals and the out-
put response.

After the choice of suitable inputs and outputs, the NAR-
MAX methodology breaks the modelling problem into the
following steps:

(i) Polynomial model structure detection: During this
step we determine the linear and non linear combina-
tions of inputs (for instance quotients or products) in
the polynomial to search to begin with.

(ii) Model parameter estimation: Then we estimate the
coefficients of each term found in the polynomial.

(iii) Model validation: And in model validation, we mea-
sure the prediction error of the obtained model.

The last two steps are performed iteratively (until the
model estimation error is minimised) using two sets of col-
lected data: (a) the estimation and (b) the validation data
set. Usually a single set that is collected in one long session
is split in half and used for this purpose.

The model estimation methodology described above
forms an estimation toolkit that allows us to build a con-
cise mathematical description of the input-output system
under investigation. We are constructing these models in
order to learn the underlying rules from the data. This is
like theoretical or analytical modelling but we let the data
inform us regarding what terms and effects are dominant
etc. So the models are constructed term by term.

In analytical modelling we put the most important term
in first then the next etc based on our knowledge. NAR-
MAX methodology does the same but it learns them from
the data, it does not have any prejudices, and it automat-
ically accommodates assumptions and the interactions be-
tween these which have to be taken into account in analyt-
ical modelling.

ARMAX and NARMAX procedures are now well es-
tablished and have been used in many modelling do-
mains [Billings and Chen, 1998]. A more detailed dis-
cussion of how structure detection, parameter estima-
tion and model validation are done is presented in
[Korenberg et al., 1988,Billings and Voon, 1986].

3. Experimental results

We used the Narmax system identification procedure to
estimate the robot’s rotational velocity as a function of 144
inputs (the red, green and blue values of each of the 8x6
pixels of the coarse-coded camera image), using the training
data obtained during the ball-following experiment. The
model was chosen to be of first degree and no regression was
used in the inputs and output (i.e. l = 1, Nu = 0, Ny = 0)
resulting in a linear ARMAX polynomial structure. The

resulting model contained 53 terms:

ω(n) =

+0.1626308495

+0.0028080424 ∗ u8(n)

−0.0016263169 ∗ u14(n)

−0.0025145629 ∗ u15(n)

...

+0.0061225193 ∗ u129(n)

−0.0051800999 ∗ u136(n)

+0.0012762243 ∗ u144(n)

where ω(n) is the rotational velocity of the robot in rad/s
at time instant n. Positive ω indicates that the robot turns
left and negative ω indicates that the robot turns right.
Integers u1 to u48 are the red image components, u49 to u96

the green and u97 to u144 the blue channels of the coarse-
coded image pixels (starting from the top left of the image
and reading from left to right each image row).

A graphical representation of the model parameters is
given in figure 3. This figure shows the contribution of each
coarse-coded image pixel to the rotational velocity ω(tn).
This contribution is obviously dependent on the colour
value of the pixel at time tn. Note that this graphical repre-
sentation of the model parameters is possible here because
the model is linear.

Inspection of figure 3 (and especially the red channel bar
graph, which displays how the model will react to the near-
red ball colour) reveals that the robot will tend to turn
to the left (negative rotational velocity) when a red object
like the ball appears to the left of the camera image, and
vice versa. Interestingly, by looking at the green channel
bar graph we can also postulate that the robot will tend to
turn away from a green-coloured object. This hypothesis is
tested in section 3.4.

3.1. Testing the model

In order to test and validate the model systematically,
we performed a dynamic and a static test. In the dynamic
test the ball was moved continuously in the field of view of
the robot while the model controlled the robot. During this
test the translational velocity of the robot was clamped to
0.15 m/s. The test was run for approximately 5 minutes.
During this time the rotational velocity of the robot and the
full resolution images recorded by its camera were logged
every 250 ms.

Figure 4 shows the average rotational velocity of the
robot corresponding to the location of the ball in the
(coarse-coded) image during the test run.

To quantify the response of the robot in relation to the
location of the ball in the camera image, we computed the
Spearman rank correlation coefficient between the angle-
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Fig. 3. The parameter values (Z axis, scaled by 100) of the
model terms corresponding to the red, green and blue (top,
middle and bottom respectively) channels of the coarse–
coded camera image pixels. The XY plane of each graph cor-
responds to the coordinates of the coarse-coded image (i.e.
location (0, 0) is the top-left corner of the image).

to-the-ball (from the robot’s perspective) 1 and the robot’s
rotational velocity for the entire test run. This was found to
be 0.63 (sig., p<0.05). This result demonstrates that there

1 To find the angle-to-the-ball the images recorded were processed
off-line by a hand-coded ball tracking program.
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Fig. 4. The average rotational velocity (in rad/s) of the
robot as a function of the location of the ball in the coarse–
coded image during the dynamic testing of the model.

Fig. 5. The behaviour of the robot when being controlled by
the model. The robot was started from 15 different locations
relative to the ball.

is significant correlation between the location of the ball
and the rotational velocity of the robot.

In the static test of the model the robot was placed at dif-
ferent starting locations relative to the ball (always ensur-
ing that the ball was in the robot’s field of view at startup)
before executing the model code. The translational veloc-
ity of the robot was again clamped to a constant 0.15 m/s
during every test run. Figure 5 shows the behaviour of the
robot from 15 different starting locations.

Figure 5 shows that the robot fails occasionally to home
on the ball when starting from extreme side positions. We
attributed this to the following reasons:

(i) The RGB colour space that was used to encode the in-
put image is not very reliable when in cases where the
illumination intensity varies (or similarly the video
sensor automatically adjusts its gain to maintain con-
stant image brightness).

(ii) There are only a few samples in the model estima-
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tion/validation data set where the ball appears in the
top left and top right of the robot camera image.

(iii) The apparent ball size in the coarse-coded camera
image is smaller than one pixel when the robot is fur-
thest from the ball. This produces a weak input to the
model, which results in a low output (i.e. rotational
velocity).

3.2. Improved input encoding

To investigate the validity of these assumptions we ob-
tained a second model, using the same estimation data, but
representing the coarse-coded image using the chromatic-
ity colour space which is less illumination dependent. First
we normalised the RGB space

Cr =
R

R + G + B
(1)

Cg =
G

R + G + B
(2)

Cb =
B

R + G + B
(3)

where Cr, Cg and Cb are the red chromaticity, green chro-
maticity and blue chromaticity components respectively,
and R, G and B are the red, green and blue values respec-
tively of the colour to be described. Then we divided red
chromaticity and green chromaticity components by the
blue chromaticity component in order to reduce the dimen-
sionality of input space.

Ĉr =
R

B
(4)

Ĉg =
G

B
(5)

For this model we therefore used 96 integer inputs ui

(0 ≤ ui ≤ 255). Again the model was chosen to be of first
degree and no regression was used in the inputs and output
(i.e. l = 1, Nu = 0, Ny = 0). The second model contained
51 terms:

ω(n) =

−0.4437781579

+0.0956916362 ∗ u1(n)

+0.4417766711 ∗ u2(n)

+0.1789131625 ∗ u3(n)

...

−0.4311080588 ∗ u81(n)

+0.5639699608 ∗ u88(n)

−0.4189265756 ∗ u89(n)

where again ω(n) is the rotational velocity of the robot
(in rad/s) at time instant n, and u1 to u48 the red and
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Fig. 6. The parameter values (Z axis) of the model terms cor-
responding to the red (top) and green (bottom) chromaticity
components of the coarse-coded camera image pixels. The XY
plane of each graph corresponds to the coordinates of the
coarse-coded image.

u49 to u96 the green green chromaticity components of the
coarse-coded image pixels.

Figure 6 shows the parameters of the model in two bar
graphs (one for the red and one for the green chromaticity
terms in the model).

Figure 6 shows an improvement with respect to model 1
(figure 3). The red chromaticity bar graph (which charac-
terises the response to the image of the near-red orange
ball) shows clear trends of increasing rotational velocity as
the ball appears to the extreme left or right of the robot’s
image and it is nearly 0 when the ball appears in the cen-
tre of the image. The contribution of the red chromaticity
to the rotational velocity also increases as the ball appears
to the top of the image (when the ball is furthest from the
robot).

3.3. Evaluation of model 2

Again the model was tested in the same way as model 1.
The Spearman rank correlation coefficient between the
angle-to-the-ball and the robot’s rotational velocity im-

5



Chromaticity Model

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

R
ot

at
io

na
l v

el
oc

ity
 (

ra
d/

s)

0

1

2

3

4

5

6

y−coordinate (pixels)

0
1

2
3

4
5

6
7

8

x−coordinate (pixels)

R
ot

at
io

na
l v

el
oc

ity
 (

ra
d/

s)

Chromaticity Model

x−coordinate (pixels) y−coordinate (pixels)

Fig. 7. The rotational velocity (in rad/s) of the robot as a
function of the location of the ball colour in the coarse–
coded image as this is predicted by the chromaticity-input
model 2.

proved to 0.75 (sig., p<0.05) confirming that the chro-
maticity model is better.

The corresponding graph showing the average rotational
velocity of the robot for each location of the ball in the
(coarse-coded) image during the test is shown in figure 7.

Figure 9 shows the behaviour of the robot with the
chromaticity-input model during the static test. As seen in
figure 9 in this case the robot was successfully able to home
on the ball in all 15 runs, even in cases where model 1 had
failed.

To look for a significant difference between the trajec-
tories of model 1 and model 2 in the static test (figures
5 and 9) we adapted the directness measure used by
[Webb and Reeve, 2003] for cricket phototaxis. This was
calculated as follows:
– From each trajectory, the x, y coordinates of the robot

were extracted.
– Each successive pair of coordinates was used to define a

vector with

distancei =
√

(xi+1 − xi)2 + (yi+1 − yi)2 (6)

headingi = arctan(
yi

xi
)− arctan(

yi − yi+1

xi − xi+1
) (7)

– And the normalised mean vector for the trajectory was
then calculated as:

magnitude = X2 + Y 2 (8)

angle = arctan(
Y

X
) (9)

where

X =
∑

distancei ∗ cos(headingi)
length

(10)

Y =
∑
−distancei ∗ sin(headingi)

length
(11)

length =
∑

i

distancei (12)

The angle of normalised mean vector indicates the
average heading of the robot relative to the ball during
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Fig. 8. The directness score D distribution of RGB-based
model 1 and Chromaticity-based model 2. Model 2 is signifi-
cantly more direct than model 1, with a median directness
of 0.64 (confidence interval [0.57,0.74] at the 5% significance
level, U-test), compared to model 1’s median directness 0.54
(confidence interval [0.37,0.62]).

the trajectory, and the magnitude is a measure of the
amount of variance around that direction, such that the
mean vector of angle = 0 and magnitude = 1 would
indicate a completely direct path to the ball from the
starting position.

– Overall directness is then scored as:

D = magnitude ∗ cos(angle) ∗ S (13)

which varies from 1 to 0 as the robot deviates more
from the shortest path to reach the ball. This combines
the cosine of the angle of the mean vector (which varies
from 1 to 0 as the robot deviates from heading towards
the ball), the length of the mean vector (which varies
from 1 to 0 as the robot deviates more around the mean
angle) and S measure corresponding to the success of the
robot in tracking the ball along the trajectory (which is
1 if the robot is able to home on the ball and 0 if it looses
the ball from its sight.)
For each model we computed 15 directness scores D, one

for each trajectory. The results showed that model 2 is
significantly more direct than model 1 in reaching the ball
(U-test, p<0.05, figure 8).

3.4. Hypothesis postulation and testing

Having a transparent model like the one in figure 6
has many advantages, such as the possibility of generating
testable hypotheses. For instance, by looking at the green
chromaticity bar graph of figure 6, we postulated that the
robot would turn away from a green coloured object. This
hypothesis was tested using the static test with a green
ball. The resulting trajectories of the robot from 15 differ-
ent positions are shown in figure 10. It is interesting to ob-
serve that when the ball falls on the centre vertical line of
the robot’s view, the robot does not steer away from the
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Fig. 9. The behaviour of the robot when running the chro-
maticity-input model. The robot was started from 15 differ-
ent locations relative to the ball as in figure 5.

Fig. 10. The behaviour of the robot facing a green-coloured
ball when running the chromaticity-input model. The robot
was started from 15 different locations relative to the ball
as in the previous static tests.

ball, but rather moves passively towards it. This behaviour
is justified by realising that there is no rotational velocity
bias when the green ball is in the middle of the input image
(see green chromaticity bar graph of figure 6). In all other
cases we can clearly see that the robot steers away from the
green ball.

Another hypothesis was also tested. This time we postu-
lated that by swapping the red chromaticity inputs with the
green chromaticity ones the robot would follow the green
ball. Again this was tested using the static test with the
green ball. Figure 11 confirms our expectations.

Using the directness measure described above, the be-
haviour of the robot facing a green-coloured ball running
the new model was compared with the behaviour of the
robot facing an orange-coloured ball running the model 2.
The U test result showed that there is no significant differ-
ence between the two model’s trajectories (p>0.05).

Fig. 11. The behaviour of the robot facing a green-coloured
ball when running the chromaticity-input model but with the
parameters of the green and red chromaticities swapped.

Following the same reasoning therefore, the task can be
adapted so that the robot can follow a ball of any particu-
lar colour by normalising the chromaticity inputs by that
colour. This conclusion follows directly from the analysis
of our ARMAX model and obviously the fact that in a lin-
ear model all inputs are orthogonal. In other words: the
system identification procedure described in this paper can
be used not only to obtain robot control code, but also to
achieve a range of different behaviours based on theoretical
considerations.

4. Conclusions

We have shown how the NARMAX modelling approach
can be used to identify a simple vision-based task. In our
experiments, a linear model was sufficient, but our identifi-
cation approach is not limited to linear models. Obtaining
a task-achieving controller through system identification
is very efficient despite using complex input from a vision
sensor code was ready to run within a few hours.

The task investigated in this paper could have been
achieved using other machine learning approaches, such
as supervised artificial neural networks (MLP, RBF, LVQ,
...) or support vector machines. However, these approaches
tend to be slow in learning, especially when using large in-
put spaces and, more importantly, generate opaque models
that are difficult to visualise and analyse.

In contrast, our modelling approach produces transpar-
ent mathematical functions that can be directly related to
the task. This allows for predictions to be made about the
behaviour of the robot executing the models without ac-
tually evaluating the output of the input space. In the ex-
ample presented here the function of the two models ob-
tained can be predicted by only looking at the parameters
of the model equations. Furthermore, understanding the
workings of the task by looking at the polynomial model
allowed us to change the task in a predictable manner in
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ω =0.196 ω =0.101 ω =0.080 ω =0.293

ω =0.670 ω =0.302 ω =0.030 ω =-0.056

Fig. 12. Stream of eight successive images during the testing of a
model with lag 8 (2 seconds) that shows the ball gradually disap-
pearing to the left, and the corresponding rotational velocity of the
robot (positive rotational velocity = “left turn”).

ω =-0.087 ω =-0.129 ω =-0.105 ω =-0.100

ω =-0.083 ω =-0.043 ω =-0.080 ω =-0.084

Fig. 13. Stream of eight successive images during the testing of a
model with lag 8 (2 seconds) that shows the ball gradually disap-
pearing to the right, and the corresponding rotational velocity of the
robot (negative rotational velocity = “right turn”).

order to achieve a different behaviour.
Another important advantage of the NARMAX mod-

elling methodology is that it does not suffer from the “pit-
fall” of local minima in the calculation of the model pa-
rameters. Through a single optimal set of parameters we
always obtain the estimation of the model. This increases
the efficiency of the estimation process, by removing the
need to use mechanisms such as “momentum” or “inertia”
to avoid sub-optimal solutions.

The RGB colour space is not reliable for colour discrim-
ination applications in variable illumination intensity en-
vironments [Land, 1983]. This has been demonstrated one
more time with our experiments. The obtained RGB model
was not good enough to make the robot home on the ball
when the ball appears to the extreme left or right of the
robot’s image. Using an less illumination-dependent colour
encoding solved this problem.

4.1. Future work

Apart from the models presented above, we have also ob-
tained models with different lags (i.e. incorporating inputs
presented to the system earlier than the current time n).
Such lags in the model represent “memory”, and our hy-
pothesis was that the robot would keep turning in the
“right” direction even if the ball would leave the camera’s
field of view.

We tested this hypothesis experimentally. Tables 12 and
13 show two streams of images obtained during the testing
of one such model with lag 8 (i.e. incorporating terms with
inputs presented in the last 2 seconds). Below each image is
the rotational velocity of the robot after the processing of
the corresponding image. These results demonstrate that
clearly this “memory effect” is detectable in certain situ-
ations. In fact, throughout the entire testing session (ap-
proximately 30min) the robot showed a tendency to fol-
low the ball after it had left the image (as the two exam-
ples of the tables show). However, statistical analysis of the
entire test data did not produce conclusive evidence that
the robot will always follow a disappearing ball correctly.
We believe the reason for this lies in the fact that a linear
model is not able to express relationships between different
input channels or different time instants of one or more in-
put channels. As an example, consider the ball rolling from
the right to the left of the camera image. This will produce
inputs, some of which will “encourage” right turning (neg-
ative ω) and some left turning (positive ω). The resulting
rotational velocity will therefore be the sum of these con-
tributions and its value will depend on the speed of the
ball and the lag of the model. This may well result in the
robot wrongly turning to the right if, for example, the ball
appeared longer to the right during its path.

We therefore believe that in cases where task-specific in-
formation is contained in multiple input channels or multi-
ple successive time-frames (such as the example above), a
non-linear NARMAX model would produce better results.
This hypothesis is subject to ongoing research at the Uni-
versity of Essex.
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