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Abstract

This paper introduces a new method based on a radius-vector function for identifying

the spatio-temporal transition rule of star-shaped crystal growth directly from experimental

crystal growth imaging data. From the morphology point of view, the growth is decomposed

as initial conditions, uniform growth and directional growth, which is represented by a static

polynomial model based on the Fourier expansion. A recursive model is also introduced

to help understand the dynamic characteristics of the observed systems. The applicability

of the proposed approach is demonstrated using data from a simulation and from a real

crystal growth experiment.

1 Introduction

Considerable theoretical and experimental effort has been expended in an attempt to develop a

better understanding of growth processes that are driven by surface energy at the curved phase

boundary. One of the most common examples of such a process is the growth of crystals. The

crystal growth process starts at the nucleation stage, when several atoms or molecules form

clusters that subsequently grow by the addition of other atoms. Patterns generated by growth

processes are typically characterized in terms of characteristic length, (such as the thickness of

a branch, the distance between two side-branches and the curvature of the branch tips) and

crystal growth rate. The investigation of the time evolution of the characteristic lengths, using

experimental, theoretical and computer simulation methods can provide valuable information

on the mechanisms of crystal growth [R.Kobayashi, 1993; Dougherty and Lahir, 2005; Bisker-

Leib and Doherty, 2001, 2003].
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A wide range of mathematical models have already been developed to simulate the growth

dynamics of crystals. The Eden model [Eden, 1956a,b], initially developed to investigate the

growth of biological cell colonies, and the diffusion-limited aggregation (DLA) model [Witten

and Sander, 1981], one of the most striking examples of the generation of a complex disorderly

pattern by a simple model, have been widely used in biology, colloid science and materials

science [T.Williams and R.Rjerknes, 1972; D.Mollison, 1972; P.Meakin, 1983; M.J.Vold, 1963].

Recently, the Phase Field Model [R.Kobayashi, 1993] has been widely used in the simulation

of the growth of alloys [George and Warren, 2002; Takaki et al., 2005; Hou et al., 2005]. More-

over, the Sharp Interface Model [Maalmi et al., 1995; M and M, 2007], the Boolean Model for

Snowflake Growth [S.A.Wolfram, 2002] and the Cellular Automata Model [Zhao et al., 2009]

have also been developed to model growth processes. A parabolic model with fourth-order cor-

rection was introduced to fit to the profile of the tips of NH4Cl dendrites [Dougherty and Lahir,

2005; A and T, 2007]. However, very few authors have studied the problem of how to obtain

simple empirical mathematical descriptions directly from observed experimental growth data.

The identification of the models of crystal growth directly from experimental observation is a

powerful tool for understanding crystal growth mechanisms and for unravelling the complex

relationships between various growth patterns and the environmental variables that control

this process allowing for the development of robust model-based feedback control schemes.

Initially, this paper introduces a general model based on the polar coordinates which is param-

eterised by the arc length of contour. Theoretically, this model can describe an arbitrary closed

contour. This paper then proposes a new approach to identify a radius-vector based function,

as a particular case of the general model, directly from experimental observations (imaging) for

star-shaped growth, which typical arises in the early stages of crystal growth. The star-shape

is defined as: for any point in the contour p the whole line segment from the reference point

O to p lies within the pattern. The reference point O is located in the interior of the contour.

It is a criterion to test if a particular data set can be modelled by the proposed radius-vector

based model. The distance from the pole of the polar coordinates is modelled by introducing

a Fourier expansion, and the evolution characteristics are represented by a recursive model ob-

tained by choosing the significant terms using the Error Reduction Ratio from the Orthogonal

Least Square method [M.Korenberg and S.A.Billings, 1988].

The study begins in Sec.2 with the parameterisation of the contour of a crystal, and a descrip-

tion of the radius-vector function following a Fourier expansion. Section 3 introduces the model

identification routine which is applied to a simulation example, followed by an application to

the identification of a real example of NH4Cl growth. Finally, conclusions are give in Sec.4.
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2 Radius-Vector Function

Most currently studied methods in modelling crystal growth are based on cartesian coordinates.

From the morphology point of view, this paper introduces a radius-vector based model in polar

coordinates to identify the crystal growth processes in a polynomial form in terms of the

characteristics of the growth speed of the interface.

In two dimensions, at a time t, the crystal is assumed to occupy an open subset Ωt ∈ R
2

with contour represented by an evolving closed curve γ(t) separating its interior and exterior.

Now consider the closed contour curve in polar coordinates, which can be mapped as x̄ :

[0, S) × (0, T ) → R
2 such that x̄(s, t) =

(

r(s, t), θ(s, t)
)

is a point on the curve γ(t) and

x̄(0, t) = x̄(S, t), 0 ≤ s ≤ S, where r denotes the distance to the pole, θ denotes the positive

angle required to reach the point from 0◦ and S denotes the arc length of γ(t). The curve

is parameterised so that the interior is on the left in the direction of increasing s (counter

clockwise parameterisation). If
(

r(s, t), θ(s, t)
)

are given, then evolution of the contour can be

completely reconstructed.

In this paper, to simplify the problem, θ(s, t) is assumed to be independent to t and is expressed

as:

θ(s, t) = θ(s) =
s

S
× 2π (1)

As S is a constant, s is linear in θ. Therefore, r(s, t) is a function between the radius r and

the vector θ which determines the spatio-temporal evolution of the interface. In other word,

the map γ(t) →
(

r(s, t), θ(s, t)
)

can be simplified as the map γ(t) → r(s, t).

From the morphology point of view, this paper introduces a polynomial model expressed as

r(s, t) = v(s, t) + h(t) + c(s) (2)

where c(s) denotes the initial conditions for the growth, h(t) denotes a uniform growth in all

directions and v(s, t) is the growth function. Because v(s, t) is a periodic function in θ(s) due

to

v(s, t) = v(s + S, t) (3)

a Fourier expansion can be used to replace it, and Eq. (2) can then be rewritten as:

r(s, t) =
∑

k

(

gk,1(t)coskθ(s) + gk,2(t)sinkθ(s)
)

+ h(t) + c(s) (4)

where gk,1(t), gk,2(t) are the Fourier coefficients that are functions of time t, which extends

the traditional constant Fourier coefficients. Theoretically, Eq. (4) can simulate arbitrary

star-shaped pattern, along with arbitrary evolution characteristics. This model can represent
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non-star-shaped patterns when θ(s) is chosen to be nonlinear in S. Moreover, this model can

easily be extended to the three-dimensional case, which will be investigated in a further study.

Starting from a circle, the interface displacement of four simulation examples in the two-

dimensional case with different growth roles are shown in Figure 1.(a)-(d), which demonstrate

that this kind of model can simulate complex crystal forms with an arbitrary number of

branches. Figure 1.(e) also shows an example in three-dimensions where the form and dis-

tribution of the branches are very similar to the real crystal cluster, shown in Figure 1.(f).
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Figure 1: (a)-(d) Interface displacements of simulation examples by Eq. (4) in two-dimensions; (e) Snapshot of

simulation example in three-dimensions; (f) Snapshot of a real crystal cluster.

3 Identification of the Radius-vector Function

The final purpose of this approach is to identify r(s, t) directly from the observed data. Equation

(4) is a static model where the coefficients and terms are time varying. Such a model often has

less explanatory power in multi-step ahead predictions than a dynamic model. To solve this

problem, this paper proposes a recursive model as an alternative and replace Eq. (4).
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The derivative from Eq. (4) is given by:

ṙ(s, t) =
∑

k

(

ġk,1(t)coskθ(s) + ġk,2(t)sinkθ(s)
)

+ ḣ(t) (5)

A discrete recursive model therefore can be expressed as

r(s, t) =
∑

i,k ai,kr(s, t − i)coskθ(s) +
∑

i,k bi,kr(s, t − i)sinkθ(s) + h(t) + d(s) (6)

where ai,k, bi,k are the unknown Fourier coefficients. Eq. (6) can be identified directly from

observed data using term selection and parameters estimation methods, and the many analytic

methods which have been developed for dynamic models can then be applied to analyse and

to help understand the observed system.

Given a group of observed data (rj , θj , tj), where j denotes the time index, the actual terms

of Eq.(6) can be selected using the Orthogonal Least Squares routine (OLS) by ranking the

candidate terms based on the Error Reduction Ratio (ERR), and then estimating the unknown

parameters.

The selection of candidate terms is always very important in identification of a spatio-temporal

system [Zhao and Billings, 2006]. There are two parameters which determine the candidate

terms: D, the maximal time lag and K, the maximal value of k. The selection of K can be

determined by the number of the branches and D is always chosen 1 in this paper. An example

of the identification approach using simulation data will be employed to illustrate the approach.

Starting from a circle, sixteen frames were generated using the rule

r(s, t) = 8tcos22θ(s) + 24tsin23θ(s) + t + 20

The generated patterns were sampled at θ by interval of 0.1 (S = 20π), and the displacement

of the sampled interface is shown in Figure 2.(a).

Because there are six branches in the pattern, the initial candidate term set was therefore

chosen as

{1,

cosθ(s), cos2θ(s), ..., cos6θ(s), sinθ(s), sin2θ(s), ..., sin6θ(s),

r(s, t − 1),

r(s, t − 1)cosθ(s), r(s, t − 1)cos2θ(s), ..., r(s, t − 1)cos6θ(s),

r(s, t − 1)sinθ(s), r(s, t − 1)sin2θ(s), ..., r(s, t − 1)sin6θ(s)}

The selected terms and corresponding coefficients produced by OLS are shown in Table 1. The

dynamic model can then be expressed using Eq.(7) as

r(s, t) = r(s, t − 1) + 4cos4θ(s) − 12cos6θ(s) + 17 (7)
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Figure 2: (a)Observed data from a simulation example ; (b)Displacement of multi-step ahead prediction using

the identified model (Eq.(7)).

Table 1: Results for the identification of simulation data using OLS

Term ERR Coefficient

1 0.813291 17

cos6θ(s) 0.16545 −12

cos4θ(s) 0.0184098 4

r(s, t − 1) 0.00284968 1

To evaluate the identified model, starting from the same initial conditions as the simulation,

for a group of patterns the multi-step ahead predictions using Eq.(7) and the displacement of

the predicted interface were computed and are shown in Figure 2.(b). Inspection of the initial

data and the multi-step ahead predictions shows that the identified model can fully describe

the observed system. This is also reflected by the fact that the sum of the ERR values of the

selected terms is 1, as shown in Table 1.

The second example using this approach is more challenging. This involves modelling a group

of observed data from a real crystal growth experiment using NH4Cl [Dougherty and Lahir,

2005]. Figure 3.(a) shows the displacement of the interfaces which evolve from time step 1 to

time step 16. Figure 3.(b) shows a snapshot of the crystal at time step 16. As a pre-processing

step, the displacement was rotated and each branch was marked by the sequance A, B, C, ...,

illustrated by Figure 4.(a). Inspection of Figure4.(a) shows that there are 18 branches including
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Figure 3: (a) Displacement of the crystal interfaces for 16 time steps; (b) A snapshot of the crystal at time step

16.
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Figure 4: (a) The displacement pattern for the real example after rotating;(b) The displacement pattern gener-

ated by the identified model.

the small bumps nearby tips, the initial candidate term set was therefore chosen as

{1,

cosθ(s), cos2θ(s), ..., cos18θ(s), sinθ(s), sin2θ(s), ..., sin18θ(s),

r(s, t − 1),

r(s, t − 1)cosθ(s), r(s, t − 1)cos2θ(s), ..., r(s, t − 1)cos18θ(s),

r(s, t − 1)sinθ(s), r(s, t − 1)sin2θ(s), ..., r(s, t − 1)sin18θ(s)}

There is always a tradeoff between model efficiency and model complexity. For a real system, it

is sometimes difficult to determine how many model terms should be chosen just in terms of the

sum of ERR values. In this example, by choosing different numbers of terms, several models

were identified and their performance based on multi-step ahead predictions were compared
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using the Mean Square Error(MSE),

MSE(r̂) = E(r̂ − r)2

where r̂ is the estimated value and r is the real value. Table 2 shows the MSE values of tip

positions of eight branches in multi-step ahead predictions generated by models with a different

number of terms. As expected, the MSE value decreases following the increment of the number

Table 2: Comparison of MSE values of multi-step ahead prediction generated by models with different numbers

of terms

Number of terms MSE

2 519.88

5 42.21

10 29.51

13 21.73

14 18.39

15 16.78

16 16.84

18 16.58

of terms. Notice that the model predictions show no significant improvement if the number

of terms is larger than 15. For this example, the algorithm has therefore selected the most

significant 15 terms from a total set of 56 possible model terms.

The final description of the identified model, the parameters of which were estimated using OLS

after term selection, is presented in Table 3. To evaluate the identified model, starting from

the same first and second frames as the observed data, fourteen multi-step ahead predictions

were generated, and the displacement of the interfaces is shown in Figure 4.(b). A compari-

son between Figure 4.(a) and (b) shows that the identified model captures the main growth

characteristics, such as the number of branches, asymmetrical growth speed among branches

etc.. Moreover, the interface of the 14th predicted frame is very close to the real data, which is

always very difficult to achieve for multi-step ahead predictions. Figure 5 shows a comparisons

of the radius-vector function between the reconstructed data and the real data at different

times, where the dot curves indicate the contours from reconstructed data and the solid curves

indicate the contours from real data. This also clearly indicates that the reconstructed contours

are geometrically close to the contours of the real data.

As one of the most important variables to describe crystal growth, the evolution of the branch
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Table 3: Results for the identification of the real data using OLS

Term ERR Coefficient

r(s, t − 1) 0.9983 0.965883

1 0.000277527 7.55169

r(s, t − 1)cos4θ(s) 0.000289163 0.0283955

cos8θ(s) 0.000126877 0.0834899

r(s, t − 1)sinθ(s) 2.04141e − 005 −0.00607122

cosθ(s) 1.16115e − 005 0.395276

r(s, t − 1)cos12θ(s) 1.03818e − 005 −0.0168275

r(s, t − 1)cos8θ(s) 9.21077e − 006 0.019635

r(s, t − 1)sin3θ(s) 8.7034e − 006 0.0044834

r(s, t − 1)cos5θ(s) 4.20299e − 006 0.00309449

r(s, t − 1)sin6θ(s) 4.13019e − 006 0.00299367

cos12θ(s) 3.55307e − 006 0.806516

sin5θ(s) 3.50071e − 006 −0.227734

r(s, t − 1)cos10θ(s) 2.59922e − 006 0.00241942

cos3θ(s) 1.00339e − 006 0.120467
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Figure 5: Radius vs vector of real data and reconstructed data at different times

tips of the predictions and the observed data were compared and the results are illustrated in
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Figure 6: Comparison of real position and predicted position of each tip over time

Figure 6 along with the corresponding averaged relative error(ARE). ARE can be expressed as

ARE(r̂) = E(
|r̂ − r|

r
)

All values of ARE for the eight branch tips are below 0.06, which indicates that the model

describes the tip growth well.

4 Conclusions

Initially, the contour of the crystal was parameterised in polar coordinates as a general model,

which can reconstruct an arbitrary closed contour. A radius-vector based function was then pro-

posed to describe a special case: star-shaped patterns. Evolution of the contour was expressed

in a polynomial form, where the growth was decomposed into three parts: initial conditions,

uniform growth and directional growth. As r(s) at time t is always a periodic function, the

Fourier expansion was employed to fit the contour of the object. To describe the evolution

of the interface, the Fourier coefficients became functions of time rather than constants. To

understand the dynamics characteristics of the observed data, this paper also introduced a

recursive model which can fully substitute the static model. This was illustrated using a simu-

lation example. The candidate model terms was determined by the number of branches in the

patterns. Orthogonal Least Squares was then used to select significant terms from a pool of

candidate terms based on the Error Reduction Ratio. Identification of the observed data from
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a real crystal experiment shows the accuracy of the identified model depends on the complexity

of the model. To achieve an effective model with the least number of terms, the MSE was em-

ployed to evaluate the performance of the models. Results of the multi-step ahead prediction

clearly show the identified model can capture most growth characteristics in both spatio and

temporal planes.

Both studied examples in this paper are based on star-shaped patterns, which is normal in the

early stages of crystal growth. In this case, θ(s) is linear in s and independent of time t. This

model can also describe non-star-shaped patterns when θ(s) is nonlinear in s or dependent on

t. In this case, the identification includes not only the determination of r(s, t), but also the

determination of θ(s, t). This will be studied in future to consider more characteristics to de-

scribe the later stage - dendritic formation. Identification of real systems is often very difficult

because of the many factors involved, such as rotation of the crystal, aberrations in the lens

or other equipment factors. Predicting anything many steps ahead is always going to show

up increasing errors as the prediction horizon increases. This is an inevitable consequence of

slight model errors, noise effects etc. Many more experiments need to be conducted and the

link between the identified model and the environmental and control parameters needs to be

investigated in further studies.

Acknowledgment

The authors gratefully acknowledge that part of this work was financed by Engineering and

Physical Sciences Research Council(EPSRC), UK, and by the European Research Council(ERC).

References

Dougherty A and Nunnally T. The transient growth of ammonium chloride dendrites. Journal

of Crystal Growth, 300(2):467–472, 2007.

V Bisker-Leib and M. F. Doherty. Modeling the crystal shape of polar organic materi-

als:prediction of urea crystals grown from polar and nonpolar solvents. Crystal Growth

& Design, 1(6):455–461, 2001.

V Bisker-Leib and M. F. Doherty. Modeling crystal shape of polar organic materials: Applica-

tions to amino acids. Crystal Growth & Design, 3(2):222–237, 2003.

D.Mollison. Conjecture on the spread of infection in two dimensions disproved. Nature, 240:

467–768, 1972.

11



Andrew Dougherty and Mayank Lahir. Shape of ammonium chloride dendrite tips at small

supersaturation. Journal of Crystal Growth, 274(1-2):233–240, 2005.

Murray Eden. A two-dimensional growth process. 4th. Berkeley symposium on mathematics

statistics and probability, 4:223–239, 1956a.

Murray Eden. A probabilistics model for morphogenisis. Symposium on imformation theory in

bilogy, 29-31:359–370, 1956b.

WL George and JA Warren. A parallel 3d dendritic growth simulator using the phase-field

method. Journal Of Computational Physics, 177(2):264–283, 2002.

H Hou, DY Ju, and YH Zhao. Numerical simulation for dendrite growth of binary alloy with

phase-field method. Journal Of Materials Science & Technology, 20(1):45–48, 2005.

Buchmann M and Rettenmayr M. Rapid solidification theory revisited - a consistent model

based on a sharp interface. Scripta Materialia, 57(2):169–172, 2007.

M Maalmi, A Varma, and WC Strieder. The sharp interface model - zero-order reaction with

volume change. Industrial & Engineering Chemistry Research, 34(4):1114–1125, 1995.

M.J.Vold. Computer simulation of floc formation in a colloidal suspension. Journal of colloid

science, 18:684–695, 1963.

M.Korenberg and S.A.Billings. Orthogonal parameter estimation algorithm for nonlinear

stochastic systems. International journal of control, 48(1):193–210, 1988.

P.Meakin. Cluster-growth processes on a two-diemensional lattice. Physical Review, B28:

6718–6732, 1983.

R.Kobayashi. Modelling and numerical simualtions of dendritic crystal growth. Phsical D, 63:

410–423, 1993.

S.A.Wolfram. A new kind of science. Champaign: Wolfram Media, 2002.

T Takaki, T Fukuoka, and Y Tomita. Phase-field simulation during directional solidification of

a binary alloy using adaptive finite element method. Journal Of Crystal Growth, 283(1-2):

263–278, 2005.

T.Williams and R.Rjerknes. Stochastic model for abnormal clone spread through epithelial

based layer. Nature, 236:19–21, 1972.

12



T.A. Witten and L.M. Sander. Diffusion-limited aggregation, a kinetic critical phenomenon.

Physical Review Letters, 47:1400–1403, 1981.

Y. Zhao and S.A. Billings. Neighborhood detection using mutual information for the identifi-

cation of cellular automata. IEEE Transactions on Systems, MAN, and CyberneticsPart B,

36(2):473–479, 2006.

Y. Zhao, S.A. Billings, D. Coca, R.I.Ristic, and L.DeMatos. Identification of the transition

rule in a modified cellular automata model: The case of dendritic nh4br crystal growth.

International Journal of Bifurcation and Chaos, 19(7):2295–2305, 2009.

13


