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ABSTRACT 

 

This paper proposes a new fast 3D image reconstruction 

algorithm for Diffuse Optical Tomography using reduced 

order polynomial mappings from the space of optical 

tissue parameters into the space of flux measurements at 

the detector locations. The polynomial mappings are 

constructed through an iterative estimation process 

involving structure detection, parameter estimation and 

cross-validation using data generated by simulating a 

diffusion approximation of the radiative transfer equation 

incorporating a priori anatomical and functional 

information provided by MR scans and prior psychological 

evidence. Numerical simulation studies demonstrate that 

reconstructed images are remarkably similar in quality as 

those obtained using the standard approach, but obtained at 

a fraction of the time.  
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1. Introduction 
 

Diffuse Optical Tomography (DOT) is a noninvasive 

imaging modality that employs near-infrared light to 

interrogate optical properties of biological tissue [6]. 

Compared with alternative imaging modalities, such as 

functional Magnetic Resonance Imaging (fMRI), DOT has 

several advantages, including portability, low-cost 

instrumentation, fast acquisition time with the potential for 

real-time monitoring, and also disadvantages, particularly 

relatively low spatial resolution.  

One way to improve the quality of the image 

reconstruction, is to use a priori structural information 

provided by an alternative imaging modality such as MRI 

to construct anatomically realistic 3D tissue model which 

are then used to solve the forward problem i.e. predict the 

distribution of light at the detector locations [1]. 

Another factor preventing routine clinical use is the 

considerable amount of time and computational resources 

required to reconstruct a tomographic image of optical 

tissue properties.  

For two-dimensional problems, image reconstruction 

is achieved relatively fast. However, most real life 

applications, involve the reconstruction of 3D maps of 

optical properties. The discretization of the 3D problem 

using the Finite Element Method (FEM) produces very 

large matrices which lead to computationally intensive 

reconstruction algorithms [12]. In general, the more 

accurate the forward model, the more computationally 

demanding the reconstruction algorithm. As a 

consequence, real-time imaging is only possible at the 

expense of image quality.  

In this paper, a novel solution to solve the inverse 

problem based on a reduced-order forward model is 

proposed. This approximate model is a nonlinear mapping 

from the space of optical parameters to the space of 

measurements, and therefore no matrix inversion is 

required to solve the forward problem.  

To investigate the potential of the proposed 

algorithms, a simulation experiment was designed 

consisting on the reconstruction of absorption changes due 

to brain activity in a realistic rat�s head derived from MRI 

scans. 

 

2. Basic Theory and Algorithms  
 

2.1 The Forward Problem 

 

Let ȍ⊂IR3 with boundary įȍ be the medium of interest 

and let u(r) be the vector of optical parameter functions 

(for example μa(r) and μs(r)) of the medium at position r∈ 

ȍ. The forward problem is defined as follows: given the 

sources q=[q1,�,qs] on ∂ȍ and the optical parameters 

u(r)∈U, predict detector measurements 1,{ ( )} j sy j = , where 

y(j)=[y1(j),�,yd(j)] are measurements from d detectors on 

įȍ given only source qj.  

 The forward problem is described by the following 

parameters-to-output mapping, 

( ) ( ),   1,...,jy j P u r j s= =                         (1) 



 

 

where Pj:UĺΓ is the forward operator from the space  of 

parameter functions a sU U U
μ μ= ×  to the space of 

measurements Y= IRd, given the source qj.  

The forward operator is obtained by combining a nonlinear 

forward map F:Uĺĭ, where ĭ is the space of solutions to 

the governing light propagation model (the forward 

model), with a measurement operator M: ĭĺY. 

 A model of light propagation through tissue, which is 

commonly used in applications involving Continuous 

Wave DOT systems [1], is the diffusion approximation of 

the Radiative Transfer Equation (RTE), 

 ( ) ( ) ( ) ( ) ( )              j a j jD r r r r q r rφ μ φ−∇ ⋅ ∇ + = ∈Ω  (2) 

where jφ (r) is the spatially varying diffuse photon density 

at position r given the source qj, µa is the absorption 

coefficient, ( ) 1

3 a sD μ μ
−

′= ⎡ + ⎤⎣ ⎦ is the diffusion coefficient, 

and 
sμ ′  is the reduced scattering coefficient. The 

collimated source incident at 
jξ ∈∂Ω  is usually 

represented by an isotropic point source ( ) ( )j jq r r rδ= −  

where jr  is located at a depth of one scattering length 

inside the medium, along the direction of the normal 

vector to the surface at the source location
 ( )jn ξf

.   

 The boundary condition usually employed is of the 

Robin type 

 ( ) ( ) ( )1
0  

2

j

jD
n A

φ ξ
ξ φ ξ ξ

∂
+ = ∈∂Ω

∂
 (3) 

where the term A  accounts for the refractive index 

boundary mismatch between the interior and exterior 

mediums.  

For any given source qj, the variable measured by the 

detector located at 
iξ ∈∂Ω  is the outward flux ( )j iγ ξ .The 

corresponding measurement equations are given by 

 

( ) ( ) ( ) ( ),    

( ) ( ),       

1,..., ; 1,...,

j j

i j i

D n

y j

j s i d

γ ξ ξ ξ φ ξ ξ

γ ξ
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=

= =

f

 (4).  

In practice, detectors are co-located with the source 

optodes and the measurements are obtained using a time-

multiplexed illumination scheme. Specifically, each source 

is activated sequentially while the remaining s-1 optodes 

act as detectors.  

 

2.2 Image Reconstruction  

 

The inverse problem is to recover the optical medium 

parameters given the sources q and measurements on the 

boundary ∂ȍ.  The output least squares formulation is 

given by 

2

1

Minimize ( )    over 

s

j
Y

j

P u y j u U U
=

− ∈ ⊂∑ #  

where U#  is the admissible parameter space. This is an 

infinite dimensional optimization problem. In practice, 

only an approximate solution can be computed based on a 

sequence of finite dimensional approximating problems. In 

this paper, the finite dimensional optimization problem is 

formulated over finite-element state and parameter spaces 

ĭN⊂ĭ and MU U⊂# # respectively.  The reconstruction 

algorithm is based on a finite dimensional linear 

perturbation equation, derived from (1),    

 ( ) ( , ),    1,...,M M

jW u t y j t j sδ δ= =  (5) 

where δuM(t) is the vector of changes in the optical 

parameters relative to a reference medium at time t, WM is 

the sensitivity matrix or Jacobian, which relates changes in 

optical parameters corresponding to each mesh element to 

changes in the outward flux measured at every detector 

location given the source j, and ( , )y j tδ  is a vector of 

normalized differences between two sets of optode 

readings taken at time t given source j. Specifically, for the 

i-th optode 

 
0,

0,

( , ) ( )
�( , ) ( )

( )

i i

i i

i

y j t y j
y j t y j

y j
δ

−
=  (6) 

where yi(j,t) is a measurement taken at time t, y0,i is the 

time average mean and � ( )iy j  is the predicted 

measurement corresponding to the reference medium. This 

type of inverse formulation is called Normalized 

Difference Method (NDM) [7]. 

 The finite dimensional optimization problem (which 

has to be solved for every time point separately) is given 

by 

 
2

1

Minimize ( )    over 
s

M M M M

j Y
j

W u y j u Uδ δ δ
=

⋅ − ∈∑ #  (7) 

In this paper, the above optimization problem was solved 

using an iterative Conjugate-Gradient (CG) algorithm [10].  

This iterative approach is computationally demanding as it 

requires solving the diffusion equation and the 

recalculation of the Jacobian, at every iteration. 

 

3. Tomographic Reconstruction Algorithm 

using Reduced-order Forward Models  
 

3.1 Polynomial Approximation of the Forward Model 

 

The approach proposed here to speed up the reconstruction 

process involves constructing a reduced-order polynomial 

approximation of the nonlinear mapping (1) using 

simulated data generated by a conventional finite element 

approximation of the forward model given in equations 

(2)-(4). The FEM-based forward model is called the 

complete model.  

The reduced-order model of (1) can be expressed in its 

component form as 

 , 1 ,
� ( ) ( ,..., )   , 1,..., ;M M

i i j n i jy j f u u e i j s i j= + = ≠  (8) 

where � ( )iy j  is the predicted measurement at the ith 

optode location computed using the forward model (2)-(4) 

given the source qj, fi,j is a polynomial approximation, 

( )M M

k k ku u r= is the absorption value for the k-th node, n is 

the total number of nodes and ei,j is the approximation 

error. Inferring the reduced-order model given an input-

output data set is a nonparametric regression problem 



 

 

which involves finding both the structure and the 

parameters of the unknown function fi,j. Model structure 

detection and parameter estimation for linear-in-the- 

parameters polynomial models has been extensively 

studied and efficient algorithms are readily available [2]. 

 

3.2 Model Structure Detection and Parameter 

Estimation 

 

Expansion of model (8) as a full multivariable polynomial 

function of a given degree l yields 

1 ,

0

� ( ) ( , ) ( ,..., )
L

M M

i k k M i j

k

y j i j p u u eθ
=

= +∑                     
(9) 

where {șk(i,j)} are the coefficients and pk are monomials of 

degree less than or equal to l. The number of terms L in a 

polynomial representation grows exponentially with the 

number of inputs and with the order of the polynomial. In 

practice however, only a small number of terms are needed 

to represent the relationship between optical parameters 

and detector measurements.  

Selection of a minimal model subset given the full set 

of candidate polynomial terms in (9) is known as a model 

structure detection problem. Once the correct model 

structure (which is linear in the parameters) is determined, 

the parameters can be estimated vary quickly using least-

squares based algorithms. In this work, model structure 

detection and parameter estimation was performed using 

an efficient Orthogonal Forward Regression procedure, the 

details of which can be found in [2]. 

 

3.2 Model Validation    

 

Model validation is required to ensure that the estimated 

model can be used to predict correctly detector 

measurements given any arbitrary combination of optical 

parameters within the range of interest. The approach 

employed here to assess the predictive ability of the 

regressions models is known as cross-validation [3]. Input 

and output data for each source detector pair comprised of 

2K sets of input-output samples. The first K records were 

used as an estimation data set and the remaining samples 

as validation data. The goodness of fit for each model 

component was evaluated using the root mean square error 

(RMSE) 

 

( ) ( )( )2

1

�, ,

RMSE( , )

K
V

i i

t

y j t y j t

i j
K

=

−
=
∑

 (10) 

where yi
V denote measurements not used to estimate the 

model and �y  the output of the model.  

 

3.3 Model Estimation in the 2D Case 

 

For simplicity, the procedure to estimate the reduced 

forward model is illustrated using a simple geometry as an 

example. The extension to the three-dimensional case is 

straightforward. Consider the circular background region 

shown in Figure 1a with radius r = 25mm and optical 

parameters 
aμ  = 0.015 mm-1 and 

sμ ′  = 1 mm-1. The 

medium was discretized using 4278 elements and 2209 

nodes. Around the boundary, 6 sources and 18 detectors 

were located at equispaced intervals resulting in 102 

source-detector pairs (no measurement was taken at the 

same place where a source was delivering light). This 

mesh was used for the simulation of measurement data.  

To solve the inverse problem, a second independent 

mesh with lower resolution was used as the reconstruction 

base [11]. This mesh is shown in Figure 1b and consists of 

593 elements and 325 nodes. 

 

 
                          (a)                                        (b) 

Figure 1(a) Fine mesh used to calculate synthetic data. (b) 

Coarse used to reconstruct images. 

 

To generate the data needed to estimate and validate 

the reduced forward model, 1000 normally distributed 

random absorption values were used to compute detector 

measurements using the FEM approximation of the 

forward model in equations (2)-(4). The mean value was 

chosen as the background absorption coefficient µa = 

0.015 mm-1. The variance was chosen according to the 

magnitude of the expected perturbation. The maximum 

value of absorption coefficient for the inhomogeneity was 

considered to be constrained to ±10% the value of the 

background absorption coefficient, thus the variance was 

selected as ı2 = 0.0015. The first 500 records were used as 

estimation data and remaining records as validation data. 

For each input u(r,t)=µa(r,t), the forward model was 

simulated to generate the corresponding measurements. 

Assuming a second order polynomial function and 325 

inputs, results in a model set of 53301 candidate 

monomials. However, by applying the OFR algorithm, the 

reduced models estimated for each source-detector pair are 

much smaller. For example, the reduced-order model 

estimated for source 2, (r, ȡ) = (25,ʌ/3) and detector 7, (r, 

ȡ) = (25,ʌ/3) has only 40 terms as shown below 

 

2 0 1 205 254 2 159 202 3 119 203 4 157 262

5 160 208 6 210 263 7 158 161 8 204 209

9 117 207 10 162 264 11 118 156 12 163 255
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(5)y u u u u u u u u

u u u u u u u u

u u u u u u u u
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29 115 202 30 54 57 31 123 207 32 310 314
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u u u u u u
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+ + + +
+ + + +
+ + + 309 313 36 81 252

37 254 311 38 33 209 39 255 260

u u u

u u u u u u

θ
θ θ θ

+
+ + +

(11) 



 

 

 

where the inputs uk= µa(rk) are identified by their finite 

element mesh index. The terms of the model given in (11) 

are selected using the Error Reduction Ratio (ERR) 

criterion [2]. The OFR algorithm computes the ERR of 

each candidate term and uses this to rank the contribution 

of each term (Figure 2a). The algorithm stops when ERR is 

below a certain threshold. In this example, the cut-off value 

chosen was Cd =0.05. This corresponds roughly to the 

point at which the RMSE error does not improve 

significantly by adding more terms (Figure 2b).   

To illustrate the efficiency of the algorithm, the Photon 

Measurement Density Function (PMDF) [1], which 

describes the sensitivity of a source-detector pair to 

changes of the optical parameters inside the medium, is 

shown in Figure 3a for the source-detector pair 2-7. 

Analysis of the model (11) shows that all the coordinates 

of all variables uk selected in the model using the OFR 

algorithm, correspond to points within the 5% �banana-

shaped� area shown in Figure 3a. In other words, a 

tolerance of 5% in the Jacobian corresponds approximately 

to the Cd = 0.05 ERR cut-off value, as shown in Figure 3b. 

Several other thresholds are displayed as contour lines in 

Figure 3a,b. 

 It is worth noting that Eames [5] found that removing 

regions from the Jacobian whose contribution to the 

measurement is approximately less than 5% can be used as 

an efficient method to reduce the size of the Jacobian 

matrix WM.  These results demonstrate that there is a clear 

relation between the sensitivity measure provided by the 

Jacobian and the ERR criterion used by the model 

selection algorithm. An important consequence of this 

result is that the information provided by the PMDF 

function can be used to reduce the initial search space for 

the OFR algorithm. Effectively, the candidate model set 

should be constructed based only on the inputs that lie 

inside the region inside which PMDF>1%-5%. 

 

3.4 Image Reconstruction Using the Reduced Forward 

Model 

 

To test the reconstruction algorithm, a circular inclusion 

with radius R = 3 mm and 13 mm offset the centre was 

embedded in the medium as shown in Figure 1a. The 

optical parameters inside the perturbation were varied 

according to the following quasi-periodic function [7] 

 ( ) 1
cos sin

2 8 4
a t t t

π πμ
⎡ ⎤⎞⎛⎞⎛= +⎢ ⎥⎟⎜⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 (12) 

The reconstruction problem was to determine the location 

of the perturbation and quantify it based on simulated 

detector measurements.  

The inverse problem was solved for each time point 

using the CGD algorithm limited to 1000 iterations. For 

comparison purposes, the inverse problem was solved 

using both the standard FEM-based approach and the 

reduced model approach. 
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           (b) 

Figure 2 (a) Reduction of the mean squared error as more 

terms are included in the model. (b) Cross-validation test 

to check for overfitting. 
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                   (a)                                                 (b) 

Figure 3. (a) Different thresholds of the Jacobian for source 2- 

detector 7 shown as contour lines. (b) Selected nodes at 

different Cd values shown as growing regions for the same 

source-detector pair. 

 

The quality of image reconstruction images was 

assessed using the Image Correlation Coefficient (ICC), 

which measures the spatial accuracy [7]: 

 
( )( )

( ) ( )2 2

1
( , )

1

i i

A A B B

i

i i

A A B B

i i

x x x x

ICC A B
N

x x x x

− −
=

− − −

∑

∑ ∑
 (13) 

where i

Ax , i

Bx  denote the intensities of the ith pixel in 

images A and B respectively and Ax , Bx  denote the mean 

intensities of the two images. The correlation coefficient 

has a value of 1 if the images are identical, and 0 if the 

images are completely uncorrelated. In our case, image A 

corresponds to the original image and image B 

corresponds to the image reconstructed using either the 

FEM-based solver or the reduced model approach. 

Image reconstructions using the standard approach and 

the reduced model are given in Figure 4, the location of the 

original inclusion is indicated with the dotted line. The 

vertical profile of the both reconstructions is displayed in 

Figure 5 for comparison. It can be noted that both methods 



 

 

resolved the location of the inclusion accurately but the 

magnitude is not recovered. It is important to mention that 

as a result of the inverse formulation employed, i.e. NDM, 

the aim is to recover the dynamic behaviour of the 

inclusion and not the absolute value. 

The quality of the dynamic reconstruction is illustrated 

in Figure 6. Figure 6a shows the original and reconstructed 

time varying absorption coefficient at a point located at the 

centre of the inclusion. Both methods fail to recover the 

absolute change; however the dynamic variation is easily 

distinguished. For each reconstructed image, the 

correlation coefficient defined by equation (13) was also 

calculated and this is displayed in Figure 6b. In general, 

the performance of the FEM-based approach is better than 

the reduced model by 3.7%, on average. 
Image reconstructions were carried out using a 

MATLAB implementation of the algorithms on a standard 

PC with a single core 3GHz Intel Pentium microprocessor 

and 1GB RAM. Image reconstruction based on the FEM-

model took ~180 seconds for each time point while for the 

reduced forward model it took ~40 seconds. In this case, 

the speed-gain is not significant. However, the advantage 

of using the reduced forward model will be evident in 3D 

reconstruction. 

 

 
                  (a)                                          (b) 

Figure 4 Reconstruction of first sample from the 

tomography set using (a) FEM-based approach and (b) the 

reduced model. Dashed lines indicate the location of the 

inclusion. 
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Figure 5 Amplitude profiles of reconstructed absorption 

coefficient. 
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         (b) 

Figure 6 Reconstruction of the complete time series using 

conventional FEM-based approach (� �) and reduced 

model approach (- -), original signal is denoted with the 

continuous line. (b) Behaviour of the correlation 

coefficient along the time series. 
 

 

4. Fast 3D Tomographic Reconstruction using 

Reduced-Order Models 
 

4.1 FEM Forward Solver Incorporating a priori 

Structural and Functional Information 

 

It is well known that the use of a priori structural and 

functional information improves the DOT reconstruction 

significantly [6]. Structural priors usually refer to the 

anatomical boundaries between different tissue 

subdomains while functional priors typically refer to 

known optical properties of the heterogeneous medium. 

The simplest way to incorporate such information in the 

forward model is to use a secondary imaging modality, 

such as MRI, to identify the boundaries between different 

tissue types and, assuming that there is a high correlation 

between the anatomical and optical images, assign typical 

values for optical absorption and scattering parameters for 

each tissue subdomain [4]. More flexible, statistical prior 

models have also been proposed [8].    

In this study, synthetic measurements for the 

simulation experiment were generated using a finite-

element mesh of a rat�s head derived from pixel images 

acquired using a 7-T high field animal magnet (Bruker 

BioSpin). Each image was segmented into skin, skull, 

muscle and brain and then all the slices were stacked 

together to build a three-dimensional model which later 

was converted into a finite element mesh consisting of 

56320 nodes and 283169 tetrahedral elements. The main 

reconstruction steps, illustrated in Figure 7, were 

accomplished using commercially available software (Scan 

IP/FE). 



 

 

 

 
                (a)                           (b)                         (c) 

Figure 7 Fine mesh generation. (a) MRI image, (b) 3D 

model after segmentation and (c) final tetrahedral mesh. 

 

Typical optical parameters for different tissue types, 

corresponding to an 800-nm light source, were assigned to 

the node locations within the corresponding segmented 

tissue volumes [4]. The absorption coefficients were 

assigned as follows:
aμ =0.02 mm-1 for skin, 0.005 mm-1 

for skull, 0.015 mm-1 for brain, and 0.22 mm-1 for muscle. 

The corresponding scattering coefficients were 0.5 mm-1 

for skin, 1.63 mm-1 for skull, 1.63 mm-1 for brain and 1 

mm-1 for muscle. 

Twelve optodes, arranged in a honeycomb pattern, 

were located at the top of the head, as shown in Figure 8, 

resulting in 132 source-detector combinations. The optode 

configuration is the same as that used in real experiments.  

 

 
Figure 8 Top view of optode locations. The black object 

indicates the location of the active area. 

 

An inclusion, embedded in the brain, was specified to 

model a perturbation. This type of localized change is 

representative of stimulation experiments involving 

whisker pad or paw stimulation. Absorption values 

corresponding to nodes lying inside the object were 

specified by sampling the quasi-periodic function (12). As 

before, the measurement strategy consisted of using  

sequentially one optode for light delivery and the 

remaining optodes for collection. The full 3D FEM model 

given by equations (2)-(4) was simulated to generate 

optode measurements to the dynamic behaviour of the 

inclusion given by the quasi-periodic signal in equation 

(12). 

 

4.2 Solution of the Inverse Problem 

 

A separate mesh was constructed for image reconstruction.  

The MRI scans used to derive the initial mesh used to 

compute synthetic measurements were subsampled and 

cropped, then converted into a mesh consisting of 23424 

nodes and 117550 tetrahedral elements, as shown in Figure 

9. Following the standard FEM-based approach, images 

are reconstructed using the inverse mesh (Figure 9c) 

through an optimization scheme; however, for the 

proposed method the reduced model needs to be calculated 

before the inverse problem is solved. To this end, input 

and output data used to estimate and validate the reduced 

order model was generated by simulating the 3D FEM 

approximation of the forward model (2)-(4) on the inverse 

mesh.  

Since absorption changes due to brain activation 

cannot occur in skin or bone and since for a particular 

experiment, it is often possible to define a Region of 

Interest (ROI) (where changes of optical parameters are 

expected to occur), a reduced-order ROI-specific model 

can be derived for a particular study.  

In this particular example, the ROI, which comprises 

576 nodes, is shown in Figure 10.  For each node within 

the region of interest, 1000 normally distributed values of 

absorption changes relative to the baseline were generated 

independently. Predicted optode measurements were 

computed for each of the 1000 sample distributions of 

absorption variations in the target area. 

 

4.3 Model Estimation and Validation 

 

The first 500 samples were used as estimation data and the 

remaining data set was used for validation. For each 

source-detector pair, a polynomial model was estimated 

using the OFR algorithm based on a second order 

polynomial model.  The dimension of the parameter space 

is 576 resulting in a set of 166752 candidate terms. The 

PDMF function was used to guide the structure detection 

algorithm. In effect, the original model set of 166752 

candidate terms was reduced to a range between ~400 to 

~30000, depending of the source-detector separation. The 

cross�validation technique, described earlier, was used to 

determine the ERR cut-off points for each source-detector 

model. The final reduced-order forward model consisted of 

132 equations, each equation corresponding to a source-

detector combination.  The number of terms in each 

equation ranged between 15 and 100. 

 

 

             (a)                            (b)                              (c) 

Figure 9 Coarse mesh generation. (a) Downsampled and 

cropped MRI image, (b) 3D model after segmentation and 

(c) final tetrahedral mesh. 

 



 

 

 
Figure 10 ROI is defined by the embedded object located 

at the top of the brain. 

 

4.4 Three-Dimensional Image Reconstruction Using the 

Reduced Forward Model 

 

Image reconstruction was constrained to the ROI shown in 

Figure 10, i.e. only absorption changes for nodes lying 

within the constraint region were estimated. Image 

reconstruction was performed using the CGD algorithm 

based on the full FEM model and the reduced order model.  

For the FEM-based reconstruction algorithm, the 

reconstruction error given by equation (7) converged after 

30 minutes (11 iterations). The image correlation 

coefficient of the reconstructed image was ICCFEM=0.75. 

In contrast, image reconstruction using the reduced model 

required only 6 iterations and took less than 1 second. 

However, the quality of the image reconstructed based on 

the reduced order model is lower compared to the FEM 

solution ICCROM=0.64. This is clearly due to the 

approximation error introduced by the reduced order 

model. This disadvantage is amply compensated by 

considerable computational speed-up of more than 900 

times (from 30 minutes to less than 2 seconds - assuming 

11 iterations for the reduced order algorithm).  

Three dimensional reconstruction of the inclusion 

using the FEM-based approach is displayed in Figure 11a. 

The contours correspond to signal amplitude thresholds of 

50%, 60% and 70% of the maximum estimated variation. 

Figure 11b illustrates the reconstruction achieved based on 

the reduced model 

A point at the centre of the inclusion was selected to 

show the reconstruction of the dynamic changes using both 

methods. The behaviour of the absorption changes for this 

point is displayed in Figure 12a along with the original 

perturbation signal. Figure 12b shows the ICC for the 

complete signal using both methods.  

The means are 0.74FEMICC = for the FEM-based 

reconstruction and 0.64ROMICC = for the reduced model 

approach. This corresponds to a ~14% reduction of the 

correlation index for the reduced model approach. 

However, the index is consistent through the whole 

experiment.  

In practice, the reconstruction error introduced by the 

reduced model can be made arbitrarily small by employing 

a higher order polynomial approximation scheme, whilst 

maintaining the reconstruction speed.  

 

 
        (a) 

 
    (b) 

Figure 11 Recovered inclusion using (a) the full FEM 

model and (b) the reduced order model. 
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   (b) 

Figure 12 (a) Reconstruction of the complete time series. 

(b) Image correlation coefficient for each time point. 

 

5. Conclusions 
 

This paper has introduced a new fast reconstruction 

method for CW diffuse optical tomography, which is based 

on a reduced-order nonlinear approximation of the forward 

diffusion model. The reduced model relates changes of 

optical properties of the medium inside a ROI to changes 

at detector locations. A methodology for estimating the 

reduced forward model was introduced and demonstrated 

using simulated examples of 2D and 3D reconstruction 



 

 

problems.  The images reconstructed using the proposed 

approach, are very similar in quality with those obtained 

using the standard approach, but obtained at a fraction of 

the time � a speed up of about 900 was achieved on the 3D 

reconstruction problem.  

The new approach offers the possibility to perform 

high quality 3D tomographic reconstruction in real time 

using commercially available CW optical tomography 

instruments such as NIRx [9].   

In this study, tomographic reconstruction was carried 

out, on purpose, on a rather modest computer to 

demonstrate the fact that the proposed approach does not 

require multi-core processing to achieve a reconstruction 

frame rate of several Hz.  

 

Acknowledgements 

 

The authors gratefully acknowledge the support from the 

EPSRC and an ERC Advanced Investigation Award. E. E. 

Vidal-Rosas gratefully acknowledges the support from a 

grant of the Mexican National Research Council for 

Science and Technology (CONACYT). 

 

References 
 

[1] S. R. Arridge, "Optical tomography in medical 

imaging," Inverse Problems, 15(2), 1999, R41-R93. 

[2] S. A. Billings, S. Chen & M. J. Korenberg, 

"Identification of MIMO non-linear systems using a 

forward-regression orthogonal estimator," International 

Journal of Control, 49(6), 1989, 2157-2189. 

[3] S. A. Billings & W. S. F. Voon, "Structure detection 

and model validity tests in the identification of nonlinear 

systems," IEE Proceedings D: Control Theory and 

Applications, 13(4), 1983, 193-199. 

[4] A. Y. Bluestone, M. Stewart, J. Lasker, G. S. 

Abdoulaev, & A. H. Hielscher, "Three-dimensional optical 

tomographic brain imaging in small animals, part 1: 

hypercapnia," Journal of Biomedical Optics, 9(5), 2004, 

1046-1062. 

[5] M. E. Eames, B. W. Pogue, P. K. Yalavarthy, & H. 

Dehghani, "An efficient Jacobian reduction method for 

diffuse optical image reconstruction," Optics Express, 

15(24), 2007, 15908-15919. 

[6] A. P. Gibson, J. C. Hebden, & S. R. Arridge, "Recent 

advances in diffuse optical imaging," Physics in Medicine 

and Biology, 50(4), 2005, R1-R43. 

[7] H. L. Graber, Y. L. Pei, & R. L. Barbour, "Imaging of 

spatiotemporal coincident states by DC optical 

tomography," IEEE Transactions on Medical Imaging, 

21(8), 2002, 852-866. 

[8] M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse 

optical tomography with a priori anatomical information," 

Physics in Medicine and Biology, 50(12), 2005, 2837-

2858. 

[9] NIRx Technologies, LLC. http://www.nirx.net/  

[10] J. Nocedal, S. Wright, Numerical optimization 

(New York: Springer, 2006). 

[11] K. D. Paulsen & H. B. Jiang, "Spatially Varying 

Optical Property Reconstruction Using a Finite-Element 

Diffusion Equation Approximation," Medical Physics, 

22(6), 1995, 691-701. 

[12] P. K. Yalavarthy, D. R. Lynch, B. W. Pogue, H. 

Dehghani, and K. D. Paulsen, "Implementation of a 

computationally efficient least-squares algorithm for 

highly under-determined three-dimensional diffuse optical 

tomography problems," Medical Physics, 35(5), 

2008,1682-1697. 


