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Department of Automatic Control and Systems Engineering, University of
Sheffield, Mappin Street, Sheffield S1 3JD, UK

Abstract

A new mutual information based algorithm is introduced for term se-
lection in spatio-temporal models. A generalised cross validation procedure
is also introduced for model length determination and examples based on
cellular automata, coupled map lattice and partial differential equations are
described.

1 Introduction

Spatio-temporal systems represent a class of complex dynamic systems, which
contain both time and space information. The study of spatio-temporal systems
may help to decipher many spatio-temporal phenomena and behaviours that ap-
pear in nature and to better understand and possibly control the formation of
spatio-temporal patterns[20][4][21].

One of the key concerns in the analysis of spatio-tempotal systems is system
identification, the reverse problem of pattern formation, which is still an open
problem. One of main tasks in spatio-temporal system identification is model
structure selection which enables construction of a mathematical model from ex-
perimental data. The Orthogonal Forward Regression (OFR) algorithm is one of
the effective methods for the identification for spatio-temporal systems. Given a
large number of candidate model terms in an initial model, this algorithm can be
used to determine which terms or regressors are significant and should be included
in the model based on the Error Reduction Ratio (ERR)[7][9]. However, when
applied to some spatio-temporal data sets the OFR algorithm can occasionally
select some spurious model terms, which can then result in a comparatively more
complex model with some possible insignificant or redundant model terms.

In this paper, a new method, called the OFR-MI (Orthogonal Forward Re-
gression using Mutual Information) algorithm is introducted for spatio-temporal
system identification. Using mutual information as the criterion for detecting im-
portant terms, the OFR-MI algorithm can effectively avoid the high ERR value
problems which seems to occur for some spatio-temporal systems. The new algo-
rithm is tested on several benchmark spatio-temporal models including Cellular
Automata (CA), Coupled Map Lattice (CML) and Partial Differential Equation
(PDE) models.
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2 Spatio-temporal model description

This study considers three main types of spatio-temporal models: Cellular Auto-
mata or simply CA, Coupled Map Lattices (CML), and Partial Differential Equa-
tions (PDE). CA are systems that have finite values at each cell site and the rules
are usually represented by a combination of different Boolean rules. The class of
systems that have continuous state cell values at each site can be described by
Partial Differential Equations (PDE), or when based on a discrete lattice space
as Lattice Dynamical System (LSD) or Coupled Map Lattices (CML). However,
LSD, CML and CA models have the property of discrete space, but PDE models
not only have a continuous state, but also continuous time and space.

2.1 Cellular Automata

Cellular Automata (CA) were initially introduced by von Neumann in the early
1950’s. CA are dynamical systems in which space and time are both discrete.
Each cell which is arranged in the form of a regular lattice structure has a finite
number of states. All the states in the cells are updated synchronously by a specific
transition rule based on the information of the individual states and of cells in a
neighbourhood at past times.

An n-dimensional cellular automata is defined on a lattice structure. The
typical and widely used lattice type is a square lattice, which is represented as
Sd, where d = 2r + 1 ,and r is a finite integer which determines the size of the
neighbourhood. S is a finite set of states of all cells in the lattice. The dynamics
are described by a neighbourhood function f : Sd → S. Thus, the output of
each cell is produced by following the rule f . The transition function f shows the
interaction of cells which can be listed in a finite look-up table. A shift operator
then upgrades the cells as time passes.

Consider a one-dimensional 3-site CA model, the spatio-temporal patterns ge-
nerated by 100 time steps evolution are shown in Figure 1. In the simulation, 100
random data valued 1 or 0 are set as initialization. The neighbourhood was set as
{c(j − 1;t), c(j;t), c(j + 1;t)}, where c(j, t) indicates the cell state at the position
j and the time instant t . The transition rule described by the Boolean equivalent
is

c(j; t+ 1) = c(j; t) ∨ (c(j − 1;t) ∧ c(j + 1;t)) (1)

where ′∨′ denotes the OR operation and ′∧′ denotes the AND operation. It has
been shown in [6] that CA rules can be expressed in a polynomial form for the
model in Equation (1), gives

c(j,t+ 1) = −2.0c(j − 1;t)c(j;t)− 2.0c(j;t)c(j + 1;t) + c(j;t)

−2.0c(j − 1;t)c(j + 1;t) + c(j − 1;t)

+3.0c(j − 1;t)c(j;t)c(j + 1;t) + c(j + 1;t) (2)

2.2 Coupled Map Lattice

CML models were introduced in a model simulation by K. Kaneko in the 1980s
[13]. The model used by Kaneko consisted of a continuous sequence of logistic
maps coupled to their neighbours and with parameters chosen to produce a chao-
tic behaviour. The system of coupled mappings was regarded as a CML model.
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Figure 1: The CA model simulation for equation (2)

The CML model is a typical model of extended dynamical systems with discrete
time and space, but with continuous state variables. The CML model lies somew-
here between CA and PDE models. CML models are convenient for computer
simulations especially of physical systems, for the interpretation of experimental
results, and for mathematical analysis.

There are four key parts in CML models, that is, a lattice structure, the neigh-
bourhood, the lattice states and a dynamical process. The process of a CML model
can be defined by the following parts [12]:

• A lattice architecture.

Let x be a cell in a lattice X, so that x ∈ X . The neighbourhood can be
described as

Nhd(x) = {x, yp(x)x } (3)

where y represents the neighbouring cells corresponding to the cell x. p(x)
represents the selection of neighbourhood cells and also specifies the size of
the neighbourhood.

• Lattice state description.

The mapping for the state of lattice is η : X → A, where A describes the
states in the lattice. Thus, the state of a cell x in a lattice can be described
as η(x).

• Dynamic process.

There are two basic processes involved: isolated local processes and interac-
tion processes. For an isolated local mapping fx : A → M , M is the set of all
possible values of cells in a lattice, and fx(a) shows the output value at point
x when the input value is a. Unlike the isolated process, the interaction pro-
cess couples the states generated from the cells in the neighbourhood. This
is represented by gx : Mp(x) → A. A global description of such a dynamic
process was expressed by Holden [12], Vx : T × [X → A] → A, where T is a
time delay matrix. Vx(0, η) = η(x) when t = 0, so for t > 0,

Vx(t+ 1, η) = gx(fx(Vx(0, η)), fyx,1(Vyx,1(t, η)), . . . , fyx,p(x)−1
(Vyx,p(x)−1

(t, η))) (4)

Consider an example of the CML model proposed by Sole and Valls [23]:

xi(t) = µxi(t− 1)[1− xi(t− 1)] exp[−βyi(t− 1)] +D1∇
2xi(t− 1) (5)

3



(a) xi(t) (b) yi(t)

Figure 2: Original CML model simulated patterns for Eqns (5) and (6).

yi(t) = xi(t− 1){1− exp[−βyi(t− 1)]}+D2∇
2yi(t− 1) (6)

where i = (i1, i2) ∈ Z
2, describes the cell location in the lattice. ∇2 is the Laplace

operator and can be given by

∇2xi1,i2(t−1) = xi1−1,i2(t−1)+xi1+1,i2(t−1)+xi1,i2−1(t−1)+xi1,i2+1(t−1)−4xi1,i2(t−1)
(7)

This system with µ = 4, β = 5, D1 = 0.001, D2 = 0.2 was simulated on a
lattice of 256× 256 with 50 random initial seeds of values between 0.3 to 0.4 [23]
and periodic boundary conditions. The simulation results for 2000 time steps are
show in Figure 2.

2.3 Partial Differential Equations Models

PDE models are continuous in both the time and space domains, and also conti-
nuous in the state at each point. With these continuous properties, PDE models
provide an effective tool to understand and reconstruct continuous spatio-temporal
systems in the real world. It is because these models may be related to previously
derived analytical PDE models so that there is the potential to provide a clear
physical explanation of the underlying system properties. PDE models demons-
trate a relation between an unknown function with several independent variables
and the associated partial derivatives. The general form of a PDE model based on
a function u(x1, x2, . . . , xn) is

F (x1, x2, . . . , xn, u, ux1 , ux2 , . . . , ux11 , . . .) = 0 (8)

where x1, x2, . . . , xn are the independent variables, u is the unknown function, and
uxi

represent the partial derivatives ∂u
∂xi

. Generally, additional conditions such as
initial conditions and boundary conditions are included. One example of a PDE
model is the model of the streaming movement in a colonization period of bacterial
cells [14]

∂n

∂t
= ∇2n− bn (9)

4



Figure 3: The simulation of bacterial population b in PDE models for Eqns (9)
and (10).

∂b

∂t
= ∇ · {σnb∇b}+ nb (10)

where n and b represent the concentration of the nutrient and the population
density of the bacterial cells respectively. Here σ = σ0(1 + ∆), σ is random and
normally distributed with the mean σ0. Computer simulations of equations (9)
and (10) were applied on the space domain (0,1) × (0,1) and over a lattice with
the size of 400 × 400 and no-flux boundary conditions. For the initialization, the
bacterial cells were distributed in a round-shaped area in the center. The initial
distribution can be described as below,

bi(0) = βi1,i2(0) = βMexp{−(i21 + i22)/6.25} (11)

where βM represents the maximum density. The nutrient was evenly distributed
at a level n0.

The simulation results for 8000 steps with βM = 0.71, n0 = 0.35, σ0 = 4 are
show in Figure 3.

3 Identification of Spatio-temporal models using

the OLS algorithm

Many non-linear dynamic systems can be represented by the NARMAX model,
(Non-linear Auto Regressive Moving Average with eXogenous inputs)[15], which
is defined as

y(t) = F (y(t−1), . . . , y(t−ny), u(t−1), . . . , u(t−nu), e(t−1), . . . , e(t−ne))+e(t)
(12)

where y(t), u(t) and e(t) represent the output, input and noise sequences res-
pectively. When this model is extended to the MIMO case with m variables
in the system output and r variables in the input, the variables can be written
as vectors y(t) = [y1(t), y2(t), . . . , ym(t)]

T , u(t) = [u1(t), u2(t), . . . , ur(t)]
T and

e(t) = (e1(t), e2(t),. . . ,em(t))
T . ny, nu and ne are the maximum time delay, e(t)

is a zero mean independent sequence, and F is some non-linear function. The
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objective of system identification is to find a proper approximation with respect
to F . A common choice is to describe F by a polynomial representation with a
given degree l,

y(t) = θ0 +
n

∑

i1=1

θi1Ti1(t) +
n

∑

i1=1

n
∑

i1=i2

θi1,i2Ti1(t)Ti2(t) + · · ·

+
n

∑

i1=1

· · ·

n
∑

il=il−1

θi1...ilTi1(t) · · ·Til(t) + e(t) (13)

where n = ny + nu + ne and T (t) represents y, u or e with time lags. Equation
(13) can be written as a linear in the parameters regression model

y(t) =
M
∑

i=1

θixi(t) + ξ(t), t = 1, . . . , N (14)

where N is the data length. θi are unknown parameters to be estimated. xi(t)
are model terms from the combination of T (t) up to degree l, M is the number of
terms involved in this system, and ξ(t) is the modelling error.

An optimized identified model should contain all the significant terms in equa-
tion (14), and all the redundant terms should have been removed from the model.
The orthogonal least squares (OLS), also known as the orthogonal forward regres-
sion (OFR) algorithm with error reduction ratio (ERR) has proved to be one of the
most efficient methods for term selection and parameter estimation in nonlinear
temporal system identification [7][9][8][1][2]. This method was initially applied
to single-input single-output (SISO) systems, but it has been widely extended to
many multi-input multi-output (MIMO) systems.

The Orthogonal forward regression (OFR) algorithm is based on the orthogo-
nalization of regressors which are the terms in models. The classical orthogonal
forward regression algorithm results in a particularly simple estimation procedure
which is described by the following steps:

1. Orthogonalize all the regressors in a model so that the correlations between
all the terms are removed.

2. Determine significant terms using the error reduction ratio (ERR).

3. Estimate the corresponding parameters with respect to the selected terms.

4 The New OFR-MI algorithm

4.1 Mutual Information

Mutual Information (MI) which was initially proposed by Shannon in 1948 [22],
is one of the effective measurements of the similarity between two variables. If
two variables are strictly independent, the MI between the two variables should
be zero.

Consider X and Y are two stochastic sequences with marginal probability
density functions p(x) and p(y) respectively. p(x,y) is the joint probability density
function. The mutual information I(x,y) is defined as
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I(x,y) =
∑

x∈X

∑

y∈Y

p(x,y) log(
p(x,y)

p(x)p(y)
) (15)

For the specific example of the model in Equation (14), where y is the output
and xi is one of the orthogonal regressors in the model, the mutual information
I(xi, y) between xi and y measures how a knowledge of xi reduces the uncertainty
about y, or the information that xi and y share. Hence, the regressor xi with the
biggest MI value may make the most contribution to the model. Thus, Mutual
Information incorporated with an orthogonalisation procedure can be used as an
alternative to the ERR term selection procedure in the classical OFR algrithm to
aid the selection of significant model terms.

Several algorithms have been developed to estimate mutual information from
observed data, including the approach using a histogram based technique [10][16],
methods based on kernel density estimators [18], and parametric methods [11].
In this work, the adaptive histogram-based method proposed in [10] is employed,
because this method is applicable to any distribution and appears to be asympto-
tically unbiased and efficient[25].

4.2 The New OFR-MI algorithm

Mutual information will be added into the OLS algorithm’s orthogonalisation pro-
cedure as a criterion to decide the significance of model terms instead of using the
ERRs [26]. According to Equation (14), The algrithm can be described as follows.

1. (a) Step 1. All the model terms X1 = xi(t), i = 1, . . . ,M are candidates
for the important term w1(t). For i = 1, . . . ,M ,

w
(i)
1 (t) = xi(t), [MI]

(i)
1 (y(t), xi(t)) =

∑

y∈Y

∑

xi∈X

p(y,xi) log(
p(y,xi)

p(y)p(xi)
)

where Y = y(t). Find the maximun of [MI]
(i)
1 , say, [MI]

(j)
1 = max{[MI]

(i)
1 , 1 ≤

i ≤ M}. The first significant terms can be w1(t) = w
(j)
1 (t), xj(t) is se-

lected with

y1(t) = y(t)−
y(t)w1(t)

w2
1(t)

w1(t), α11 = 1, ĝ1 =
w1(t)y(t)

w2
1(t)

, MI1 = [MI]
(j)
1

and the error-to-signal ratio (ESR), which is used as the criterion to ter-

minate the search procedure, is ‖r1‖
2 =

‖y1‖
2

‖y‖2
= (‖y‖2−

(yw1)
2

w2
1

)/‖y‖2.

(b) Step 2. All the rest of the terms X2 = xi(t), i = 1, . . . ,M, i 6= j form
the candidate terms for w2(t), For i = 1, . . . ,M, i 6= j,

w
(i)
2 (t) = xi(t)− α

(i)
12w1(t),

[MI]
(i)
2 (y1(t), xi(t)) =

∑

y1∈Y 1

∑

xi∈X1

p(y1,xi) log(
p(y1,xi)

p(y1)p(xi)
)

where

α
(i)
12 =

w1(t)xi(t)

w2
1(t)
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Find the maximun of [MI]
(i)
2 , [MI]

(k)
2 = max{[MI]

(i)
2 , 1 ≤ i ≤ M, i 6=

j}. Then the second basis w2(t) = w
(k)
2 (t), xk(t) is selected with

y2(t) = y1(t)−
y1(t)w2(t)

w2
2(t)

w2(t), a22 = 1, a12 = a
(k)
12 ,

ĝ2 =
w

(k)
2 (t)y(t)

(

w
(k)
2 (t)

)2 , MI2 = [MI]
(k)
2

and the ESR is ‖r2‖
2 =

‖y2‖
2

‖y‖2
= (‖y1‖

2 −
(y1w2)

2

w2
2

)/‖y‖2.

(c) This procedure is terminated at the Msth step when either ‖rMs
‖2 < ρ

or Ms = M , where ρ is a desired stopping tolerance.

2. Compute the estimated paremeters θ̂i

θ̂M = ĝMs
;

θ̂ = ĝi −

Ms
∑

k=i+1

αikθ̂k, i = Ms − 1, . . . , 1

4.3 Model length determination

In practice, an identified model from real data can be either overfitting or under-
fitting, which may cause the model lacks good generalization properties. Thus, the
validation of selected model terms and the final model is important. One of the
effective methods to refine the model is cross validation [24][8][1][2], a tool that
can be used to detemine model size. Generalised cross-validation (GCV) is one
type of cross validation, that is commonly and widely used. The GCV criterion
used for linear regression model [19][3] can be expressed

GCV (n) =

(

N

N − n

)2

MSE (n) (16)

where N is the length of the test data set, n is the number of selected model
terms and the Mean-Square-Error (MSE) is MSE (n) = ‖rn‖

2/N corresponding
to a model with n terms [26][5]. GCV will have a minimum value when n is the
effective number of model terms [17].

5 Examples

In this section, several identification examples for spatio-temporal systems using
both OFR and OFR-MI algrithms will be described. It is shown that OFR-MI
produces good results for selecting the correct terms for spatio-temporal model
identification.

5.1 CA model Identification

The model described in Equantion (2) was simulated. The data for the identifi-
cation is from the simulation over 100 time steps, shown in Figure 1, so the data
length is 100 × 100. Tables 1 and 2 show the identification results produced by
both OFR and OFR-MI.
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Table 1: Identified model structure for the CA model of Eqn.(2) using OFR
algorithm

Terms Parameters ERR(%) GCV

Ture Estimated

1 0 -5.4401E-15 35.71 0.6431
c(j − 1;t)c(j;t) -2.0 -2.0 8.36 0.5595

c(j − 1;t) 1.0 1.0 7.6 0.4836
c(j − 1;t)c(j + 1;t) -2.0 -2.0 2.83 0.4554

c(j + 1;t) 1.0 1.0 7.0 0.3854
c(j − 1;t)c(j;t)c(j + 1;t) 3.0 3.0 4.82 0.3373

c(j;t)c(j + 1;t) -2.0 -2.0 14.18 0.1954
c(j;t) 1.0 1.0 19.51 0.0

Table 2: Identified model structure for the CA model of Eqn.(2) using OFR-MI
algorithm

Terms Parameters MI GCV

Ture Estimated

c(j − 1;t)c(j;t) -2.0 -2.0 0.1383 0.3571
c(j;t)c(j + 1;t) -2.0 -2.0 0.2114 0.3572

c(j;t) 1.0 1.0 0.3108 0.2916
c(j − 1;t)c(j + 1;t) -2.0 -2.0 1.5207 0.2830

c(j−1;t)c(j;t)c(j+1;t) 3.0 3.0 1.6856 0.2696
c(j − 1;t) 1.0 1.0 0.3008 0.1348
c(j + 1;t) 1.0 1.0 0.57 1.84E-16

Table 1 shows that a constant term is selected by the OFR algorithm with
the highest ERR value. However, this term should not be in the model. Table 2
shows the results produced by the new OFR-MI algorithm. All the seven selected
terms are exactly consistent with the true model terms. In addition, it shows that
identified model enables the GCV value to be minimised.

5.2 CML model Identification

The CML model described in Section 2.2 was simulated. The identification was
performed using data from eight points at locations (200,192), (200,193), (200,194),
(200,195), (200,196), (200,197), (200,198), and (200,199) over 500 time steps. The
data length is therefore 8 × 500. The final models identified from the data are
detailed in Tables 3 and 4.

In Table 3, the ERR values for the sub-model of y(t) show the first three terms
are significant, and GCV reaches a minimum value at the third term indicating
that these three terms should be included in the true model. From the selected
terms for the sub-model of x(t), it is noticed that the first item has a very high
ERR value, very close to 1.0, and the other terms therefore have very small ERR
values, which suggests that only the first term can describe the true model with a
very small and acceptable error. In temporal systems modelling a high initial ERR
value often evaluates over sampled data because adjacent samples are then have
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Table 3: Identified model structure for the CML model of Eqns (5) and (6) using

OFR algorithm

Output Terms Parameters ERR(%) GCV

Ture Estimated

x(t) x(t− 1)[1− x(t− 1)] exp[−βy(t− 1)] 4.0 4.0 99.999988345 1.1661E-7

∇2x 0.001 0.001 1.1655E-5 0.0

y(t) x(t− 1) 1.0 1.0 88.82 0.1119

x(t− 1) exp[−βyi(t− 1)] -1.0 -1.0 10.78 0.004

∇2y 0.2 0.2 0.4 2.2238E-16

x(t− 1) exp[−βyi(t− 1)]∇2y 0 3.2513E-14 4.0235E-30 2.2249E-16

exp[−βyi(t− 1)] 0 6.0457E-17 2.1667E-30 2.2260E-16

x(t− 1)∇2y 0 -1.5438E-14 2.7343E-30 2.2271E-16

exp[−βyi(t− 1)]∇2y 0 -7.7381E-15 8.4522E-30 2.2283E-16

Table 4: Identified model structure for the CML model of Eqns (5) and (6) using

OFR-MI algorithm

Output Terms Parameters MI GCV

Ture Estimatied

x(t) x(t− 1)[1− x(t− 1)] exp[−βy(t− 1)] 4.0 4.0 7.1866 1.4796E-08

∇2x 0.001 0.001 6.2765 0.0

y(t) x(t− 1) 1.0 1.0 2.6799 0.0039

x(t− 1) exp[−βyi(t− 1)] -1.0 -1.0 3.8430 1.3961E-04

∇2y 0.2 0.2 5.4032 8.7180E-18

almost the same amplitude because of the high sampling. This problem exists in
the models studied here but reducing the sampling was not found to be an effective
solution.

However, the new OFR-MI algorithm can effectively avoid the problem of high
initial ERR values. From Table 4, the estimated terms are identical to the true
model terms.

5.3 PDE models

For the models in Equations (9) and (10), the identification procedure was applied
on the data from the first 1000 successive frames in the simulation. Eight suc-
cessive points in each frame, located at (200,192), (200,193), (200,194), (200,195),
(200,196), (200,197), (200,198), and (200,199), were selected to form the training
data set. Therefore, the size of the data set is 8×1000. The results are illustrated
in Tables 5 and 6.
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Table 5: Identified model structure for the PDE model of Eqns (9) and (10)
using OFR algorithm

Output Terms Parameters ERR(%) GCV

Ture Estimated

n(t) n(t− 1) 1.0 1.0 99.96 3.7533E-4
b(t− 1)n(t− 1) -0.2 -0.2 2.5720E-2 1.1810E-4

∇2n 0.2 0.2 1.1804E-2 1.4444E-15

b(t) b(t− 1) 1.0 1.0 99.99931422 6.8595E-6
σb(t− 1)n(t− 1) 0 -2.3822E-13 5.2959E-4 1.5627E-6

σb(t− 1)n(t− 1)∇2b 2.0 2.0 1.0804E-4 4.8185E-7
∇(σnb)∇b 2.0 2.0 4.1976E-5 6.1797E-8

b(t− 1)n(t− 1) 2.0 2.0 6.1735E-6 0.0

Table 6: Identified model structure for the PDE model of Eqns (9) and
(10)using OFR-MI algorithm

Output Terms Parameters MI GCV

Ture Estimated

n(t) ∇2n 0.2 0.2 3.9504 0.0033
n(t− 1) 1 1 6.2936 1.0237E-6

b(t− 1)n(t− 1) -0.2 -0.2 13.3318 4.8288E-19

b(t) n(t− 1)∇(σnb)∇b 0 -5.2225E-13 6.388 0.5180
σn(t− 1) 0 -1.6653E-16 8.0544 0.5139

b(t− 1)n(t− 1)∇2b 0 9.4502E-13 4.3195 0.5094
b(t− 1)n(t− 1) 0.2 0.2 6.8711 0.4869

σb(t− 1)n(t− 1)∇2b 0.2 0.2 3.9573 0.4853
b(t− 1) 1.0 1.0 2.6855 2.9212E-8

∇(σnb)∇b 0.2 0.2 1.2248 0.0

From Table 5, the ERRs of the first terms, ni(t − 1) and bi(t − 1), for both
n(t) and b(t) are close to 1.0 using the OFR algorithm. As noted above this
may be caused by the high sampling frequency, so that the output values at the
time step t − 1 are almost identical to the ones at t step. Hence, the terms at
t − 1 time step are selected as the first term every time. If the spurious terms
are included in the model, poor estimations may be resulted. However, if the
sampling frequency is reduced, the correct models may not be correctly detected.
This problem appears to be important in spatio-temporal system modelling. The
OFR-MI algorithm overcomes these problems and is applicable for spatio-temporal
system identification. However, the OFR-MI algorithm can not always produce
better results than the OFR algorithm. For example, the results in Table 6, for
the model of n(t), all the right terms have been detected. But for the model of
b(t), the first three terms are spurious.

11



6 Conclusions

The new OFR-MI algorithm provides an effective model term selection approach
for spatio-temporal system identification. In some spatio-temporal system cases
spurious terms may be detected using the classical OFR algorithm due to high
initial ERR values. This means that the subsequent selection precedure based on
ERR values can be affected by the spurious terms. However, by using the new
OFR-MI algorithm, this problem can be overcome, because the mutual information
is introduced as a criterion for the term selection, which works as a replacement
of the ERR precedure in the OFR algorithm. The OFR-MI algorithm works well
on spatio-temporal models including CA, CML and PDE models. The OFR-MI
algorithm is therefore a complementary method for the OFR algorithm, rather
than a substitute.
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