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Abstract—The concept of generalised frequency 

response functions (GFRFs), which were developed for 
nonlinear system identification and analysis, is extended to 
continuous spatio-temporal dynamical systems normally 
described by partial differential equations (PDEs). The 
paper provides the definitions and interpretation of spatio-
temporal generalised frequency response functions for 
linear and nonlinear spatio-temporal systems based on an 
impulse response procedure. A new probing method is also 
developed to calculate the GFRFs. Both the Diffusion 
equation and Fisher’s equation are analysed to illustrate 
the new frequency domain methods. 

 
Index Terms—Generalised frequency response, spatio-

temporal systems, Volterra series representation 
 
 

I. INTRODUCTION 
 
Frequency response analysis is fundamental to and 

provides important insights into the analysis, stability, 
and performance characteristics of control, 
communication, acoustic, and vibration systems, 
particularly linear time-invariant systems (LTIs). Based 
on the Volterra series representation of nonlinear 
relationships, a nonlinear spectral analysis methodology 
has been developed to overcome the limitations of linear 
spectral analysis methods applied to nonlinear 
dynamical systems (Schetzen 1980, Billings and Tsang 
1989a,b, Peyton-Jones and Billings 1989, Billings and 
Peyton-Jones 1990 and the references therein). This 
methodology characterises nonlinear systems based on 
the Fourier transforms of the Volterra kernels to 
produce frequency domain descriptors commonly 
referred to as generalised frequency response functions 
(GFRFs). The GFRFs of a nonlinear temporal system 
provide an intuitive representation of the frequency 
properties of the system and many nonlinear phenomena 
can be studied and explained using this framework. 
Moreover, the GFRFs provide invariant descriptions of 
the underlying system and are independent of the 
excitation. The methodology for analyzing and 
computing generalized frequency response functions for 
unknown nonlinear systems has also been developed 

based on a NARMAX description of the nonlinear 
systems (Billings and Tsang 1989a,b, Peyton-Jones and 
Billings 1989, Billings and Peyton-Jones 1990). These 
developments of nonlinear spectral analysis theory have 
overcome many of the limitations that are associated 
with a linear or linearised analysis of nonlinear systems. 
Nonlinear effects such as harmonics, inter-modulation, 
and energy transfer are just not possible in linear 
representations and hence linear methods can never 
fully unravel nonlinear dynamic effects. 

Linear spectral analysis has been extended from an 
analysis of purely temporal dynamical systems to image 
processing techniques such as Fourier optics.  Instead of 
dealing with temporal frequency effects, Fourier optics 
makes use of the spatial frequency domain (ȟ, Ș) as the 
conjugate of the two-dimensional spatial (x,y) domain. 
The two dimensional point spread function and optical 
transfer function are the counterparts of the impulse 
response function and the frequency response function 
in temporal systems (Goodman 2005). All of these 
theories and applications show the importance of 
spectral analysis for both temporal and spatial systems, 
which motivates this investigation of the frequency 
domain analysis for spatio-temporal systems. 

Spatio-temporal systems are a class of dynamic 
systems which evolve over both time and space and 
which are normally described by partial differential 
equations (PDEs) in the continuous case and coupled 
map lattices (CMLs) in the discrete case. These models 
are generally associated with initial and boundary 
conditions, and this together with the problem of 
seeking a solution is usually referred to as an initial-
boundary value problem. Spatio-temporal systems are 
different from conventional dynamic systems in many 
ways. For example, spatio-temporal systems are non-
causal with respect to the space variables and the state 
space is infinite dimensional. They are also different in 
the way the dynamics and evolution are affected by an 
external stimulus. For temporal systems there is 
generally a single input-channel which exerts an 
influence on the system dynamics, whilst there is a 
variety of ways that can affect spatio-temporal system 
dynamics including external control inputs, initial 
conditions, and boundary conditions. These have been 
reflected in the control strategies for spatio-temporal 
systems: distributed control, point-wise control, and 

Spatio-temporal Generalised Frequency 
Response Functions 

L. Z. Guo, Y. Z. Guo, S. A. Billings, D. Coca, Z. Q. Lang 

Authors are with the Department of Automatic Control and 
Systems Engineering, The University of Sheffield, S1 3JD, UK. 



boundary control.  To investigate the system frequency 
response we should study the (frequency) response of 
the underlying spatio-temporal system with respect to 
the above mentioned control inputs. Input-output and 
frequency approaches for spatio-temporal systems have 
to date focused on linear and time-invariant spatio-
temporal systems based on the derivations of the 
transfer functions. A number of different descriptions of 
transfer function models for spatio-temporal systems 
have been proposed including Curtain and Zwart (1995), 
Curtain and Morris (2009), Rabenstein and Trautmann 
(2002), Garcia-Sanz, Huarte, and Asenjo (2007), 
Billings and Wei (2007), Guo, Billings, Coca, Peng, and 
Lang (2009), among which there are two most 
influential models. The first relates to the one-
dimensional case, where the control to the system is 
assumed to be carried out either through boundary or a 
type of distributed co-location, which means the control 
input is only dependent on the time variable. The output 
of the system is generally taken as a measure at a fixed 
spatial point or an integration of the system over its 
spatial domain. In this way, the transfer function 
between the input and output can be derived as follows: 
initially, Laplace transforming with respect to time t 
yields an (spatial) ordinary differential equation with s 
as parameter. By solving this boundary value problem 
with respect to the spatial variable produces the desired 
transfer function between input and output (Curtain and 
Morris 2009). The second important model is called a 
multi-dimensional transfer function model (Rabenstein 
and Trautmann 2002) for scalar and vector partial 
differential equations. Similar to the first method, 
initially a Laplace transform is applied with respect to 
time to remove the time derivatives and a Sturm-
Liouville transform is applied for the space variable to 
yield a multidimensional transfer function which is the 
sum of the responses with respect to the control input 
variable, the initial conditions, and the boundary 
conditions. The frequency response of the system can 
then be evaluated using these transfer functions. It is 
well known that the transfer functions of purely 
temporal systems or lumped-parameter systems are 
rational functions whilst the transfer functions of spatio-
temporal systems can be irrational. These frequency 
approaches reveal the characteristics of linear spatio-
temporal systems and provide a basis for the control of 
this class of systems. 

In this paper, the transfer functions and frequency 
response approaches are extended and developed to deal 
with nonlinear spatio-temporal systems. This is 
achieved by adopting a new approach where three types 
of generalised transfer functions (GTFs) and generalised 
frequency response functions (GFRFs) are defined 
based upon unit impulse responses of the system with 
respect to the external input, the initial conditions, and 
the boundary conditions. The linear impulse responses 

are equivalent to Green’s functions (Trim 1990) for 
linear, translation-invariant systems while the nonlinear 
impulse responses for nonlinear spatio-temporal systems 
are described using a Volterra series representation. 
New probing based algorithms are derived to compute 
the generalised (or nonlinear) frequency response 
functions for a wide class of nonlinear spatio-temporal 
systems and several examples are used to illustrate the 
new methods. We start the investigation with an 
analysis of the impulse and frequency responses for 
linear, translation-invariant spatio-temporal systems in 
Section 2. The formal definitions of the GTFs and 
GFRFs for nonlinear spatio-temporal systems are then 
given in Section 3, together with a detailed analysis of 
these functions. An effective computation method for 
the calculation of these functions is also included and 
Section 4 illustrates the proposed methods using the 
example of diffusion equations and Fisher’s equations. 
Conclusions are drawn in Section 5. 

 
II. SPECTRAL ANALYSIS OF LINEAR 

TRANSLATION-INVARIANT 
SPATIO-TEMPORAL SYSTEMS 

 
Traditionally, the transfer function of a spatio-

temporal system is defined in a similar way to the 
transfer function of a temporal dynamical system. The 
transfer function describes the time response of a spatio-
temporal system with respect to the excitation input. It 
has been shown (Curtain and Zwart 1995) that a linear, 
translation invariant spatio-temporal system described 
by the following evolution equation 

ሻݐሶሺݕ  = ሻݐሺݕܣ + ሻݐሺݒ ሻݐሺݑܤ = ሻݐሺݕܥ +    (1)                       (ݐ)ݑܦ
                                      

where U, Y, and V are Hilbert spaces and  ܣ א ܤ,ሺܻሻܮ ܥ,ሺܷ,ܻሻܮא א (ܸ,ܻ)ܮ , and ܦ א ሺܷ,ܸሻܮ  are bounded 
operators, has a transfer function ܦ + ܫݏ)ܥ െ  for ܤെ1(ܣ
s with real part larger than the exponential growth 
bound of the semigroup generated by A if A generates a 
strongly continuous semigroup. However, the transfer 
function defined here cannot give a complete 
description for the system (1) because the relationship 
between the system evolution and the initial 
conditions/boundary conditions is not defined and 
explained. In this section, the transfer relationships 
between the system output and the excitation input, the 
initial conditions, and the boundary conditions will be 
discussed for linear, translation-invariant spatio-
temporal systems via impulse responses of the systems. 

  
A. Impulse and Frequency Response of Linear, 

Translation-invariant Spatio-temporal Systems 



In this section, we will consider linear, translation-
invariant spatio-temporal systems governed by the 
following first order evolution equation 

,ݔሺݐݕ  ሻݐ + ,ݔሺݕܣ ሻݐ = ,ݔሺݑ  ,ሻݐ
,ݔሺݕ൫ܫ  0ሻ൯ = ߮ሺݔሻ, ݔ א π  

,ݔሺݕ൫ܤ    ሻ൯ݐ = ߰ሺݔ, ,ሻݐ ݔ א ߲π, ݐ > 0     (2) 
 
where ݔ is the space coordinate variable defined on a 
bounded domain π with a boundary ߲π and ݐ is the time 
variable. A is a bounded linear operator which can, for 
example, take the form of ݕܣሺݔ, ሻݐ = ,ݔሺݕ0ܽ ሻݐ ,ݔሺݔݕ1ܽ+ ሻݐ + ݔݔݕ2ܽ ሺݔ, ሻݐ , where ݐݕሺݔ, ሻݐ ,ݔሺݔݕ , ሻݐ , and ݔݔݕ ሺݔ, ሻݐ  represent the temporal derivative, first and 
second order spatial derivatives, respectively. ܫ  and ܤ 
are the linear operators for defining the initial and 
boundary conditions. We assume that ݕሺݔ, ሻݐ  and ݑሺݔ,  ሻ denote the output and the external excitation ofݐ
the system, respectively. For simplicity, in this initial 
study, we also restrict our discussion to one spatial 
dimension and scalar systems, which gives ߗ ؿ ܴ as an 
interval on the real line and ݕሺݔ, ,ݔ)ݑ,ሻݐ (ݐ א ܴ . The 
discussion will be given for both cases of ߗ =

(െλ, +λ) and ߗ = [ܽ, ܾ]. 
 
Systems evolving over the entire real line  ߗ =

(െλ, +λ) 
When the spatial domain of the system (2) is the 

entire real line this indicates the problem (2) has open 
boundary conditions. There is no need to prescribe the 
boundary conditions in order to study the solution of (2). 
Due to the linearity, the problem (2) can be split into the 
following two subproblems 
 Inhomogeneous equation with zero initial 

conditions ݐݕሺݔ, ሻݐ + ,ݔሺݕܣ ሻݐ = ,ݔሺݑ  ,ሻݐ
,ݔሺݕ   0ሻ = 0, ݔ א ሺെλ, +λሻ, ݐ > 0        (3) 

and 
 homogeneous equation with nonzero initial 

conditions ݐݕሺݔ, ሻݐ + ,ݔሺݕܣ ሻݐ = ,ݔሺݕ ,0 0ሻ = ߮ሺݔሻ,   ݔ א ሺെλ, +λሻ, ݐ > 0    (4) 
 

If 1ݕሺݔ, ,ݔ2ሺݕ ሻ andݐ  ሻ are the solutions to (3) and (4)ݐ
respectively, then the sum of these two solutions ݕሺݔ, ሻݐ = ,ݔ1ሺݕ ሻݐ + ,ݔ2ሺݕ   .ሻ is the solution to (2)ݐ

In general, Green’s function of the (initial) boundary 
problem is defined as the solution of the problem in 
response to a unit impulse input signal, that is, the Dirac 
delta function. It follows that Green’s function ݄݁ሺݔ, ;ݐ ,ߦ ߬ሻ of the system with respect to the external 
excitation is the solution to the problem (3) with ݑሺݔ, ሻݐ = ݔ)ߜ െ ,ߦ ݐ െ ߬) 

ݐ݄݁  ሺݔ, ;ݐ ,ߦ ߬ሻ + ,ݔሺ݄݁ܣ ;ݐ ,ߦ ߬ሻ = ݔ)ߜ െ ,ߦ ݐ െ ߬), 

  ݄݁ሺݔ, 0; ,ߦ ߬ሻ = 0, ,ݔ ߦ א ሺെλ, +λሻ, ,ݐ ߬ > 0      (5) 
 
Similarly, Green’s function ݄݅ሺݔ, ;ݐ ,ߦ ߬ሻ of the system 
with respect to the initial conditions is the solution to 
the problem (4) with ݕሺݔ, 0ሻ = ߮ሺݔሻ = ݔ)ߜ െ  (ߦ
,ݔሺݐ݄݅  ;ݐ ሻߦ + ,ݔሺ݄݅ܣ ;ݐ ሻߦ = 0, 

  ݄݅ሺݔ, 0; ሻߦ = ݔ)ߜ െ ,(ߦ ,ݔ ߦ א ሺെλ, +λሻ, ݐ > 0(6)                   
 
Note that considering the causality of the temporal 

system, it is a general requirement that ݄ሺݔ, ;ݐ ,ߦ ߬ሻ = 0 
for ݐ < ߬. Following the definition of Green’s function 
and the superposition of the solutions, the general 
solution to (2) with an external excitation ݔ)ݑ,  and (ݐ
inhomogeneous initial conditions ߮(ݔ) can be obtained 
as ݕሺݔ, ሻݐ = න න ݄݁ሺݔ, ;ݐ ,ߦ ߬ሻݑሺߦ, ߬ሻ+λ

0

+λ
െλ ߬݀ߦ݀
+ න ݄݅ሺݔ, ;ݐ ሻ+λߦሻ߮ሺߦ

െλ  ߦ݀

 (7) 
In order to introduce the concepts of the unit impulse 

response and the frequency response functions, some 
extra conditions are required. These are defined below. 

Assumption 1. It is assumed that Green’s functions 
for the problem defined in (3) and (4) exist and are 
unique. 

Assumption 2. The underlying spatio-temporal 
system is time and spatially translation invariant. 

Under the assumptions 1 and 2, Green’s functions 
have the following invariance property 

  ݄ሺݔ + ,ߙ ݐ + ;ߚ ߦ + ,ߙ ߬ + ሻߚ = ݄ሺݔ, ;ݐ ,ߦ ߬ሻ    (8)                              
 
under any translations (ߚ,ߙ)  with respect to the 
coordinates (ݔ,  It follows that .(ݐ
 ݄ሺݔ, ;ݐ ,ߦ ߬ሻ = ݄ሺݔ െ ,ߦ ݐ െ ߬ሻ                (9) 
 
So that (7) takes the following convolution form 
,ݔሺݕ  ሻݐ = න න ݄݁ሺݔ െ ,ߦ ݐ െ ߬ሻ+λ

0

,ߦሺݑ ߬ሻ+λ
െλ ߬݀ߦ݀

+ න ݄݅ሺݔ െ ,ߦ ሻ+λݐ
െλ ߮ሺߦሻ݀ߦ 

= න න ݄݁ሺߦ, ߬ሻ+λ
0

ݔሺݑ െ ,ߦ ݐ െ ߬ሻ+λ
െλ ߬݀ߦ݀

+ න ݄݅ሺߦ, ሻ+λݐ
െλ ߮ሺݔ െ  ߦሻ݀ߦ



(10) 
Consider the case where the input function is ݑሺݔ, ሻݐ ݐݏ݁ݔߢ݁=  and the initial conditions are ݕሺݔ, 0ሻ = ߮ሺݔሻ ݔߢ݁= , the output is then given by 
,ݔሺݕ  ሻݐ = න න ݄݁ሺݔ െ ,ߦ ݐ െ ߬ሻ+λ

0

,ߦሺݑ ߬ሻ+λ
െλ ߬݀ߦ݀

+ න ݄݅ሺݔ െ ,ߦ ሻ+λݐ
െλ ߮ሺߦሻ݀ߦ 

= න න ݄݁ሺݔ െ ,ߦ ݐ െ ߬ሻ+λ
0

ߦߢ݁ λ+߬ݏ݁
െλ ߬݀ߦ݀

+ න ݄݅ሺݔ െ ,ߦ ሻ+λݐ
െλ  ߦ݀ߦߢ݁

= න න ݄݁ሺߦ, ߬ሻ+λ
0

െ߬ሻ+λݐሺݏሻ݁ߦെݔሺߢ݁
െλ ߬݀ߦ݀

+ න ݄݅ሺߦ, ሻ+λݐ
െλ  ߦሻ݀ߦെݔሺߢ݁

= ݐݏ݁ݔߢ݁  න න ݄݁ሺߦ, ߬ሻ+λ
0

݁െߦߢ ݁െ߬ݏ+λ
െλ ߬݀ߦ݀

+ ݔߢ݁ න ݄݅ሺߦ, ሻ+λݐ
െλ ݁െߦ݀ߦߢ 

= ,ߢ)݁ܪݐݏ݁ݔߢ݁  (ݏ + ,ߢ)݅ܪݔߢ݁   (ݐ
                                                                     (11) 

 

Clearly,  ߢ)݁ܪ, =(ݏ    ݄݁ሺߦ, ߬ሻ+λ
0

݁െߦߢ ݁െ߬ݏ+λെλ ߬݀ߦ݀  is 
the (two-sided) Laplace transform of the function ݄݁ሺߦ, ߬ሻ , and ݅ܪሺߢ, ሻݐ =  ݄݅ሺߦ, ሻ+λെλݐ ݁െߦ݀ߦߢ  is  the 

two-sided Laplace transform of the function ݄݅ሺߦ,  ሻݐ
with respect to the variable x. In this paper, the 
functions  ݄݁ሺߦ, ߬ሻ  and ݄݅ሺߦ, ሻݐ  will be called the 
impulse response functions, and ߢ)݁ܪ, (ݏ  and ߢ)݅ܪ,  (ݐ
will be called the transfer functions of the system with 
respect to the external excitation and initial conditions, 
respectively. The Fourier transform version of the 
transfer functions is called the frequency response 
function of the system (2).  

Remark 1. Note that the impulse response function, 
the transfer function, and the frequency response 
function with respect to the initial conditions contain a 
time index t which indicates that they are defined at that 
time instant.  

Remark 2. From (11), it can be observed that for 
linear, translation-invariant spatio-temporal systems, the 
system's response is the sum of the scaled versions of 
the inputs. Under zero initial conditions, the systems 
have eigenfunctions ݁ݐݏ݁ݔߢ  and the corresponding 

eigenvalues ߢ)݁ܪ,  ,If there is no external excitation .(ݏ
at each time t the systems have eigenfunctions ݁ݔߢ  and 
eigenvalues ߢ)݅ܪ, (ݐ . This is similar to conventional 
linear time invariant purely temporal systems. 

 
Systems evolving over a finite interval on the real line  ߗ = [ܽ, ܾ] 

In this case, certain boundary conditions are required 
to obtain a unique solution to (2). The general form of 
the boundary conditions is 

 
ܾݔሺݕ൫ܤ  , ሻ൯ݐ = ߰ሺܾݔ , ,ሻݐ ܾݔ = ܽ, ܾ          (12)                            

 
which includes three commonly used boundary 
conditions: Dirichlet ( ܾݔሺݕ൫ܤ , ሻ൯ݐ = ܾݔ)ݕ , (ݐ ), 
Newmann (ܤ൫ݕሺܾݔ , ሻ൯ݐ = ܾݔ)ݔݕ , (ݐ ), and Robin 
( ܾݔሺݕ൫ܤ , ሻ൯ݐ = ܾݔሺݕ1ܾ , ሻݐ + ܾݔ)ݔݕ2ܾ , (ݐ ܾݔ ,( = ܽ, ܾ . 
The initial-boundary value problem is then given as 

,ݔሺݐݕ   ሻݐ + ,ݔሺݕܣ ሻݐ = ,ݔሺݑ ,ݔሺݕ ,ሻݐ 0ሻ = ߮ሺݔሻ,         ݔ א π, ܤ൫ݕሺܽ, ሻ൯ݐ = ߰ሺܽ, ,ሺܾݕ)ܤ,ሻݐ (ሻݐ = ߰ሺܾ, ,ሻݐ ݐ > 0            
(13) 

which can be split into four sub-problems 
 Inhomogeneous equation with zero initial 

conditions and homogeneous boundary conditions 
,ݔሺݐݕ  ሻݐ + ,ݔሺݕܣ ሻݐ = ,ݔሺݑ  ,ሻݐ

,ݔሺݕ   0ሻ = 0, ݔ א ሾܽ, ܾሿ, ܤ൫ݕሺܽ, ሻ൯ݐ = ,ሺܾݕ)ܤ,0 (ሻݐ = 0, ݐ > 0 
                                                                                (14) 
 homogeneous equation with nonzero initial 

conditions and homogeneous boundary conditions 
,ݔሺݐݕ  ሻݐ + ,ݔሺݕܣ ሻݐ = 0, 

,ݔሺݕ   0ሻ = ,(ݔ)߮ ݔ א ሾܽ, ܾሿ, ܤ൫ݕሺܽ, ሻ൯ݐ = ,ሺܾݕ൫ܤ,0 ሻ൯ݐ = 0, ݐ > 0 
                             (15) 

 homogeneous equation with zero initial 
conditions and inhomogeneous boundary conditions at a 

,ݔሺݐݕ  ሻݐ + ,ݔሺݕܣ ሻݐ = 0, 
,ݔሺݕ  0ሻ = 0, ݔ א ሾܽ, ܾሿ, ܤ൫ݕሺܽ, ሻ൯ݐ = ߰ሺܽ, ,ሺܾݕ)ܤ,ሻݐ (ሻݐ = 0, ݐ > 0 

                 (16) 
 homogeneous equation with zero initial 

conditions and inhomogeneous boundary conditions at b 
,ݔሺݐݕ  ሻݐ + ,ݔሺݕܣ ሻݐ = 0, 

,ݔሺݕ  0ሻ = 0, ݔ א ሾܽ, ܾሿ, ܤ൫ݕሺܽ, ሻ൯ݐ = ,ሺܾݕ)ܤ,0 (ሻݐ = ߰ሺܾ, ,ሻݐ ݐ > 0                  
(17) 

If 1ݕሺݔ, ሻݐ ,ݔ2ሺݕ , ሻݐ ,ݔ3ሺݕ ,  ሻݐ  ,and 4ݕሺݔ, ሻݐ  are the 
solutions to (14)-(17), then superposition shows that the 



solution to (13) is the sum of these three solutions ݕሺݔ, ሻݐ = ,ݔ1ሺݕ ሻݐ + ,ݔ2ሺݕ ሻݐ + ,ݔ3ሺݕ ሻݐ + ,ݔ4ሺݕ ሻݐ . The 
Green’s functions of these four initial-boundary value 
problems ݄݁ሺݔ, ;ݐ ,ߦ ߬ሻ  ݄݅ሺݔ, ;ݐ ሻߦ , ݄ܽሺݔ, ;ݐ ߬ሻ , and ݄ܾሺݔ, ;ݐ ߬ሻ  can be obtained in a similar way to the 
previous discussion. It follows from the translation 
invariance that the solution to (2) and (12) is given as 
follows 
,ݔሺݕ  ሻݐ = නන ݄݁ሺߦ, ߬ሻ+λ

0

ݔሺݑ െ ,ߦ ݐ െ ߬ሻܾ
ܽ ߬݀ߦ݀

+ න݄݅ሺߦ, ሻܾݐ
ܽ ߮ሺݔ െ ߦሻ݀ߦ

+ න ݄ܽሺݔ, ߬ሻ+λ
0

߰ሺܽ, ݐ െ ߬ሻ݀߬
+ න ݄ܾሺݔ, ߬ሻ+λ

0

߰ሺܾ, ݐ െ ߬ሻ݀߬ 
                                       (18) 

Consider the case for the input functions ݑሺݔ, ሻݐ ݐݏ݁ݔߢ݁= , initial conditions ݕሺݔ, 0ሻ = ߮ሺݔሻ = ݔߢ݁ , and the 
boundary conditions ߰ ሺܾݔ , ሻݐ = ݐݏ݁ ܾݔ ,  = ܽ, ܾ  , the 
output is then ݕሺݔ, ሻݐ = නන ݄݁ሺߦ, ߬ሻ+λ

0

െ߬ሻܾݐሺݏሻ݁ߦെݔሺߢ݁
ܽ ߬݀ߦ݀

+ න݄݅ሺߦ, ሻܾݐ
ܽ ߦሻ݀ߦെݔሺߢ݁

+ න ݄ܽሺݔ, ߬ሻ+λ
0

െ߬ሻ݀߬ݐሺݏ݁
+ න ݄ܾሺݔ, ߬ሻ+λ

0

 െ߬ሻ݀߬ݐሺݏ݁
= ݐݏ݁ݔߢ݁  නන ݄݁ሺߦ, ߬ሻ+λ

0

݁െߦߢ ݁െܾ߬ݏ
ܽ ߬݀ߦ݀

+ ݔߢ݁ න݄݅ሺߦ, ሻܾݐ
ܽ ݁െߦ݀ߦߢ

+ ݐݏ݁ න ݄ܽሺݔ, ߬ሻ+λ
0

݁െ߬݀߬ݏ
+ ݐݏ݁ න ݄ܾሺݔ, ߬ሻ+λ

0

݁െ߬݀߬ݏ 
= ݔߢ݁  ,ߢሺ݁ܪݐݏ݁ ሻݏ + ,ߢሺ݅ܪݔߢ݁ ሻݐ

+ ,ݔሺܽܪݐݏ݁ ሻݏ + ,ݔ)ܾܪݐݏ݁   (ݏ
                               (19) 

Again, the functions ݄݁ ሺߦ, ߬ሻ, ݄ ݅ሺߦ, ݄ ,ሻݐ ܽሺݔ, ߬ሻ , and ݄ܾሺݔ, ߬ሻ will be called the impulse response functions, 
and ݁ܪሺߢ, ሻݏ ,ߢሺ݅ܪ ,  ሻݐ ܽܪ , ሺݔ, ሻݏ  and ܾܪሺݔ, ሻݏ  will be 
called the transfer functions of the systems with respect 
to the external excitation, initial conditions, and 
boundary conditions, respectively. The Fourier complex 
domain version ݁ܪ(݆݇, ,݆݇)݅ܪ , (݆߱ ܽܪ ,(ݐ ,ݔ) ݆߱) , and ݔ)ܾܪ, ݆߱)   of the transfer functions is called the 
frequency response function of the system (2) with the 
boundary conditions (12), where ݇,߱  are the spatial 
frequency and frequency, respectively.  

Remark 3. It can be observed that the transfer 
functions ܽܪሺݔ, ሻݏ  and ݔ)ܾܪ, (ݏ  of the system with 
respect to the boundary conditions are functions of ݔ. 
An interpretation that can be given is that the boundary 
control for the spatio-temporal systems is realised via 
spatial interactions. 

Remark 4. Note that our output measurement is set 
to be the state ݔ)ݕ,  Actually, the output measurement .(ݐ
using the output ݖ = ,ݔ)ݕ)݃ ((ݐ  can also be 
accommodated. For example, the output can be 
measured at a fixed point 0ݔ  on the spatial domain: (ݐ)ݖ = 0ݔ)ݕ , (ݐ)ݖ :or the average over the spatial domain (ݐ =  ,ݔሺݕ ܾܽݔሻ݀ݔሺݓሻݐ

. As special cases, a study for 
the transfer function with respect to these outputs can be 
found in Curtain and Morris (2009).  

 
B. Computation of the Linear Frequency Response 

Functions 
In the last section, it was shown that there are three 

different types of frequency response functions for 
linear, translation invariant spatio-temporal systems 
corresponding to the three channels: excitation input-
output, initial conditions-output, and boundary 
conditions-output. This is consistent with the way in 
which the spatio-temporal systems can be controlled. In 
this section, examples will be used to illustrate how to 
compute these frequency response functions using a 
development of the probing method (Billings and Tsang 
1989a, Peyton-Jones and Billings 1989, Billings and 
Peyton-Jones 1990, Bedrosian and Rice 1971). 

Consider a linear system described by the following 
first order evolution equation with a Neumann boundary 
condition 

,ݔሺݐݕ  ሻݐ + ,ݔሺݕ0ܽ ሻݐ + ,ݔሺݔݕ1ܽ ሻݐ + ݔݔݕ2ܽ ሺݔ, ሻݐ
= ,ݔሺݑ  ,ሻݐ

,ݔሺݕ   0ሻ = ߮ሺݔሻ, ݔ א [ܽ, ܾ],   
,ሺܽݔݕ  ሻݐ = ,ሺܾݔݕ    ,0 ሻݐ = ߰ሺݐሻ,               ݐ > 0                      

(20) 
where ܽ݅ , ݅ = 0, 1, 2  are constants. The frequency 
response functions to be calculated are ݁ܪ(݇,߱) ,݇)݅ܪ ,   ሻ , corresponding to the problems߱,ݔሺܾܪ and ,(ݐ
(21), (22), and (23), 



 Inhomogeneous equation with zero initial 
conditions and homogeneous boundary conditions 

,ݔሺݐݕ   ሻݐ + ,ݔሺݕ0ܽ ሻݐ + ,ݔሺݔݕ1ܽ ሻݐ + ݔݔݕ2ܽ ሺݔ, ሻݐ
= ,ݔሺݑ  ,ሻݐ

,ݔሺݕ   0ሻ = 0, ݔ א [ܽ, ܾ],   
,ሺܽݔݕ  ሻݐ = ,ሺܾݔݕ    ,0 ሻݐ = ݐ               ,0 > 0                       

(21) 
 homogeneous equation with nonzero initial 

conditions and homogeneous boundary conditions 
,ݔሺݐݕ  ሻݐ + ,ݔሺݕ0ܽ ሻݐ + ,ݔሺݔݕ1ܽ ሻݐ + ݔݔݕ2ܽ ሺݔ, ሻݐ = 0, 

,ݔሺݕ   0ሻ = ,(ݔ)߮ ݔ א ሾܽ, ܾሿ, ݔݕሺܽ, ሻݐ = ,ሺܾݔݕ    ,0 ሻݐ = ݐ               ,0 > 0                           
(22) 

 homogeneous equation with zero initial 
conditions and inhomogeneous boundary conditions at b 

,ݔሺݐݕ  ሻݐ + ,ݔሺݕ0ܽ ሻݐ + ,ݔሺݔݕ1ܽ ሻݐ + ݔݔݕ2ܽ ሺݔ, ሻݐ = ,ݔሺݕ ,0 0ሻ = 0, ݔ א ሾܽ, ܾሿ, ݔݕሺܽ, ሻݐ = ,ሺܾݔݕ    ,0 ሻݐ = ߰ሺݐሻ,               ݐ > 0                 
(23) 

To calculate ݁ܪ(݇,߱), assume the input to (21) is  ݑሺݔ, ሻݐ = ݔ݆݇݁ ݐ݆߱݁ , from (19) the output and the 
associated temporal and spatial derivatives of (21) are 
then 

,ݔሺݕ  ሻݐ = ݔሺ݇,߱ሻ݆݁݇݁ܪ ݐ݆߱݁ ,ݔሺݐݕ  ሻݐ = ݔሺ݇,߱ሻ݆݁݇݁ܪ݆߱ ݐ݆߱݁ ,ݔሺݔݕ  ሻݐ = ݔሺ݇,߱ሻ݆݁݇݁ܪ݆݇ ݐ݆߱݁ ݔݔݕ  ሺݔ, ሻݐ = െ݇2݁ܪሺ݇,߱ሻ݆݁݇ݔ ݐ݆߱݁  
                                     (24) 

Substituting equation (24) and ݑሺݔ, ሻݐ = ݔ݆݇݁ ݐ݆߱݁  into 
equation (21) yields 
ݔሺ݇,߱ሻ݆݁݇݁ܪ݆߱  ݐ݆߱݁ + ݔሺ݇,߱ሻ݆݁݇݁ܪ0ܽ ݐ݆߱݁

+ ݔሺ݇,߱ሻ݆݁݇݁ܪ1݆݇ܽ െݐ݆߱݁ ݔሺ݇,߱ሻ݆݁݇݁ܪ2݇2ܽ ݐ݆߱݁ = ݔ݆݇݁ ݐ݆߱݁  
                              (25) 

It follows that  
ሺ݇,߱ሻ݁ܪ  =

1െܽ2݇2 + ܽ1݆݇ + ܽ0 + ݆߱ 

                     (26) 
subject to the homogeneous boundary conditions. The 
homogeneous Neumann conditions are 
,ሺܽݔݕ  ሻݐ = ሺ݇,߱ሻ݆݁݇ܽ݁ܪ݆݇ ݐ݆߱݁ = ,ሺܾݔݕ 0 ሻݐ = ሺ݇,߱ሻ݆ܾ݁݇݁ܪ݆݇ ݐ݆߱݁ = 0, ݐ > 0 

                                         (27) 
which amounts to ݆݇݁ܪሺ݇,߱ሻ݆݁݇ܽ

= ȁ݇݁ܪሺ݇,߱ሻȁ݁ ݆ +ߨ2݉)
ߨ
2

+݇ܽ+arg ൫݁ܪሺ݇ ,߱ሻ൯)
= 0 

ሺ݇,߱ሻ݆ܾ݁݇݁ܪ݆݇ = ȁ݇݁ܪሺ݇,߱ሻȁ݁ ݆ +ߨ2݈)
ߨ
2

+ܾ݇+arg ൫݁ܪሺ݇ ,߱ሻ൯)

= 0 
(28) 

It follows that either 
 

 ȁ݇݁ܪሺ݇,߱ሻȁ = 0                               (29) 
or ݁ ݆ ߨ2݉) +

ߨ
2

+݇ܽ+arg ൫݁ܪሺ݇ ,߱ሻ൯)
= 0 ݁ ݆ +ߨ2݈)

ߨ
2

+ܾ݇+arg ൫݁ܪሺ݇ ,߱ሻ൯)
= 0 

                                             (30) 
Multiplying both sides of (30) by ݁െ݆ +ߨ2݉)

ߨ
2

+݇ܽ+arg ൫݁ܪሺ݇ ,߱ሻ൯) yields 
 ݆݁0 = 0 ݆݁2(݈െ݉ ݆݇+ߨ( (ܾെܽ) = 0 

                                                (31) 
which means sin൫݇ሺܾ െ ܽሻ൯ = 0, that is ݇ =

െܾܽߨ݊ ,݊ =

1,  Therefore, the frequency response function can ڮ,2
be given by 
ሺ݇,߱ሻ݁ܪ 
= ቐ 1െܽ2݇2 + ܽ1݆݇ + ܽ0 + ݆߱ , ݇ =

ܾߨ݊ െ ܽ ,݊ = 1, ڮ,2
0, ݁ݏ݅ݓݎ݄݁ݐ    

(32) 
This indicates that the spatial frequency spectrum of the 
system (21) is actually discrete.  

To calculate ݅ܪ(݇, ሻݔsuppose the input to (22) is  ߮ሺ ,(ݐ = ݔ݆݇݁ , from (19) the output and the associated 
temporal and spatial derivatives of (22) are then 

,ݔሺݕ  ሻݐ = ,ሺ݇݅ܪ ݔሻ݆݁݇ݐ ,ݔሺݐݕ  ሻݐ = ݐ݅ܪ ሺ݇, ݔሻ݆݁݇ݐ ,ݔሺݔݕ  ሻݐ = ݔሺ݇,߱ሻ݆݁݇݅ܪ݆݇ ݔݔݕ  ሺݔ, ሻݐ = െ݇2݅ܪሺ݇,߱ሻ݆݁݇ݔ  
                                     (33) 

Substituting equation (33) and ߮ሺݔሻ = ݔ݆݇݁  into 
equation (22) yields 
ݐ݅ܪ  ሺ݇, ݔሻ݆݁݇ݐ + ,ሺ݇݅ܪ0ܽ ݔሻ݆݁݇ݐ + ,ሺ݇݅ܪ1݆݇ܽ െݔሻ݆݁݇ݐ ,ሺ݇݅ܪ2݇2ܽ ݔሻ݆݁݇ݐ

= ݐ݅ܪ ሺ݇, ݔሻ݆݁݇ݐ + (ܽ0 + ܽ1݆݇െ ,ሺ݇݅ܪ(2݇2ܽ ݔሻ݆݁݇ݐ = ,ሺ݇݅ܪ 0 0ሻ݆݁݇ݔ = ݔ݆݇݁ , ݔ א ሾܽ, ܾሿ, ݅ܪሺ݇, ሻ݆݁݇ܽݐ = ,ሺ݇݅ܪ    ,0 ሻ݆ܾ݁݇ݐ = 0, ݐ > 0         
        (34) 

The frequency response function ݅ܪሺ݇, ሻݐ  can be 
obtained as the solution to the initial value problem (the 
first two equations of (34)) and the last equation in (34) 
indicates the spectrum is discrete ݇ =

െܾܽߨ݊ ,݊ =

0, 1,  as discussed earlier ڮ,2
 



,ሺ݇݅ܪ ሻݐ
= ൝݁൫ܽ2݇2െܽ1݆݇ െܽ0൯ݐ , ݇ =

ܾߨ݊ െ ܽ ,݊ = 0, 1, ڮ,2
0, ݁ݏ݅ݓݎ݄݁ݐ ݐ,  > 0 

                                    (35) 
To calculate (߱,ݔ)ܾܪ, suppose the input to (23) is  ߰ሺݐሻ = ݐ݆߱݁ , from (19) the output and the associated 

temporal and spatial derivatives of (23) are then 
,ݔሺݕ  ሻݐ = ݐሻ݆݁߱߱,ݔሺܾܪ ,ݔሺݐݕ  ሻݐ = ݐሻ݆݁߱߱,ݔሺܾܪ݆߱ ,ݔሺݔݕ  ሻݐ = ݔܾܪ ݐ݆߱݁(߱,ݔ) ݔݔݕ  ሺݔ, ሻݐ = ݔܾݔܪ ݐ݆߱݁(߱,ݔ)  

                                     (36) 
Substituting equation (36) and ߰ሺݐሻ = ݐ݆߱݁  into 
equation (23) yields 
ݐሻ݆݁߱߱,ݔሺܾܪ݆߱  + ݐሻ݆݁߱߱,ݔሺܾܪ0ܽ + ݔܾܪ1ܽ െݐ݆߱݁(߱,ݔ) ݔܾݔܪ2ܽ ݐ݆߱݁(߱,ݔ) = ݐሺܽ,߱ሻ݆ܾ݁߱ܪ 0 = ݐሺܾ,߱ሻ݆ܾ݁߱ܪ    ,0 = ݐ݆߱݁ , ݐ > ሻ݆݁߱߱,ݔሺܾܪ 0 0 = 0, ݔ א ሾܽ, ܾሿ 

                                             (37) 
The frequency response function ܾܪሺݔ,߱ሻ  can be 
obtained as the solution to the boundary value problem 
(the first two equations in (37)) with the following 
characteristic equation 
ሺ݇ሻ  = ܽ2݇2 െ ܽ1݇ െ (ܽ0 + ݆߱) 

                              (38) 
 

III.  SPECTRAL ANALYSIS OF 
NONLINEAR SPATIO-TEMPORAL 
SYSTEMS 

 
In this section, we extend the idea of impulse 

response functions, transfer functions, and frequency 
response functions for linear, translation invariant 
spatio-temporal systems to the nonlinear cases using a 
Volterra series representation of nonlinear relationships. 
Our discussions will focus on the finite interval ݔ א [ܽ, ܾ] because the infinite case is much simpler than 
this case. 
 

A. Generalised Transfer Functions of Nonlinear 
Spatio-temporal Systems 

Consider the following first order nonlinear evolution 
equation with initial conditions I and boundary 
conditions B 

,ݔሺݐݕ  ሻݐ + ,ݔሺݕܣ ሻݐ = ,ݔሺݑ  ,ሻݐ
,ݔሺݕ൫ܫ   0ሻ൯ = ߮ሺݔሻ, ݔ א [ܽ, ܾ],   

,ሺܽݕ൫ܤ  ሻ൯ݐ = ߰ሺܽ, ,ሺܾݕ൫ܤ,ሻݐ ሻ൯ݐ = ߰ሺܾ, ,ሻݐ ݐ > 0 
             (39) 

where A is a bounded nonlinear operator which can, for 
example, take a form of ݕܣሺݔ, ሻݐ = ,ݔሺݕ0ܽ ,ݔሺݔݕሻݐ ሻݐ ݔݔݕ2ܽ+ ሺݔ, ሻݐ . As in the linear case, define ݕሺݔ, ሻݐ  and ݑሺݔ,  ሻto be the output and the external excitation of theݐ
system, respectively. We will investigate the impulse 
responses of the following equations derived from 
equation (39) 
 Inhomogeneous equation with homogeneous 

initial conditions and homogeneous boundary 
conditions 

,ݔሺݐݕ  ሻݐ + ,ݔሺݕܣ ሻݐ = ,ݔሺݑ ,ݔሺݕ൫ܫ ,ሻݐ 0ሻ൯ = 0, ݔ א [ܽ, ܾ],   
,ሺܽݕ൫ܤ  ሻ൯ݐ = 0, ,ሺܾݕ൫ܤ ሻ൯ݐ = ݐ          ,0 > 0                    

(40) 
 homogeneous equation with inhomogeneous 

initial conditions and homogeneous boundary 
conditions 

,ݔሺݐݕ  ሻݐ + ,ݔሺݕܣ ሻݐ = 0, 
,ݔሺݕ൫ܫ   0ሻ൯ = ߮ሺݔሻ, ݔ א [ܽ, ܾ],   
,ሺܽݕ൫ܤ  ሻ൯ݐ = 0, ,ሺܾݕ൫ܤ ሻ൯ݐ = ݐ          ,0 > 0                        

(41) 
 homogeneous equation with homogeneous 

initial conditions and inhomogeneous boundary 
conditions at ܽ  

,ݔሺݐݕ  ሻݐ + ,ݔሺݕܣ ሻݐ = 0, 
,ݔሺݕ൫ܫ   0ሻ൯ = 0, ݔ א [ܽ, ܾ],   

,ሺܽݕ൫ܤ  ሻ൯ݐ = ߰ሺܽ, ,ሺܾݕ൫ܤ,ሻݐ ሻ൯ݐ = ݐ   ,0 > 0                   
(42) 

 homogeneous equation with homogeneous 
initial conditions and inhomogeneous boundary 
conditions at ܽ  

,ݔሺݐݕ  ሻݐ + ,ݔሺݕܣ ሻݐ = 0, 
,ݔሺݕ൫ܫ   0ሻ൯ = 0, ݔ א [ܽ, ܾ],   

,ሺܽݕ൫ܤ  ሻ൯ݐ = ,ሺܾݕ൫ܤ,0 ሻ൯ݐ = ߰ሺܾ, ݐ   ,ሻݐ > 0                       
(43) 

Remark 5. Due to the nonlinearity of the operators 
involved, the solutions 1ݕሺݔ, ,ሻݐ ,ݔ2ሺݕ ,ሻݐ ,ݔ3ሺݕ ,ݔ4ሺݕ , ሻݐ  ሻ  of (40), (41), (42), and (43) may not beݐ
expressed according to the linear convolution between 
the impulse response functions and the inputs because 
there are nonlinear (dynamical) relations between the 
input and output. The Green’s functions of nonlinear 
operators have been developed to describe the above 
mentioned nonlinear dynamical relationships based on 
slack products of the nonlinear operators (Schwartz 
1997, Qiao and Ruda 2004). In this paper, we take a 
different approach to deal with this problem. More 
specifically, we will us a Volterra series representation, 
which is capable of describing a more general class of 
nonlinear dynamical systems. 



Following the general nonlinear system and Volterra 
series representation theory (Schetzen 1980), the four 
solutions can be expressed as the Volterra series 
representations 

,ݔ1ሺݕ  ሻݐ = ݊݁ݕሺݔ, ሻλݐ
݊=1

= නڮන ݄݊݁ሺڮ,1ߦ , ݊ߦ ; ߬1 ሻ+λ݊߬ڮ,
0

ܾ
ܽ ෑݑሺݔ െ ݅ߦ , ݊ݐ

݅=1

λ
݊=1െ ߬݅ሻ݀݅߬݀݅ߦ ,ݔ2ሺݕ  ሻݐ = ݊݅ݕ ሺݔ, ሻλݐ

݊=1

 

= නڮන݄݊݅ሺ1ߦ ڮ, , ݊ߦ ; ݔሻෑ߮ሺݐ െ ݊݅ߦሻ݀݅ߦ
݅=1

ܾ
ܽ

ܾ
ܽ

λ
݊=1

  

,ݔ3ሺݕ ሻݐ = ݊ܽݕሺݔ, ሻλݐ
݊=1

= න නڮ ݄݊ܽሺݔ; ߬1 ሻ+λ݊߬ڮ,
0

ෑ߰ሺܽ, ݐ െ ߬݅ሻ݀߬݅݊
݅=1

+λ
0

λ
݊=1

 

,ݔ4ሺݕ ሻݐ = ܾ݊ݕሺݔ, ሻλݐ
݊=1

= න නڮ ݄ܾ݊ሺݔ; ߬1 ሻ+λ݊߬ڮ,
0

ෑ߰ሺܾ, ݐ െ ߬݅ሻ݀߬݅݊
݅=1

+λ
0

λ
݊=1

 

(44) 
where ݊݁ݕሺݔ, ݅ݕ݊ ,ሻݐ ሺݔ, ,ݔሺܽݕ݊ ,ሻݐ ,ݔሺܾݕ݊ ሻ, andݐ  ሻ are theݐ
nth order outputs of the system with 
݁ݕ݊   ሺݔ, ሻݐ = නڮන ݄݊݁ሺ1ߦ ڮ, , ݊ߦ ; ሻ+λ݊߬ڮ,1߬

0

ܾ
ܽ ෑݑሺ݊ݔ

݅=1െ ݅ߦ , ݐ െ ߬݅ሻ݀݅߬݀݅ߦ ݅ݕ݊    ሺݔ, ሻݐ = නڮන݄݊݅ሺ1ߦ ڮ, , ݊ߦ ; ݔሻෑ߮ሺݐ െ ݊݅ߦሻ݀݅ߦ
݅=1

ܾ
ܽ

ܾ
ܽ   

ܽݕ݊  ሺݔ, ሻݐ = න නڮ ݄݊ܽሺݔ; ߬1 ሻ+λ݊߬ڮ,
0

ෑ߰ሺܽ, ݐ െ ߬݅ሻ݀߬݅݊
݅=1

+λ
0

  
ܾݕ݊  ሺݔ, ሻݐ = න නڮ ݄ܾ݊ሺݔ; ߬1 ሻ+λ݊߬ڮ,

0

ෑ߰ሺܾ, ݐ െ ߬݅ሻ݀߬݅݊
݅=1

+λ
0

  
(45) 

Define the functions ݄݊݁ሺ1ߦ ڮ, , ݊ߦ ; ߬1 ሻ݊߬ڮ, , ݄݊݅ሺ1ߦ ڮ, , ݊ߦ ; ሻݐ , and ݄݊ܽሺݔ; ߬1 ሻ݊߬ڮ,  and ݄ܾ݊ሺݔ; ሻ݊߬ڮ,1߬ as the nth order generalised impulse 
response functions of the system with respect to external  
signals, initial conditions, and boundary conditions, 
respectively. The associated Laplace transforms ݁݊ܪ ሺڮ,1ߢ , ݊ߢ ; ሻ݊ݏڮ,1ݏ ڮ,1ߢሺ݅݊ܪ , , ݊ߢ ; ሻݐ , and 

ܽ݊ܪ ሺݔ; 1ݏ ሻ݊ݏڮ,  and ܾ݊ܪ ሺݔ; 1ݏ ሻ݊ݏڮ,  and Fourier 
transforms ݁݊ܪ ሺ݇1 ڮ, , ݇݊ ሻ݊߱ڮ,1߱; ݅݊ܪ , ሺ݇1,ڮ , ݇݊ ; ሻݐ , 
and ܽ݊ܪ ሺ1߱;ݔ ሻ݊߱ڮ,  and  ܾ݊ܪ ሺ1߱;ݔ ሻ݊߱ڮ,  are called 
the  nth order generalised transfer functions and 
frequency response functions of the system with respect 
to external  signals, initial conditions, and boundary 
conditions, respectively. 

Remark 6. The definitions given here are based on 
the assumption that the Laplace transform and Fourier 
transform of the impulse response functions exist. 
Moreover, because the impulse response functions are 
defined on a finite interval with respect to spatial 
variable, the Laplace or Fourier transforms should be 
considered to apply to an extension of the functions into 
the half or entire real line. 

Remark 7. Note that in general the solution of (39) 
may not be the sum of the four solutions in (44) because 
the operators A, I, and B are nonlinear. This solution 
could take the following general form 

,ݔሺݕ  ሻݐ = ݊ݕ ሺݔ, ሻλݐ
݊=1

 

(46) 
with ݊ݕ ሺݔ, ሻݐ = ݂݊ ,ݔሺ݁ݕ݊) ,ሻݐ ݅ݕ݊ ሺݔ, ,ሻݐ ,ݔሺܽݕ݊ ,ሻݐ ,ݔሺܾݕ݊ (ሻݐ , 
where ݂݊  is a nonlinear map. 

 Remark 8. It is well known that a nonlinear 
relationship can be described as a Volterra series with 
different orders of Volterra kernels which can be 
visualised as nonlinear impulse response functions 
(Marmarelis and Marmarelis 1978,  Schetzen 1980). 
Here based on these results, we develop these concepts 
for nonlinear spatio-temporal systems, which is in 
consistent with the linear cases (see section 2) and 
conventional temporal dynamical systems.  

Assumption 3. In this paper, it is assumed that the 
generalised impulse functions and the corresponding 
frequency response functions are symmetric with 
respect to all the time frequency and all the spatial 
frequency variables.  

According to the above definition, taking the multiple 
Fourier transform of the nth order generalised impulse 
response function ݄݊݁ሺ1ߦ ڮ, , ݊ߦ ;  ሻ with respect to݊߬ڮ,1߬
the external excitation ݑሺݔ,  ሻ yields the following nthݐ
order generalised frequency response function 

݁݊ܪ  ሺ݇1,ڮ , ݇݊ ;߱1 ሻ݊߱ڮ, = න ڮ න ݄݊݁ሺڮ,1ߦ , ݊ߦ ; ߬1 ڮ, , ߬݊ሻ ȉ +λ
െλ

+λ
െλ  ݁െ݆ ݊݇+ڮ+1ߦ1݇) ݊ߦ )݁െ݆ ݊߱+ڮ+1߬1߱) ߬݊ 1ߦ݀( 1߬݀݊ߦ݀ڮ ݊߬݀ڮ  

(47) 
Note that because of the causality with respect to 

time, we can write the integration for time from  െλ to 
+λ  with ݄݊݁ሺ1ߦ ڮ, , ݊ߦ ; ڮ,1߬ , ߬݊ሻ = 0  for any ߬ ݅ < 0  . 
Conversely, the nth order generalised impulse response 



function ݄݊݁ሺڮ,1ߦ , ݊ߦ ; ߬1 ሻ݊߬ڮ,  with respect to the 
external excitation ݑሺݔ, ሻݐ  can be obtained by the 
inverse Fourier transform 

 ݄݊݁ሺ1ߦ ڮ, , ݊ߦ ; ڮ,1߬ , ߬݊ሻ  = න ڮ න ݁݊ܪ  ሺ݇1,ڮ , ݇݊ ;߱1 ሻ+λ݊߱ڮ,
െλ ȉ+λ

െλ  ݆݁ ݊݇+ڮ+1ߦ1݇) ݊ߦ )݆݁ ݊߱+ڮ+1߬1߱) ߬݊ )݀݇1 1߱݀݊݇݀ڮ ݊߱݀ڮ  
(48) 

When assuming homogeneous initial and boundary 
conditions, the nth order output is then 

ݕ݊  ሺݔ, ሻݐ = ݁ݕ݊  ሺݔ, ሻݐ
= න ڮ න ݄݊݁ሺڮ,1ߦ , ݊ߦ ; ߬1 ሻ+λ݊߬ڮ,

െλ ෑݑሺݔ െ ݅ߦ , ݊ݐ
݅=1

+λ
െλെ ߬݅ሻ݀݅߬݀݅ߦ   

 (49) 
Substituting (48) into (49) and carrying out the 

multiple integrals on ڮ,1ߦ , ݊ߦ ; ߬1 ݊߬ڮ,  gives the 
following relation 

ݕ݊  ሺݔ, ሻݐ =  න ڮ න ݁݊ܪ  ሺ݇1,ڮ , ݇݊ ሻ+λ݊߱ڮ,1߱;
െλ

+λ
െλ   ȉ 

ෑܷሺ݇݅ ,߱݅ሻ݆݁ ݆߱݁ݔ݅݇ ݊ݐ݅
݅=1

݀݇1 1߱݀݊݇݀ڮ ݊߱݀ڮ  

(50) 
where the input spectrum is given by 
  ܷሺ݇,߱ሻ = න නڮ ,ߦሺݑ ߬ሻ݁െ݆݇ߦ ݁െ݆߱߬ λ+߬݀ߦ݀

െλ
+λ
െλ  

                 (51) 
with ݇,߱ the spatial and time frequency respectively. 

Suppose the input functions ሺݔ, ሻݐ = σ ݆݁ ݆߱݁ݔ݈݇ ܮ݈ݐ݈
=1  , 

then from (49) the nth output of the system is, due to the 
symmetric property of assumption 3,  is given by 

ݕ݊  ሺݔ, ሻݐ  = න ڮ න ݄݊݁ሺڮ,1ߦ , ݊ߦ ; ߬1 ሻ+λ݊߬ڮ,
െλ

+λ
െλ  ȉ 

ෑ  ݆݁ ݆߱݁(݅ߦെݔ)݈݇ ܮ݅߬݀݅ߦ݀(െ߬݅ݐ)݈
݈=1

݊
݅=1

 

= න ڮ න ݄݊݁ሺ1ߦ ڮ, , ݊ߦ ; ሻ݊߬ڮ,1߬ ȉ+λ
െλ

+λ
െλ  

ෑ  ݆݁ ݆߱݁݅ߦെ݆݈݇݁ݔ݈݇ െ݆߱݁ݐ݈ ܮ݈݅߬
݈=1

݊݅߬݀݅ߦ݀
݅=1

 

= ڮ  ෑ  ݁ ݆ ݆߱݁ݔ݈݅݇ ݈݅ ݊ݐ
݅=1

ܮ
݈݊=1

ܮ
݈1=1

ȉ 
න ڮ න ݄݊݁ሺ1ߦ ڮ, , ݊ߦ ; ሻ+λ݊߬ڮ,1߬

െλ ෑ݁െ݆݈݇݅݁݅ߦെ݆߱ ݊݅߬݀݅ߦ݈݀݅߬݅
݅=1

+λ
െλ  

(52) 
Substituting from equation (47) yields 
ݕ݊  ሺݔ, ሻݐ

= ڮ  ݁݊ܪ  ൫݈݇1 ڮ, , ݈݇݊ ;݈߱1 ݈݊߱ڮ, ൯ෑ  ݁ ݆ ݆߱݁ݔ݈݅݇ ݈݅ ݊ݐ
݅=1

ܮ
݈݊=1

ܮ
݈1=1

 

(53) 
Similarly, for the spatio-temporal generalised 

frequency response with respect to the initial conditions ߮ሺݔሻ = σ ݆݁ ܮ݈ݔ݈݇
=1  

ݕ݊  ሺݔ, ሻݐ = ڮ  ൫݈݇1݅݊ܪ  ڮ, , ݈݇݊ ; ൯ෑݐ  ݁ ݆ ݊ݔ݈݅݇
݅=1

ܮ
݈݊=1

ܮ
݈1=1

 

            (54) 
For the spatio-temporal generalised frequency 

response with respect to the boundary conditions ߰ሺܾݔ , ሻݐ = σ ݆݁߱ ܮ݈ݐ݈
=1 ܾݔ , = ܽ, ܾ  

ݕ݊  ሺݔ, ሻݐ = ڮ  ܽ݊ܪ  ൫1݈߱;ݔ ݈݊߱ڮ, ൯ෑ  ݁ ݆߱ ݈݅ ݊ݐ
݅=1

ܮ
݈݊=1

ܮ
݈1=1

 

(55) 
Finally 
ݕ݊  ሺݔ, ሻݐ = ڮ  ܾ݊ܪ  ൫1݈߱;ݔ ݈݊߱ڮ, ൯ෑ  ݁ ݆߱ ݈݅ ݊ݐ

݅=1

ܮ
݈݊=1

ܮ
݈1=1

 

(56) 
 

B. The Calculation of Spatio-temporal 
Generalised Frequency Response Functions 

Consider an example nonlinear system described by 
the following first order evolution equation with 
Dirichlet boundary condition 

,ݔሺݐݕ  ሻݐ + ,ݔሺݕ1ܽ ,ݔሺݔݕሻݐ ሻݐ + ݔݔݕ2ܽ ሺݔ, ሻݐ = ,ݔሺݑ  ,ሻݐ
,ݔሺݕ   0ሻ = ߮ሺݔሻ, ݔ א [ܽ, ܾ],   
,ሺܽݕ  ሻݐ = ,ሺܾݕ    ,0 ሻݐ = ߰ሺݐሻ,               ݐ > 0                           

(57) 
where ܽ ݅ , ݅ = 1, 2 are constants. The frequency response 
functions to be calculated are ݁݊ܪ ሺ݇1,ڮ , ݇݊ ڮ,ሺ݇1݅݊ܪ ,ሻ݊߱ڮ,1߱; , ݇݊ ; ሻݐ , and ܽ݊ܪ ሺ݊߱ڮ,1߱;ݔሻ  and  ܾ݊ܪ ሺ1߱;ݔ  ,ሻ  , corresponding to the problems (58)݊߱ڮ,
(59), (60), and (61) 
 Inhomogeneous equation with homogeneous 

initial conditions and homogeneous boundary 
conditions 



,ݔሺݐݕ  ሻݐ + ,ݔሺݕ1ܽ ,ݔሺݔݕሻݐ ሻݐ + ݔݔݕ2ܽ ሺݔ, ሻݐ = ,ݔሺݑ  ,ሻݐ
,ݔሺݕ   0ሻ = ݔ    ,0 א [ܽ, ܾ],   

,ሺܽݕ  ሻݐ = ,ሺܾݕ    ,0 ሻݐ = ݐ          ,0 > 0                                 
(58) 

 homogeneous equation with inhomogeneous 
initial conditions and homogeneous boundary 
conditions 
,ݔሺݐݕ  ሻݐ + ,ݔሺݕ1ܽ ,ݔሺݔݕሻݐ ሻݐ + ݔݔݕ2ܽ ሺݔ, ሻݐ = 0, 

,ݔሺݕ  0ሻ = ߮ሺݔሻ, ݔ א [ܽ,ܾ],   
,ሺܽݕ  ሻݐ = ,ሺܾݕ    ,0 ሻݐ = ݐ          ,0 > 0                                       

(59) 
 homogeneous equation with homogeneous 

initial conditions and inhomogeneous boundary 
conditions at ܽ  

,ݔሺݐݕ  ሻݐ + ,ݔሺݕ1ܽ ,ݔሺݔݕሻݐ ሻݐ + ݔݔݕ2ܽ ሺݔ, ሻݐ = 0, 
,ݔሺݕ  0ሻ = ݔ   ,0 א [ܽ, ܾ],   

,ሺܽݕ  ሻݐ = ,ሺܾݕ    ,0 ሻݐ = ݐ   ,0 > 0                                       
(60) 

 homogeneous equation with homogeneous 
initial conditions and inhomogeneous boundary 
conditions at ܽ  

,ݔሺݐݕ  ሻݐ + ,ݔሺݕ1ܽ ,ݔሺݔݕሻݐ ሻݐ + ݔݔݕ2ܽ ሺݔ, ሻݐ = 0, 
,ݔሺݕ  0ሻ = ݔ   ,0 א [ܽ, ,ሺܽݕ   ,[ܾ ሻݐ = ,ሺܾݕ    ,0 ሻݐ = ߰ሺݐሻ,   ݐ > 0                                    

(61) 
The calculation of nth spatio-temporal generalised 

transfer functions can be calculated in a similar way to 
the linear translation invariant spatio-temporal systems. 
For instance, to calculate 1݁ܪ (݇,߱), suppose the input to 
(58) is  ݑሺݔ, ሻݐ = ݔ݆݇݁ ݐ݆߱݁ , from (53) the output and the 
associated temporal and spatial derivatives are then 

,ݔሺݕ  ሻݐ = 1݁ܪ ݔ݆݇݁(߱,݇) ݐ݆߱݁ ,ݔሺݐݕ  ሻݐ = 1݁ܪ݆߱ ݔ݆݇݁(߱,݇) ݐ݆߱݁ ,ݔሺݔݕ  ሻݐ = 1݁ܪ݆݇ ݔ݆݇݁(߱,݇) ݐ݆߱݁ ݔݔݕ  ሺݔ, ሻݐ = െ݇21݁ܪ ݔ݆݇݁(߱,݇) ݐ݆߱݁  
                                     (62) 

 Substituting equation (62) and ݑሺݔ, ሻݐ = ݔ݆݇݁ ݐ݆߱݁  
into equation (58) yields 

1݁ܪ݆߱  ሺ݇,߱ሻ݆݁݇ݔ ݐ݆߱݁
+ 1݁ܪ1݆݇ܽ ሺ݇,߱ሻ2݆݁݇ݔ ݐ݆߱݁ ݔ݆݇݁ െݐ݆߱݁ 1݁ܪ2݇2ܽ ሺ݇,߱ሻ݆݁݇ݔ ݐ݆߱݁ = ݔ݆݇݁ ݐ݆߱݁  

                              (63) 
It follows, by equating the coefficients of the term ݆݁݇ݔ ݐ݆߱݁ , that the first order spatio-temporal generalised 

frequency response is 1݁ܪ ሺ݇,߱ሻ =
1െܽ2݇2 + ݆߱ 

                     (64) 

To calculate 2݁ܪ ሺ݇1 , ݇2;߱1 ,߱2ሻ, suppose the input is ݑሺݔ, ሻݐ = ݆݁ ݆݁+ݐ1݆߱݁ݔ1݇ ݐ2݆߱݁ݔ2݇ , again from (53) the 
output is then 

,ݔሺݕ  ሻݐ
= 1݁ܪ ሺ݇1,߱1ሻ݆݁ ݐ1݆߱݁ݔ1݇ + 1݁ܪ ሺ݇2 ,߱2ሻ݆݁ ݐ2݆߱݁ݔ2݇
+ 2݁ܪ2 ሺ݇1, ݇2;߱1 ,߱2ሻ݆݁ ݆݁ݔ(2݇+1݇) ݐ(2߱+1߱)
+ 2݁ܪ ሺ݇1 , ݇1;߱1 ,߱1ሻ݆݁2݇1ݐ2߱1݆݁ݔ
+ 2݁ܪ ሺ݇2 , ݇2;߱2,߱2ሻ݆݁2݇2ݐ2߱2݆݁ݔ  

                                     (65) 
Substituting (65) and the associated temporal 

derivative ݐݕሺݔ, ሻݐ  and spatial derivatives ݔݕሺݔ, ሻݐ ݔݔݕ , ሺݔ, ሻݐ  and equating the coefficients of the term ݆݁ ݆݁ݔ(2݇+1݇) ݐ(2߱+1߱)  yields 
2݁ܪ  ሺ݇1, ݇2;߱1 ,߱2ሻ

=
݆ܽ1(݇1 + 1݁ܪ(2݇ ሺ݇1,߱1ሻ1݁ܪ ሺ݇2,߱2ሻ݆2ሺ߱1 + ߱2ሻ െ 2ܽ2(݇1 + ݇2)2

 

(66) 
The solution should be subjected to the homogeneous 

Dirichlet boundary conditions, that is 
,ሺܽݕ  ሻݐ
= 1݁ܪ ሺ݇1 ,߱1ሻ݆݁ ݐ1݆ܽ݁߱1݇ + 1݁ܪ ሺ݇2 ,߱2ሻ݆݁ ݐ2݆ܽ݁߱2݇
+ 2݁ܪ2 ሺ݇1, ݇2;߱1 ,߱2ሻ݆݁ (݇1+݇2)݆ܽ݁ ݐ(2߱+1߱)
+ 2݁ܪ ሺ݇1, ݇1;߱1 ,߱1ሻ݆݁2݇1݆ܽ݁2߱1ݐ
+ 2݁ܪ ሺ݇2, ݇2;߱2,߱2ሻ݆݁2݇2݆ܽ݁2߱2ݐ = ,ሺܾݕ 0 ሻݐ
= 1݁ܪ ሺ݇1,߱1ሻ݆݁ ݐ1ܾ݆݁߱1݇ + 1݁ܪ ሺ݇2 ,߱2ሻ݆݁ ݐ2ܾ݆݁߱2݇
+ 2݁ܪ2 ሺ݇1, ݇2;߱1 ,߱2ሻ݆݁ (݇1+݇2)ܾ݆݁ ݐ(2߱+1߱)
+ 2݁ܪ ሺ݇1, ݇1;߱1 ,߱1ሻ݆݁2݇1ܾ݆݁2߱1ݐ
+ 2݁ܪ ሺ݇2, ݇2;߱2 ,߱2ሻ݆݁2݇2ܾ݆݁2߱2ݐ = 0, ݐ > 0 

(67) 
It follows from the orthogonality of Fourier basis 

{݆݁ ݆݁ݐ1ݒ ݐ2ݒ , 1ݒ , 2ݒ א ܴ} that 
1݁ܪ  ሺ݇1 ,߱1ሻ݆݁ ݇1ܽ = 1݁ܪ 0 ሺ݇1 ,߱1ሻ݆݁ ݇1ܾ = 2݁ܪ 0 ሺ݇1 , ݇2;߱1 ,߱2ሻ݆݁ (݇1+݇2)ܽ = 2݁ܪ 0 ሺ݇1 , ݇2;߱1 ,߱2ሻ݆݁ (݇1+݇2)ܾ = 0 

(68) 
From the first equation in (68), it can be derived that 

either 1݁ܪ ሺ݇1,߱1ሻ = 0  or sin൫݇1ሺܾ െ ܽሻ൯ = 0 , that is ݇1 =
െܾܽߨ݊ ,݊ = 1,  ,From the second equation in (68) ڮ,2

it can be shown that either 2݁ܪ ሺ݇1 , ݇2;߱1 ,߱2ሻ = 0  or 
sin൫(݇1 + ݇2)ሺܾ െ ܽሻ൯ = 0, that is ݇ 1 + ݇2 =

െܾܽߨ݉ ,݉ =

1,  Therefore, the first and second order generalised ڮ,2
frequency response functions can be given by 1݁ܪ (݇,߱) = ቐ 1െܽ2݇2 + ݆߱ , ݇ =

ܾߨ݊ െ ܽ ,݊ = 1, ڮ,2
0, otherwise

   



And 
2݁ܪ  ሺ݇1, ݇2;߱1 ,߱2ሻ = ቐ݆ܽ1(݇1 + 1݁ܪ(2݇ ሺ݇1,߱1ሻ1݁ܪ ሺ݇2,߱2ሻ݆2ሺ߱1 + ߱2ሻ െ 2ܽ2(݇1 + ݇2)2

, ݇1 + ݇2 =
ܾߨ݉ െ ܽ

0, otherwise

  
(69) 

where ݉ =  ڮ,1,2
The other order spatio-temporal generalised 

frequency response functions can be calculated 
following the same procedure. 

 
IV.  NUMERICAL EXAMPLES 

 
A. Linear Spatio-temporal Systems -- Diffusion 

Equation 
Consider the following diffusion equation (Debnath 

2005) with Dirichlet boundary conditions 
,ݔሺݐݕ  ሻݐ െ ݔݔݕܦ ሺݔ, ሻݐ = ,ݔሺݑ  ,ሻݐ

,ݔሺݕ   0ሻ = ߮ሺݔሻ, ݔ א [ܽ, ,ሺܽݕ ,[ܾ ሻݐ = ߰ሺݐሻ, ,ሺܾݕ ሻݐ = ݐ   ,0 > 0   
                                     (70) 

where D is the diffusion coefficient. According to the 
analysis in section 2, system (70) can be divided into 
three subsystems with the corresponding frequency 
response functions ݅ܪ , (߱,݇)݁ܪ(݇,  . (߱,ݔ)ܽܪ and ,(ݐ

To calculate the frequency response ݁ܪ(݇,߱)  with 
respect to the external excitation, we consider the 
problem  

,ݔሺݐݕ  ሻݐ െ ݔݔݕܦ ሺݔ, ሻݐ = ,ݔሺݑ  ,ሻݐ
,ݔሺݕ   0ሻ = 0, ݔ א [ܽ, ܾ],   

,ሺܽݕ  ሻݐ = ,ሺܾݕ    ,0 ሻݐ = ݐ               ,0 > 0 
                         (71) 

Suppose the input to (71) is  ݑሺݔ, ሻݐ = ݔ݆݇݁ ݐ݆߱݁ , then 
the probing method gives the frequency response 
function as 

ሺ݇,߱ሻ݁ܪ  = ቐ 1݆߱ + 2݇ܦ
, ݇ =

ܾߨ݊ െ ܽ ,݊ = 1, ڮ,2
0, ݁ݏ݅ݓݎ݄݁ݐ   

                                  (72) 
The magnitude and phase of (72) with ܦ = 1 are shown 
in Fig. 1, where Fig. 1 (a) shows that system (71) works 
as a low-pass filter with respect to both space and time 
frequencies. The frequency domain response depends on 
both space and time frequencies. these interact with 
each other. For example, for a certain spatial frequency ݇0 0݇)݁ܪ , ,߱)   is a first order linear system and the 
corner frequency of the first order system increases with 
the increase of ݇0.   

The frequency response ݅ܪ(݇, (ݐ  is related to the 
following problem 

 

 
 (a) |݁ܪሺ݇0,߱ሻ| 

 
(b) (߱,0݇)݁ܪס   

 
Fig. 1 0݇)݁ܪ ,߱)    

 
 
 
,ݔሺݐݕ  ሻݐ െ ݔݔݕܦ ሺݔ, ሻݐ = 0, 

,ݔሺݕ   0ሻ = ,(ݔ)߮ ݔ א [ܽ, ܾ],   
,ሺܽݕ  ሻݐ = ,ሺܾݕ    ,0 ሻݐ = 0, ݐ > 0 

                         (73) 
Suppose the input to (73) is  ߮ሺݔሻ = ݔ݆݇݁ , the output 

and the associated temporal and spatial derivatives are 
then 

,ݔሺݕ  ሻݐ = ,ሺ݇݅ܪ ݔሻ݆݁݇ݐ ,ݔሺݐݕ  ሻݐ = ݐ݅ܪ ሺ݇, ݔሻ݆݁݇ݐ ݔݔݕ  ሺݔ, ሻݐ = െ݇2݅ܪሺ݇,߱ሻ݆݁݇ݔ  
                                              (74) 

Substituting (74) and ߮ሺݔሻ = ݔ݆݇݁  into equation (73) 
yields 

ݐ݅ܪ  ሺ݇, ݔሻ݆݁݇ݐ + ,ሺ݇݅ܪ2݇ܦ ݔሻ݆݁݇ݐ = 0 
(75) 

The frequency response function ݅ܪሺ݇, ሻݐ  can be 
obtained as the solution to the initial value problem (75)  



,ሺ݇݅ܪ ሻݐ = ൝݁െݐ2݇ܦ , ݇ =
ܾߨ݊ െ ܽ ,݊ = 0, 1, ڮ,2

0, ݁ݏ݅ݓݎ݄݁ݐ    
        

               (76) 
Fig. 2 shows that the response excited by initial 

conditions declines with elapsing time. An initial 
condition with a high frequency sharply drops to zero 
while a low frequency initial condition declines with a 
relatively lower speed. 

 

 
Fig. 2 ݅ܪሺ݇, ܦ ሻ withݐ = 1 

 
To calculate the boundary frequency response (߱,ݔ)ܽܪ, suppose an input of  ߰ሺݐሻ = ݐ݆߱݁ , then 
ݐሻ݆݁߱߱,ݔሺܽܪ݆߱  െ ݔܽݔܪܦ ݐ݆߱݁(߱,ݔ) = 0 

                                           (77) 
whose solution is given by 
 

ሻ߱,ݔሺܽܪ =
݁ට݆߱ܦݔ െ ݁ට݆ܾ߱݁ܦට݆߱ܽܦ െ ݁ට݆ܾ߱ܦ  

(78) 
Fig. 3 shows that the response excited by a boundary 

condition depends on both the frequency of the 
boundary condition and the spatial coordinate. The low 
frequency boundary conditions drop much faster than 
the high frequency boundary conditions do. Obviously, 
the result of example 1 discussed in Curtain and Morris 
(2009) is a special case of the result here. 

 
B. Nonlinear Spatio-temporal Systems – Fisher’s 

Equation 
Consider the following Fisher’s equation in 

dimensionless form (Debnath 2005) 
,ݔሺݐݕ  ሻݐ െ ݔݔݕܦ ሺݔ, ሻݐ െ ,ݔሺݕ ሻ൫1ݐ െ ,ݔሺݕ ሻ൯ݐ = 0, 

,ݔሺݕ   0ሻ = ߮ሺݔሻ, ݔ א ሺെλ, +λሻ, ݐ > 0  
                                      (79) 

where D is the diffusion coefficient. In this example, 
only the first and second order generalized frequency 
responses will be calculated. An initial condition ߮ሺݔሻ = ݔ݆݇݁  yields 

   

 
(a) Magnitude of ܽܪሺݔ,߱ሻ 

 
(b) Phase of ܽܪ ሺݔ,߱ሻ 

 
Fig. 3 ܽܪሺݔ,߱ሻ 

݅ݐ1ܪ  ሺ݇, ݔሻ݆݁݇ݐ + ,1݅ሺ݇ܪ2݇ܦ െݔሻ݆݁݇ݐ ,1݅ሺ݇ܪ ݔሻ݆݁݇ݐ ൫1 െ ,1݅ሺ݇ܪ ݔሻ݆݁݇ݐ ൯
= 0 

      (80) 
Equating the coefficients of ݆݁݇ݔ  on both sides yields 
݅ݐ1ܪ  ሺ݇, ሻݐ + 2݇ܦ) െ ,1݅ሺ݇ܪ(1 ሻݐ = 0 

                                                (81) 
so that the first order generalised frequency response is 
,1݅ሺ݇ܪ  ሻݐ = ݁െ(2݇ܦെ1)ݐ  

                                                        (82) 
In order to calculate 2݅ܪሺ݇1, ݇2;  ሻ, suppose the inputݐ

is ߮ ሺݔሻ = ݆݁ ݆݁+ݔ1݇ ݔ2݇ , the corresponding output is 
 



,ݔሺݕ ሻݐ = 1݅ሺ݇1ܪ , ሻ݆݁ݐ ݔ1݇ + 1݅ሺ݇2ܪ , ሻ݆݁ݐ ݔ2݇
+ 2݅ሺ݇1ܪ2 , ݇2; ሻ݆݁ݐ ݔ(2݇+1݇)
+ 2݅ሺ݇1ܪ , ݇1; ݔሻ݆݁2݇1ݐ
+ ,2݅ሺ݇2ܪ ݇2; ݔሻ݆݁2݇2ݐ  

 (83)                                                                                         
The probing method gives 
  

݅ݐ2ܪ2 ሺ݇1, ݇2; ሻݐ + ሺ݇1+݇2ሻ2ܦ2) െ 2݅ሺ݇1ܪ(2 , ݇2; ሻݐ
+ 1݅ሺ݇1ܪ2 , ,1݅ሺ݇2ܪሻݐ ሻݐ = 0 

 (84) 
Substituting (82) into (84) yields 
݅ݐ2ܪ  ሺ݇1, ݇2; ሻݐ + ሺ݇1+݇2ሻ2ܦ) െ 2݅ሺ݇1ܪ(1 , ݇2; ሻݐ

= െ݁െ(ܦ൫݇1
2+݇2

2൯െ2)ݐ  
               (85) 

The general solution of (85) can be represented as 
2݅ሺ݇1ܪ  , ݇2; ሻݐ = െݐ(ሺ݇1+݇2ሻ2െ1ܦ)െ݁ܥ 1

1 + 1݇2݇ܦ2

݁െ(ܦ൫݇1
2+݇2

2൯െ2)ݐ  
                  (86) 

According the initial condition ݕሺݔ, 0ሻ = ߮ሺݔሻ 
,ݔሺݕ  0ሻ = 1݅ሺ݇1ܪ , 0ሻ݆݁ ݔ1݇ + ,1݅ሺ݇2ܪ 0ሻ݆݁ ݔ2݇

+ ,2݅ሺ݇1ܪ ݇2; 0ሻ݆݁ ݔ(2݇+1݇)
= ݆݁ ݆݁+ݔ1݇ ݔ2݇  

(87)                            
The generalised frequency response with respect to 
initial conditions is given by 
,2݅ሺ݇1ܪ  ݇2; ሻݐ =

1

1 + 1݇2݇ܦ2

(݁െ(ܦሺ݇1+݇2ሻ2െ1)ݐെ ݁െ൫ܦ൫݇1
2+݇2

2൯െ2൯ݐ) 
 (88) 

Figs. 4 and 5 show the spatio-temporal generalised 
frequency response functions 1݅ܪሺ݇, ,2݅ሺ݇1ܪ ሻ andݐ ݇2;  ,ሻݐ
respectively.  

 
Fig. 4 1݅ܪሺ݇, ܦ ሻ withݐ = 1 

 

Figs. 4 and 5 show that the magnitude for both 1݅ܪሺ݇, ሻݐ  and 2݅ܪሺ݇1 , ݇2; ሻݐ  increase with elapsing time 
for low frequency initial conditions while they decrease 
with elapsing time for high frequency initial conditions. 
The stability condition for 1݅ܪሺ݇, ሻݐ  is ȁݐȁ > 1  and the 
stability condition for 2݅ܪሺ݇1, ݇2;   ሻ isݐ

{ሺ݇1 , ݇2ሻ א ሺ݇1+݇2ሻ2 :2ܥ > 1 ܽ݊݀ ݇1
2 + ݇2

2 > 2} 
which have been shown in Fig. 6. 
 

V. CONCLUSIONS 
 
The concept of classical transfer functions and 

frequency responses have been extended to both linear 
and nonlinear spatio-temporal systems. It has been 
shown, through a theoretical analysis and numerical 
examples, that the proposed generalised transfer 
functions and frequency response functions are 
consistent with the classical definitions. A new method 
for identifying and computing the generalised frequency 
response functions for spatio-temporal systems has also 
been presented. The definitions and methodology 
introduced in this paper provide a solid basis and 
powerful tools for further investigations of the spectral 
analysis and properties of spatio-temporal systems.  
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Fig. 5 2݅ܪሺ݇1, ݇2; ܦ ሻ withݐ = 1 (a) ݐ = 0.1, (b) ݐ = 0.5, (c) ݐ = 1, (d) ݐ = 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 the stable region of 2݅ܪሺ݇1 , ݇2; ,ሻݐ ݐ > 0 
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