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Abstract. It remains unclear how visual information is co-processed
by different layers of neurons in the retina. In particular, relatively lit-
tle is known how retina translates vast environmental light changes into
neural responses of limited range. We began examining this question
in a bottom-up way in a relatively simple fly eye. To gain understand-
ing of how complex bio-molecular interactions govern the conversion of
light input into voltage output (phototransduction), we are building a
biophysical model of the Drosophila R1-R6 photoreceptor. Our model,
which relates molecular dynamics of the underlying biochemical reactions
to external light input, attempts to capture the molecular dynamics of
phototransduction gain control in a quantitative way.

Key words: Biophysical model, Drosophila photoreceptor, phototrans-
duction cascade, Gillespie algorithm, Hodgkin-Huxley model

1 Introduction

There have been many approaches to model fly photoreceptors [16, 14, 13, 12].
van Hateren produced a linear-nonlinear cascade model to compare phototrans-
duction in blowfly photoreceptors to that of primate cones [16]; Pumir and his
co-workers produced a biophysical model of fly phototransduction cascade [14];
Va̋ha̋sőrinki et al. developed a Hodgkin-Huxley model, which relates Light In-
duced Current (LIC) to voltage response, to study the effect of voltage-gated
potassium channels on visual information processing [9]. There are also models
for intracellular calcium dynamics, such as the diffusion model introduced by
Postma et al. [13] and the calcium homeostasis model by Oberwinkler [10].

To begin to investigate how a network of photoreceptors and interneurons,
whose responses are shaped together through feed-forward and feedback synapses,
co-process visual information, we developed a new biophysical model for Droso-

phila photoreceptor, which will form the input stage for a more complex net-
work model that will be developed in the near future. Our model describes
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both photo-sensitive and photo-insensitive membranes of the photoreceptor. The
photo-sensitive part of the model consists of linear and nonlinear differential
equations describing biochemical reactions involved in phototransduction cas-
cade. The photo-insensitive membrane is represented by an electrical circuit
model based on Hodgkin-Huxley formalism. The complete model can predict
quite well macroscopic current and voltage responses to varying light impulses
(patch-clamp data from whole cell recordings).

2 Structure of Drosophila Photoreceptor

Fig. 1. Anatomy of Drosophila eye. (A) The head. (B) Slice of a compound eye. (C)
Vertical section of ommatidium. (D) Cross section of ommatidium. (E) Schematic single
photoreceptor. (F) Cross section of Rhabdomere. (G) Light pathway. (C) and (D) are
modified from [17]. (E) and (F) are modified from [3]. (G) is from D. G. Mackean
(http://www.biology-resources.com/drawing-ommatidium-refraction.html)

The compound eye of Drosophila (Fig. 1A) contains 776 ommatidia, stereo-
typical processing units that focus the light energy by a corneal lens onto the
rhabdom, the light-sensitive parts of the photoreceptors underneath. Inside of
each ommatidium, the outer photoreceptors (R1-R6) are arranged in a ring, sur-
rounding the inner R7 and R8 photoreceptors, which are stacked on top of each
other in the center. This gives ommatidia a characteristic pattern of 7 disks when
viewed from the top or in cross-section (Fig. 1D). R1-R8 are arranged around a
central space, called the intracavity. Fig. 1E shows that Drosophila photorecep-
tors are thin elongated cells, 100 µm in length (excluding axon) and 5 − 6 µm
in diameter. Their plasma membranes divide into photo-sensitive (rhabdomere)
and photo-insensitive membrane (basal membrane). The rhabdomere transduce
light into current (LIC), while the basal membrane incorporates different species
of voltage-gated K+ channels, which help to convert LIC into a well-defined
voltage response. Rhabdomere (cross-section shown in Fig. 1F) consist of 30,000
finger-like protrusions (microvilli) into the central space. Each microvillus in a
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rhabdomere is believed to act independently as a phototransduction unit, cap-
turing photons and transducing light energy to a current, which is then used to
charge the plasma membrane to generate a voltage response (Fig. 1G).

3 The Model of Photoreceptor

3.1 Photoreceptor Model Structure

The proposed photoreceptor model can be decomposed to several modules, as
shown in Fig. 2. The first module (Fig. 2A) corresponds to a random photon
capture model, which accounts for the fact that the number of photons absorbed
by each microvillus varies across the rhabdomere. The input to this module is a
1 ms light impulse and the output represents the number of photons absorbed
by each microvillus. To prevent lateral interactions between microvilli and to
keep the integration of LIC linear, the light input was given the maximum
effective brightness of 1,000 absorbed photons (1,000,000 photons/s). For this
brief stimulation, all photons are assumed to be absorbed at the same time
instant. The randomness of photon capture is based on Poisson statistics [4]. It is
important to note that LIC/photon (average light induced current per photon)
produced in an individual microvillus changes with the number of photons it
absorbs. Consequently, it is crucial to have a random photon capture model to
produce the light input for each microvillus.

Fig. 2. Schematic structure of our model for impulse light response of Drosophila pho-
toreceptor. (A) Random photon absorption model. (B) Deterministic model for photo-
transduction cascade. (C) Stochastic model for latency dispersion. (D) LIC integration
by convolution to produce macroscopic current. (E) Hodgkin-Huxley model for the cell
body.

Similar to the anatomical division of the photoreceptor membrane, the pro-
cessing of light stimuli is performed in two stages. The first processing stage,
implemented in modules Fig. 2B, C, and D produces the macroscopic LIC from
rhabdomere (photo-sensitive membrane). These signals then drive the second
processing stage, a model of the photo-insensitive membrane implemented in Fig.
2E, which accounts for the dynamics of the known voltage-gated ion-channels on
the cell body. The processing within a rhabdomere is divided into two parts. The
first part (Fig. 2B) is a deterministic model for biochemical reactions of photo-
transduction cascade within a single microvillus, based on coupled differential
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equations. The second part (Fig. 2C) is a latency dispersion model that accounts
for variations in signal transduction between different microvilli. The latency dis-
tribution is obtained through stochastic simulation (Gillespe algorithm) of the
phototransduction model. The macroscopic current injected to the cell body is
obtained from integration of LIC produced in all microvilli. Under our linear
current integration assumption, the integration is produced by convolving the
basic current bump (generated by deterministic phototransduction model) with
the latency dispersion (Fig. 2D).

3.2 Random Photon Absorbtion Model

The random photon absorbtion model is characterized in terms of the following
parameters: Nmicro: the number of microvilli in the whole rhabdomere; Nm: the
number of activated microvilli; Nphoton: the number of photons for the light
impulse; Np(mj): the number of photons captured by each activated microvillus
mj , mj = 1, 2, . . . , Nm; λM : The average number of light quanta absorbed per
microvillus; fx: the fractions of microvilli that absorb x = 0, 1, 2 . . . light quanta;
fe: the fraction of microvilli that escape photo-activation; fa: the fraction of
light activated microvilli; λp: the average number of photons absorbed by each
activated microvillus; p(k): the selection possibility to absorb k photons for each
microvillus; km: the maximum number of photons each microvillus could absorb;
q(k): the accumulation photon selection probability.

The calculation contains two steps. First, Nm is calculated iteratively.

1. Initialization. Nphoton (Nphoton < 1000), Nmicro = 30,000, Nm = Nmicro

(Nm is initially set to Nmicro, assuming all microvilli are activated).

2. Calculate λM =
Nphoton

Nm
.

3. Assuming that fx follow a Poisson distribution: fx = e−λM ∗λM
x

x ! . Therefore,
fe = e−λM and fa = 1 − e−λM .

4. Update Nm and return to 2 until Nm converged (the termination criteria is
heuristic, here, Nm(i + 1) − Nm(i) < 10, i is the index of current iteration
loop).

Then Np(mj) is determined based on Poisson distributed roulette rule.

1. Compute λp as λp =
Nphoton

Nm
.

2. The probability that an activated microvillus mj can absorb k photons,

assuming Poisson distribution, is given by p(k) =
e−λp

∗λp
k

k ! . Here, because
Nphoton≪Nmicro, we assume that p(k) = 0 if k > km, where km = 10 ∗
round(λp + 1) (round(x) obtains the nearest integer of x).

3. Compute q(k) =
∑ k

j=1
p(j)

∑ km
j=1

p(j)
, generate a random number r, if q(k) < r <

q(k + 1), Np(mj) = k.

Fig. 3 shows simulation results of random photon absorbtion model for a light
impulse that contains 600 photons. The number in the x-axis is the number of
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’activated microvilli’, which is quoted because some of the ’activated microvilli’
might absorb 0 photons, meaning failures. The y-axis is the number of photons
absorbed by each microvillus. Then microvilli are grouped into different cate-
gories based on the number of photons they absorbed (C(Ph) stores the num-
ber of microvilli that absorb Ph photons), as the signal transduction properties
(LIC/photon) vary with this number (Ph = 1, 2, . . . , max(Np)).
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Fig. 3. Simulation of random photon absorbtion model

3.3 Model for Phototransduction Cascade

Molecularbiology of Phototransduction cascade Although the photo-
transduction cascade is not fully characterized, it is clear that the photopigment
- rhodopsin, thousands of which are densely packed on the microvillar mem-
brane - will change its conformation upon absorption of a photon. This acti-
vated rhodopsin (metarhodopsin) then activates a second messenger, G-protein.
While bound to metarhodopsin (M), G-protein exchanges inactive guanosine
diphosphate (GDP ) for active guanosine triphosphate (GTP ), which in turn
catalyzes phospholipase C (PLC). G-protein coupled PLC cleaves phosphatidyl
4,5-bisphosphate (PIP2) into two intracellular messengers: inositol trisphosphate
(IP3) and diacylglycerol (DAG). IP3 is soluble in the cytosol, while DAG is no-
soluble and remains bounded to the membrane of microvilli. It is believed that
DAG, or its metabolite Polyunsaturated Fatty Acids (PUFA), are the excita-
tion messengers to the cation selective ion channels TRP/TRPL. The opening
of these transduction-channels fluxes in permeable ions, Na+, Ca2+, Mg2+,
generating LIC inside a single microvillus (for review, see [3]). Fig. 4 shows a
simplified diagram for Drosophila phototransduction cascade.

Regulation of Drosophila phototransduction cascade Molecular, genetic,
and physiological studies suggest that as many as 50 different gene products are
dedicated to the functioning and regulation of this one signaling cascade in
Drosophila [3]. There are positive feedback pathways to speed up excitation.
TRP channels have a ’all-or-none’ excitation property, arising from Ca2+ de-
pendent positive feedback to TRP channels. When the first TRP channel opens,
the fluxed in Ca2+ will excite other TRP channels inside microvillus, triggering
many TRP channels to open, untill free intracellular calcium ([Ca2+]i) inside
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microvillus build up to a level that terminates responses. In addition to exci-
tation, photoreceptor neurons have evolved sophisticated mechanisms for quick
termination of LIC (deactivation) to maintain sensitivity. In LIC termination,
Ca2+ and calmodulin (CAM , Ca2+ binding protein, acting as a Ca2+ buffer in
cytosol) play important roles as negative feedback signals, acting on many target
molecules in the phototransduction cascade [2]. Not only can Ca2+ provide neg-
ative feedback signals to TRP , TRPL channels to facilitate the closure of the
channels, but it can also reduce PLC activity, facilitate the binding of arrestin
to metarhodopsin (the inactivation process of meta-rhodopsin) [6], etc.

Fig. 4. Phototransduction cascade illustration

3.4 Mathematical Description of Phototransduction Model: Kinetic

equations

The phototransduction cascade model was modified from [14]. The main differ-
ence between the models is in Ca2+ homeostasis (Eq. 9 to Eq. 12 vs. Eq. 7 and
8 in [14]). The balances, or dynamics, in production and consumption of vital
molecules are modeled by nonlinear first-order differential equations. For some
of the molecules that are in small numbers, the units are counts of molecules,
otherwise, we use concentration (the two are related by the microvillus volume
factor, 3×10−12 µl). To ignore noise effects, all variables are calculated as expec-
tations. In the following equations, the notation X denotes the expected number
of molecules, and X⋆ will refer to the active state of X, whereas [X] denotes
concentration, [X]i is for intracellular concentration and [X]o for extracellular
concentration. Rates of activation are generically denoted as κ and rates of de-
activation denoted as γ.

dM⋆

dt
= −γM⋆ × (1 + gM⋆fn) × ⌈M⋆⌉. (1)

Eq. 1 (vs. Eq. 1 in [14]) is for Metarhodopsin (M). Since all photons are as-
sumed to be effectively absorbed at t = 0, there is one-to-one mapping between
number of photons and the value of M . Hence, M is initialized as M⋆(0) = Ph.
This equation describes the decay of M⋆. Compared to [14], we have intro-
duced an additional operator (⌈·⌉) to avoid negative and non-integer numbers
of metarhodopsin. The notation ⌈M⋆⌉ means the smallest integer that is bigger
than M⋆ if M⋆ > 0, otherwise ⌈M⋆⌉ = 0. The fn term on the right-hand-side
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(defined in Eq.8) is negative feedback from C⋆ (Ca2+ bound CAM). This term
is introduced to represent the facilitation of M⋆ inactivation by C⋆.

dG

dt
= −κG⋆ × G × ⌈M⋆⌉ + γG × (GT − G − G⋆) + κPLC⋆ × PLC⋆ × G⋆. (2)

dG⋆

dt
= κG⋆ × G × ⌈M⋆⌉ − κPLC⋆ × PLCT × G⋆. (3)

Eqs. 2 and 3 describe activation of G-protein by M⋆. There are three states
of G-protein, GqGDP is denoted by G and G⋆ represents GqGTP (active state
of G-protein), while the nucleotide-free state of G-protein is calculated as GT −
G − G⋆ (GT is the total number of G-protein inside one microvilli). The first
terms in Eq. 2 and in Eq. 3 are modeling exchange from GDP to GTP of
G, stimulated by M⋆. The seconde term in Eq. 2 is for stabilizing nucleotide-
free state G-protein by GDP . The third term in Eq.2 is added on to Eq. 2 in
[14] to model the formation of G upon deactivation of G⋆ by GTPase activity
stimulated by PLC⋆. The seconde term in Eq. 3 has two roles in forming the
profile of G⋆. One role is the conversion of G⋆ to PLC complex (PLC⋆) by
binding to PLC (κPLC⋆ × (PLCT − PLC⋆) × G⋆, the same with the first term
in Eq. 4) and the other role is the conversion of GqGTP to GqGDP by PLC⋆

(κPLC⋆ × PLC⋆ × G⋆, the last term in Eq. 2).

dPLC⋆

dt
= κPLC⋆ ×(PLCT −PLC⋆)×G⋆−γPLC⋆ ×(1+gPLC⋆fn)×PLC⋆. (4)

Eq. 4 represents the dynamics of PLC⋆, active PLC complex formed by G⋆

and PLC. The last term in Eq. 4 describes deactivation of PLC⋆, which was
also assumed to be accelerated by negative nonlinear feedback from C⋆.

dD⋆

dt
= κD⋆ × PLC⋆ − γD⋆ × (1 + gD⋆fn) × D⋆. (5)

PLC⋆ then cleaves PIP2 into DAG and IP3. There is a recycling pathway
for PIP2, but it is much slower than a bump generation (∼ 1,000 times slower).
Hence the dynamics of this recycling is omitted here, leading to a proportional
relationship between PIP2 consumption to number of PLC⋆. The response prop-
erty of second messenger (presumably DAG) could be related directly to PLC⋆

and is described by Eq. 5. The interpretation of this equation would be the dy-
namical balance between the production of DAG from PIP2 and its degradation
through action of DAG-kinase.

dT ⋆

dt
= κT ⋆ ×(1+gT ⋆,pfp)×(

D⋆

KD⋆

)m×(TT −T ⋆)−γT ⋆ ×(1+gT ⋆,nfn)×T ⋆. (6)

Eq. 6 describes opening of TRP and TRPL channels (as in [14], we use
one equation to describe these two types of channels for simplicity), with T ⋆

denoting the number of open state channels and TT the total number of channels,
which is conserved inside one microvillus. The precise mechanism of TRP/TRPL
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activation is not known, but is believed 4 DAG molecules are cooperatively open
one channel. Hence, in Eq.6, the activation rate of T ⋆ is in proportion to ( D⋆

KD⋆
)m,

where m is the cooperativity parameter for DAG molecules and is set to be 4
here).

fp([Ca2+]i) =
([Ca2+]i/Kp)

mp

1 + ([Ca2+]i/Kp)mp
. (7)

In the dynamics of activation of TRP/TRPL channels, positive feedback
signal from Ca2+ is included because of the ’all or none’ activation properties of
these channels. This feedback is formulated as a Hill function of [Ca2+]i inside
microvillus (Eq. 7), where Kp is the dissociation constant, which is [Ca2+]i that
provide half occupancy of Ca2+ binding sites for the channels. mp is the Hill
coefficient, describing the cooperativity of Ca2+ in exciting the channels. For
the acceleration of TRP/TRPL deactivation (refractory transition from open
to closed state of the channels), negative feedback is also provided from C⋆, the
same as the negative feedbacks to other signalling components in the cascade
(M⋆, PLC⋆, D⋆, etc). This negative feedback is a sigmoidal shaped function of
C⋆:

fn([C⋆]) =
([C⋆]/Kn)mn

1 + ([C⋆]/Kn)mn
. (8)

where Kn is the dissociation constant and mn Hill coefficient for C⋆. In
reality, the affinity of C⋆ might vary for different feedback targets, leading to
different values of parameters Kn and mn. However, for simplicity, we look at the
whole pool of available C⋆ binding sites as the same affinity properties. Feedback
strengths are parameterized by gi. This simplification provides a practical initial
approximation, in absence of more complete mechanistic knowledge about the
different underlying processes.

The spontaneous activities of all the molecules in the dark, which act as
a noise source for the real system, are ignored. Hence, the initial values for
the differential equations (Eq. 1 to Eq.6) are set as G(0) = 50, G⋆(0) = 0,
PLC⋆(0) = 0, D⋆(0) = 0, T ⋆(0) = 0.

The dynamics of [Ca2+]i are of particular interests since [Ca2+]i serves as
feedback signal to many targets in the phototransduction cascade. The driv-
ing force for [Ca2+]i is Ca2+ entry through TRP/TRPL channels during light
response. This Ca2+ influx (ICa) into a microvillus is modeled by Eq. 9:

ICa = PCa × IT ⋆ × T ⋆. (9)

IT ⋆ is the average current fluxed into the cell per TRP channel (∼ 0.68
pA/TRP ) and PCa (∼ 40%) represents the percentage of Ca2+ out of the total
current influx (∼ 10 pA). At peak response, the Ca2+ influx is as high as 107

ions/s. Owing to the small volume of a single microvillus, local [Ca2+]i can rise
dramatically. It could peak, for example, at 100 mM during a 20 ms quantum
bump, if no other processes were counterbalanced with the influx. In comparison,
[Ca2+]i is about 0.16 µM in the dark state. However, it is important to maintain
[Ca2+]i homeostasis because Ca2+ is toxic to the cell in high concentrations.
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Apart from Ca2+ entry, we model three other processes that modulate [Ca2+]i
dynamics: (i) Ca2+ extrusion through Na+/Ca2+ exchanger; (ii) Ca2+ buffer-
ing by calmodulin; (iii) Ca2+ diffusion to the cell body. Na+/Ca2+ exchanger
is a conventional transport system with a stoichiometry 3:1, i.e. 3 Na+ ions
are exchanged for 1 Ca2+ ion. This ratio results in a net charge imbalance,
which produces a weakly depolarizing current. The Ca2+ current, extruded by
the exchanger, is two times the net exchanger current. The net Ca2+ influx is
obtained by subtracting Ca2+ extrusion (through Na+/Ca2+ exchanger) from
total Ca2+ influx (through TRP channels): ICa,net = ICa − 2 × INaCa, where
INaCa denotes net inward current through Na+/Ca2+ exchanger. The formu-
lation for Na+/Ca2+ exchanger current is adapted from Luo-Rudy model for
cardiac cells [7] and is comparable to other models for cardiac myocyte [15]. The
model is derived based on thermodynamics of electro-diffusion [8], which assume
that the sole source of energy for Ca2+ transport is the Na+ electrochemical
gradient.

INaCa = KNaCa × 1
Km,Na

3+[Na]o
3 × 1

Km,Ca+[Ca]o
×

exp(η V F
RT

)[Na]i
3[Ca]o−exp((η−1) V F

RT
)[Na]o

3[Ca]i
1+dNaCaexp((η−1) V F

RT
)

.

(10)

where KNaCa, dNaCa are scaling factors, η denotes the (inside) fractional dis-
tance into the membrane of the limiting energy barrier. V is the transmembrane
potential in volts, ideally this should be from the membrane potential of the cell
body. However, as in the simulation, the membrane potential is generated off-line
by a separate cell body model, this was approximated by the membrane poten-
tial generated by a single Quantum bump. F is the Faraday constant, (96,485
C×mol−1). R is the gas constant (8.314 J×K−1×mol−1) and T is the absolute
temperature, measured in kelvins.

Another Ca2+ extruding option might be through the Ca2+ uptake by buffer-
ing proteins, such as CAM (0.5 mM), which are abundant inside microvillus.
The diffusion of buffer molecules over the time scale of interest could be omit-
ted because of the relatively large molecular weight. This binding dynamic was
modeled as a first-order process [15]:

dOc

dt
= KU [Ca2+]i(1 − Oc) − KROc. (11)

where, Oc is the buffer occupancy, i.e. the fraction of sites already occupied by
Ca2+ ions, and therefore unavailable for Ca2+ binding. dOc

dt
is the temporal rate

of change of occupancy of Ca2+ binding sites. KU and KR are the rate constants
for Ca2+ uptake and release, respectively. The initial condition for Oc is set, so
that dOc

dt
is zero in darkness.

Diffusion between microvillus and somata might also act as a fast free Ca2+

shunting. The rate of Ca2+ flux from microvillus to somata could be calculated
as DA

L
[Ca2+]i, whereas D = 220 µm2/s is diffusivity; L = 60 nm is length of

somata-microvillus membrane neck; A = 962 nm2 is crossing area of somata-
microvillus membrane neck. The rate of Ca2+ flux could come out as 106 ions/s
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if [Ca2+]i were to rise above 10 mM (coinciding with previous published es-
timations 8 µM -22 mM [13]). Although there are physiological measurements
showing that [Ca2+]i can peak at 200 µM , decaying with characteristic time
scale of 100 ms [11], these experiments were done with blowfly in bright condi-
tion. Furthermore, [Ca2+]i may be underestimated by the assumption that all
microvilli were stimulated. The amount of diffused Ca2+ is comparable to the
rate of Ca2+ influx at the peak response, so Ca2+ diffusion to somata could not
be omitted. Ca2+ inside microvillus could diffuse ∼ 1 µm in 1 ms. Here, the dif-
fusion time is estimated as 2

√
D∆t: D is the diffusivity, and ∆t is the diffusion

time interval, which is much less than light response interval. Thus, [Ca2+]i is
assumed to be uniform in the volume of microvillus during light response. Ca2+

diffusion is included in the Ca2+ dynamics as a regression term, therefore we
have our Ca2+ dynamics formulated as in Eq. 12:

d[Ca2+]i
dt

=
ICa,net

2νCaF
− n[B]i

dOc

dt
− KCa[Ca2+]i. (12)

where [Ca2+]i dynamic is a balance between net Ca2+ influx (first term),
Ca2+ uptake by Ca2+ buffer, calmodulin (seconde term), and Ca2+ diffusion
(third term). In the second term, n is the number of Ca2+ binding sites for
calmodulin, here n = 4. [B]i denotes concentration of calmodulin inside the
microvillus.
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Fig. 5. Signal transduction capability at different light level. (A) Basic bump shape
when a single microvillus is absorbing 1, 2, 3, 4 photons, the inset shows peak of bump
as a function of number of photons absorbed. (B) Average latencies when a single
microvillus is absorbing 1, 2, 3, 4 photons. (A) and (B) share the same legend

Figs. 5A and Fig. 5B, are to show the different signal transduction capability
of a single microvillus when it is absorbing different numbers of photons at
the same time. It shows that the more photons are absorbed, the less current is
produced per photon (the stronger negative feedbacks at brighter light condition;
this enables the photoreceptor to effectively use its limited voltage range) and
the briefer the latency (the faster are the reactions).
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3.5 Model for latency dispersion

To overcome the limitations of the deterministic model, which can not describe
the variations of signal transduction in different microvilli, we simulated the pho-
totransduction model (Eq. 1 to Eq. 6) stochastically using Gillespie’ algorithm.
This gives a latency dispersion (time variations in generation of single bumps in
different microvilli). For simplicity, we ignore the randomness of the amplitude
of different transduction events and assume the randomness only reside in the
latencies. The algorithm is from [14]. After simulating phototransduction cas-
cade stochastically for many times, a statistical latency, which is defined as the
time for the opening of the first TRP channel, can be obtained. For this, we
count the number of emerged bumps in each time bin (histogram of latencies),
and use a log-normal function to approximate the statistical latency. Latency
distribution is obtained by normalizing the log-normal fit.

3.6 Hodgkin-Huxley Model for Photoreceptor Cell Body

Drosophila photoreceptor express three dominant voltage-sensitive K+ channels
in their photo-insensitive membrane (cell body): shaker and two classes of de-
layed rectifier that differ in their voltage dependency and rate of inactivation [1].
The resulting activation of voltage-sensitive K+ channels will extrude K+ out,
and thus oppose light-induced depolarization, driving the membrane toward the
dark resting potential.

The model for the photoreceptor cell body was based on Hodgkin-Huxley-
formalism (for derivation and validation of the model, refer to [9], supplementary
material). The model incorporated Shaker and slow delayed rectifier K+ conduc-
tances, in addition to K+ and Cl− leak conductances. The voltage-dependent
parameters (including time constants and steady-state functions for activation
and inactivation of K+ conductances) were obtained from published data of dark
adapted cells [9, 1]. Although the properties of delayed rectifier (shab) K+ chan-
nels are regulated by PIP2 [5], this modulation is much slower than the impulse
response of our model. Other photoreceptor membrane properties - i.e. the maxi-
mum values of the active conductances, resting potential, leak conductances, and
membrane capacitance - were estimated from in vivo recordings. Though never
been measured physiologically, the leak conductances were included to have the
right resting potential. It is possible that the leaks could mimic mean inputs
from synaptic feedbacks that currently remain uncharacterized. The voltage-
dependent properties of the ion channels, the reversal potentials for each ion
species, and the membrane area were kept fixed within the model. Fig. 6 shows
the equivalent electrical circuit for the model, where membrane is modeled as
capacitor, the equilibrium potential of different species of ion channels as voltage
sources, and different kinds of voltage-gated ion channels as adjustable conduc-
tances. Leak channels were modeled as non-adjustable conductances.

The simulated current responses (Fig. 7A) and experimental current (Fig.
7C) responses are very similar in shape. However, the activation and inactiva-
tion of the simulated responses are somewhat faster than the experimental ones.
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Fig. 6. Electrical circuit
of the photoreceptor cell
body. Abbreviations: ksh,
Shaker channel; dr, de-
layed rectifier channel;
novel, Novel K+ chan-
nel; Kleak, potassium leak
conductance; cl, chloride
leak conductance.

This discrepancy might result from the left-shift when approximating the statis-
tical latency with log-normal function, leading to a faster estimate. Nonetheless,
the peak of simulated macroscopic current is quite linear with light input (num-
ber of photons), about 3 − 4 pA/photon, which is in consistent with published
data [3]. Whilst the experimental macroscopic current response to 600 photons
stimulation appear nonlinear, this compression might be induced by inefficient
voltage-clamp control for large currents. The voltage range is almost the same
as in Fig. 7B and Fig. 7D, indicating that the cell body model contains the
essential nonlinear parts of the cell body. The faster inactivation phase of the
estimated voltage response (Fig. 7B) suggests that a log-normal shaped light-
induced current might lack a slower boosting component during the inactivation
of light response.

Under our simulation, the macroscopic current is quite linear with light inten-
sities, whereas it is the cell body membrane that is highly nonlinear, contributing
the most to the compression of voltage responses under relatively bright light
condition. In Fig. 8A, we compared the voltage responses at different light inten-
sities by scaling them with a logarithmic gain. It could be seen that, above 200
photons stimulation, gain scaled voltage responses are quite similar in amplitude.
This means that in relatively bright light condition, in logarithmic scale, voltage
responses are linear to light intensities. This logarithmic compression under rel-
atively bright light condition help the cell to use efficiently the relatively small
voltage range for coding large different light intensities. From our simulation,
this compression could be caused mostly by the properties of the voltage gated
K+ conductances. The logarithmic gain control coding is not obtained under
relatively dim light condition (under 200 photons/ms), but can be substituted
by a square root relationship (Fig. 8B), indicating that cell body membrane
could help to shift the gain control mechanism under different light conditions
to help using voltage range effectively.

4 Conclusion

We constructed a mathematical model of Drosophila R1-R6 photoreceptor to
mimic the relationship between voltage outputs and light impulse inputs. The
LIC part of the model is validated by comparing the simulation results with in
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(d) experimental current stimulated
macroscopic voltage responses

Fig. 7. Simulation results for the model at different light level. (A) Simulated macro-
scopic current response at light impulse stimuli of 6, 40, 90, 240, 600 photons. (B)
Macroscopic voltage responses by the cell body at different level of light impulse stim-
uli. (C) Experimental macroscopic current responses (patch-clamp data from whole cell
recordings) at the same light level shown in Fig. 7A. (D) Voltage response predictions
by the model when stimulated by experimental current data.

vitro patch-clamp data [2] and the cell body model is validated by in vivo cur-
rent injection experiments [9]. Even in this relatively basic form, our model can
predict well the waveforms of macroscopic light induced current responses. The
fact that we need to enlarge potassium leak conductance in the current clamp
mode to keep voltage responses to light in the right range, indicates there are
uncharacterized conductances that facilitate adaptation to varying light levels.
Nonetheless, from a practical and systemic point of view, this model can serve as
a foundation to a preprocessing module for higher order models of the Drosophila

visual system that we intend to build due course.
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Fig. 8. Scaled voltage responses for comparison. (A) Voltage responses scaled by an
logarithmic gain. S 700 depicts the voltage response under 700 photons stimuli. S 400,
S 200, S 50 are the 400, 200, 50 photons stimulated voltage responses that are scaled
by ln(700)/ln(400), ln(700)/ln(200), ln(700)/ln(50) respectively. (B) Voltage responses
scaled by squared root gain under relatively dim light condition (below 200 photons).
S 200 shows the voltage response under 200 photons stimuli. S 100, S 50 are the
100, 50 photons stimulated voltage responses that are scaled by sqrt(200)/sqrt(100),
sqrt(200)/sqrt(50) respectively.
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