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Abstract. Adaptation is a hallmark of sensory processing. We studied
neural adaptation in intracellular voltage responses of the R1-R6 photore-
ceptors, of the fruit fly Drosophila, subjected to light patterns of naturalistic
distribution at varying intensity levels. We use experimental data in a step-
wise empirical modeling procedure to estimate a non-linear dynamical
model (NARMAX) with variable gain. This model can describe accurately
the observed adaptation process at each new level of changing light in-
puts. Generalized frequency response functions were used to visualize
and quantify adaptation in the frequency domain.

Key words: Non-linear system identification; NARMAX; Generalized fre-
quency response functions; Neural adaptation; Gain adaptation; Drosophila;
Naturalistic stimulation

1 Introduction

Adaptation enables efficient encoding of sensory information in single neurons
or neural chains. This it does by tuning the system’s input-output relationship
so that the neural output can best represent sensory information [1–4]. For ex-
ample, although light intensity in a single natural scene can vary thousand-fold
[5], photoreceptors have no difficulties in encoding these patterns. Despite their
limited dynamic range1, photoreceptors can discriminate contrast over the full
extend of light levels [5]. Because our understanding of the underlying physio-
logical processes of phototransduction is limited, so are our biophysical models.
Therefore, empirical modeling methods have a great value in comprehending
the system’s overall neural functions and in producing hypothetical models that
can be tested experimentally.
Starting with the pioneering work of Marmarelis and McCann in the early 1970s
[6, 7], various authors have applied non-linear system analysis to study nonlin-
ear dynamics in early visual neurons. The most common approach has been

1 Dynamic range: Here defined as the ratio of the maximum response and the noise
level
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the identification of Volterra kernels based on the Cross-Correlation method [8,
9] or the sum-of-sinosoids method [10, 11]. Both methods have been strongly
restricted in the selection of the stimuli, to be either a mixture of sinosoids or
Gaussian White Noise (GWN). The latter has been shown to linearise fly pho-
toreceptor outputs and does not excite its nonlinear dynamics as natural scenes
do [12, 5]. Motivated by this observation, van Hateren developed a model that
is able to simulate fly photoreceptor responses to natural light statistics [13].
However, in this study, the light stimuli was limited to a 2-3 log unit range and
the model itself had a fixed structure. To study adaptive gain regulation, a more
flexible model structure is desirable. Whilst new kernel based methods [14, 15]
are not restricted in the input distribution anymore, large training data sets are
still required for the estimation of higher order kernels. Moreover, the analysis
of estimated models is restricted to the analysis of kernel shapes, from which a
physical meaning can only be indirectly inferred.
To avoid difficulties encountered in previous studies, we employ a well estab-
lished nonlinear system identification methodology developed for NARMAX
(Nonlinear Auto Regressive Moving Average with eXogenous inputs) mod-
els, that has not been applied to study neural systems before. The NARMAX
approach allows the identification of parametric models from small data sets,
independent of the input data statistics. This makes it a very attractive method
to study fast neural adaptation. Once a model has been identified, it can be an-
alytically transformed into generalized frequency response functions (GFRF).
The combined approach allows the study of the system dynamics in both, the
time and the frequency domain. Analysis on GFRF provide a tool for studying
how adaptation changes the frequency dependent interactions between the in-
put and output.
Based on the NARMAX methodology, we estimated models that can accurately
predict photoreceptors’ voltage responses to temporal light patterns of natural-
istic distribution [5]. Individual models were estimated for light levels ranging
in logarithmic steps 10,000 fold. Analysis on GFRF allowed us to find a combined
model structure and a single parameter set to approximate adaptive changes by
a pure change in the input gain.
The data for this study has been acquired from the ”small” fly, Drosophila, rather
than from previously used ”big” flies to make use of its extensive genetic and
molecular toolbox [16]. Targeted manipulation at each neural layer of the flies
visual system will allow us in a later stage of this study to obtain more in-
sight which neural interactions (e.g. lateral synaptic connections, feedback from
higher order cells, etc.) influence adaptation and how.

2 Methodology

2.1 Measurements and Stimuli

Wild-type Canton-S strains of Drosophila were used in the experiments. The
flies were prepared in vivo as in [17]. Intracellular voltage responses of blue-
green-sensitive R1-R6 photoreceptor cells were recorded using sharp quartz
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microelectrodes. Photoreceptors were excited by a point of light at the cen-
ter of their receptive field, as delivered through liquid light guides, connected
to high performance LEDs (Fig.3(a)). The measured linear light output of the
LEDs was taken as the input to the photoreceptors. Light patterns were selected
from the van Hateren’s natural-stimulus-collection, (http://hlab.phys.rug.
nl/archive.html) [5]. The stimuli was played back at 2 kHz and measured by
a photo diode circuit. Voltage responses (output) and light stimuli (input) were
low-pass filtered with a cutoff at 1 kHz before sampling with 2 kHz, and stored
for off-line analysis. Light input was attenuated by neutral density filters. This
attenuation was performed very rapidly (< 0.1 ms) during the experiments (Fig.
1).
To test the range of adapting inputs, the same temporal light pattern was shown
to the fly with 0, 1, 2, 3 and 4 log intensity units attenuation, allowing 5 different
adaptive levels, named as BG0-BG4; BG0 = very bright, BG4 = very dim. Stim-
ulation at each light level lasted for 20 s (Fig. 1). Within this time, a 2 s pattern
was repeated for us to quantify data variation.
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Fig. 1. (top) Relative light intensity values (top) and corresponding photoreceptor re-
sponses (bottom). Sections of individual light levels are marked as BG0 (very bright) to
BG4 (very dim)

2.2 Data Pre-Processing

For system identification, it is essential that the bandwidth of the excitatatory
signal does not extensively exceed that of the system under study [18]. It has
been shown before that for white noise stimulation, Drosophila photoreceptors
can follow inputs with > 100 Hz [17]. However, naturalistic stimuli evokes
larger responses and might extend the bandwidth [19]. For this reason the input
and output data sequences were pre-filtered by a Butterworth low-pass filter
with a 200 Hz cut-off. Subsequently, the data has been down-sampled to 400 Hz
[18].
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2.3 Signal to Noise Ratio

Neural recordings are generally noisy because biochemical reactions are proba-
bilistic rather than deterministic processes. Additionally, recordings from Drosophila
photoreceptors are particularly sensitive to measurement noise, because the tiny
cell dimensions make stable recordings difficult. Moreover, at low light inten-
sity stimulation, photon shot noise has a significant influence on the stimuli and
therefore indirectly effects the photoreceptor outputs [3].
The quality of modelling directly depends on the noise level in the data. There-
fore we quantify the Signal to Noise Ratio (SNR) of the output for each input
light level. Because the number of repetitions is limited, we apply an bias cor-
rected SNR estimation procedure [20, 13]. We estimate the signal yraw = y by

the ensamble average as y = 1
J

J
∑

i=1
yi(t) from measured responses yi, i = 1...J to

J repeated stimuli. Adopting the notation in [13], we obtain the raw signal and
noise power in the voltage output by

PSraw
= 1

T

T
∫

0

y
2
(t)dt and PNraw

= 1
J

J
∑

i=1

1
T

T
∫

0

(yi(t) − y)2(t)dt , (1)

and the bias corrected signal and noise power estimate by

P̂S = PSraw
− 1

J P̂N and P̂N =
N

N−1 PNraw
. (2)

Thus, the here applied SNR estimate is given by the ratio of the bias corrected
signal power over the power of noise

SNR = P̂S

P̂N
. (3)

2.4 NARMAX Modeling Methodology

NARMAX is a methodology to estimate and validate nonlinear difference equa-
tion models purely from observations of a system’s response to its environ-
mental stimuli. Since the introduction of the NARMAX model by Billings and
Leontaritis [21, 22], it has been successfully applied in the identification and
analysis of a wide range of engineering, biomedical and financial systems. The
NARMAX model, is given as

y(t) = f (y(t − 1), ..., y(t − ny),u(t − 1), ...
...,u(t − nu), e(t − 1), ..., e(t − ne)) + e(t) ,

(4)

where y(t), u(t) and e(t) are the sampled system output, input and error se-
quences, respectively. f (·) is the nonlinear mapping vector; ny, nu and ne are the
maximum lags in the output, input and noise. The noise variable e(t) is a zero
mean independent sequence, which accommodates the effects of measurement
noise, modeling errors and unmeasured disturbances. e(t) is often referred to
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as the prediction error, which is defined as e(t) = y(t) − ŷ(t), where ŷ(t) is the
one step ahead prediction of f (·). In this study, f (·) has a l-order polynomial
structure with a single input and output (SISO), such that equation (4) becomes

y(t) = θ0 +
n
∑

i1=1
θi1 xi1 (t) +

n
∑

i1=1

n
∑

i2=i1

θi1,i2 xi1 (t)xi2 (t) + ...

... +
n
∑

i1=1
. . .

n
∑

il=il−1

θi1,. . .,il xi1 (t)...xil (t) + e(t) ,
(5)

where x(t) denotes the lagged variables in y, u and e. n is the sum of variables
n = ny + nu + ne, and θi are scalar parameters to be estimated. Hammerstein,
Wiener, Bilinear and Volterra models that have been previously applied to model
neural systems are all subclasses of the polynomial NARMAX model and can
be derived from (5) [23].
The prediction error terms e(.) are included in the NARMAX model to accom-
modate noise. Although in this paper we apply no further analysis on the noise
model, it is estimated to ensure the process model is unbiased.
In the here applied method , we apply parameter estimation, structure detection
and model validation in an interlinked procedure [24].

• Term Selection & Parmeter Estimation by the OLS Algorithm. The model
structure (5) is linear in its parameters θi, this allows the construction of a
linear regression model in matrix form,

y(t) =
M
∑

i=1
pi(t)θi + e(t), t = 1...N or y = PΘ + ǫ , (6)

where N denotes the length of the training data set, the pi(t) are monomials
(terms) of x1(t) to xn(t) up to degree l. The modelling error sequence ǫ is
iteratively obtained. Θ = [θ0, ..., θi1,...,il

]T is the M-dimensional parameter
vector to be estimated.
Under the condition that P has full rank, the Orthogonal Least Squares
(OLS) algorithm [25] applies an orthogonal decomposition of the regression
matrix, such that P = WA, with W being an orthogonal matrix, satisfying
D = WTW, where D is diag(d1, ..., dM). Equation (6) is therefore equivalent
to y =Wg+ ǫ, with g = AΘ. Instead of estimatingΘ directly, ĝ is estimated
as the linear least squares solution that minimizes ||y−Wg||, where ||.|| is the
euclidean norm. W being orthogonal allows to calculate each element gi (for

the ith term) in ĝ independently. The error reduction ratio ERRi =
g2

i
di

yT ,y
is used

to evaluate for each gi, how much the corresponding term contributes to the
output. In a forward regression manner, terms are chosen first that contribute
more to the output until the selection is stopped, when all significant terms
are selected. In general only a small number of terms m << M is enough
for approximating the systems dynamics [25]. Eventually, the parameter

estimates are calculated from Θ̂ = A−1ĝ.
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• Model Validation Cross validation was used to evaluate the model perfor-
mance on unseen data. This ensures that the model describes the underlying
dynamical process and not just the training data. Models are selected and
validated, based on the performance in the following complementary tests.
· Normalized Mean Square Error (NMSE)

NMSE =

Nd
∑

t=1
(ŷ(t)−y(t))

2

Nd
∑

t=1
(y(t)−E[y])

2
, (7)

where E[y] = 1
Nd

∑Nd

t=1
y(t) is the mean of the measured output, Nd is the

validation data length and ŷ(t) are the model predictions. Depending,
if the predictions are purely model predicted outputs, ŷ(t) = ŷ(t)MPO or
one step ahead predictions ŷ(t) = ŷ(t)OSA, the NMSEMPO or the NMSEOSA

are evaluated.
· Final Prediction Error (FPE) [26]

FPE =
Nd+mγ

Nd−mγσ
2
e , (8)

where σ2
e is the variance of the error sequence e(t) = y(t)− ŷ(t), t = 1...Nd

and m is the number of selected terms. The measure is used to reduce
the spread of the error penalized by the model size.
· Higher order correlation tests

Φ(ǫ2)′(yǫ)′(τ) = κδ(τ) ∀τ
Φ(u2)′(yǫ)′ (τ) = 0 ∀τ ,

(9)

where κ is a constant 0 < κ < 1 and Φvw is the normalized correlation
function of signal v and w. The dash, (.)′, denotes that the mean level
of the signal in the brackets is removed. The shift between v and w has
been selected to be τ = −100...100. The visual tests show, if (within a
95% confidence interval) the residuals contain dynamics different from
Gaussian White noise that are not yet captured by the NARMAX model
[27].

Estimation and validation algorithms have been implemented in MATLABr, al-
lowing a consistent modelling approach for all models that are part of this study.
Although, all models have been validated by each of the described measures,
for clarity, in the results section only the NMSE is shown.

2.5 Generalized Frequency Response Functions

The NARX model, a subset of the NARMAX, containing functionals of lagged
inputs and outputs alone, can (under some assumptions) be expanded into a
Volterra functional polynomial of the input u(t) only [28]. The discrete Volterra
Series is defined as, [29],

y(t) =
∞
∑

n=1
yn(t) , (10)



Data Modeling for Analysis of Adaptive Changes in Fly Photoreceptors 7

where yn(t) denotes the n-th order output of the system and is given by,

yn(t) =
t
∑

0
...

t
∑

0
hn(k1, ..., kn)

n
∏

i=1
u(t − ki) , (11)

where hn(k1, ..., kn) is called the ’n-th order kernel’ or the ’n-th order impulse
response’ of the system. The multidimensional Fourier transform of the n-th
order impulse response hn(k1, ..., kn) yields the n-th order transfer function or
the’n-th order Generalized Frequency Response Function (GFRF)

Hn( jω1, jω2, ..., jωn) =
∞
∑

ω1=−∞

...
∞
∑

ωn=−∞

hn(k1, ..., kn)e− j(ω1k1+...+ωnkn) . (12)

The first order GFRF, H1( jω) explains linear effects, while the nonlinear GFRF’s,
Hn( jω1, ..., jωn) n > 1, give a measure of the nonlinear coupling of the input
spectral components and reveal energy transfer mechanisms to new spectral
components in the output [30].
For this study, GFRF have been analytically computed directly from identified
discrete time NARX models, applying the recursive algorithm developed by
Peyton Jones and Billings [31]. In contrast to the direct estimation of GFRF from
input output data, this method requires significantly less data samples.

3 Results

We measure voltage responses in Drosophila photoreceptors to naturalistically
distributed light contrast time series (Fig. 3(a)). The same light pattern was
repeated at different light levels (BG0-BG4). BG0 is the brightest level; BG1 gives
the same pattern but 10-times less intense; BG2 is 100-times weaker than BG0, etc
(Fig. 1). From the corresponding light input and photoreceptor voltage output,
NARMAX models were estimated and mapped into the frequency domain as
GFRFs. Data analysis and model identification are implemented as a four step
procedure.

Step 1: SNR estimation of voltage outputs at each BG level.

Step 2: Identification of local NARMAX models, at each BG level separately
(MBG0 to MBG3).

Step 3: Identification of a global model structure that can explain the complete
data set by adjusting its parameters (MG(ΘBG1) to MG(ΘBG3)).

Step 4: Identification of a global model that can explain the complete data set
by adjusting only its input gain, α (MG(ΘG, α1) to MG(ΘG, α3)).

Models are estimated from training data sets, containing 800 input/output sam-
ples. All shown NMSE values are based on 6400 output predictions, simulated
by models that performed best in all validation tests. These values are used as
a performance index to compare models.
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3.1 Data Variability Analysis

For each BG level, the SNR (3) has been calculated from voltage responses to
J = 8 input repetititons. The results, summarized in Table 1 show a significant
decay of signal Power P̂S in comparison to noise Power P̂N, as the light intensity
decreases. Consequently, the SNR values drop in the same manner. At lower

BG0 BG1 BG2 BG3 BG4

P̂S 9.13 10.02 7.66 2.71 0.247

P̂N 0.37 0.53 0.69 0.80 0.68
SNR 24.91 18.87 11.03 3.40 0.36

Table 1. Signal power, noise power Signal to Noise Ratio (3) at distinct BG levels

light intensities, less photons are available to activate the phototransduction cas-
cade, which leads to smaller voltage responses [32]. At the same time stochastic
photon capture in the photoreceptors induces additional randomness and de-
creases the SNR at lower light levels. This trend resembles the results shown
previously in [33]. Because noise in the input or in the output cannot be sim-
ulated, model predictions deviate from output measurements, even if a model
captures perfectly the underlying system. This has a direct implication on any
prediction error based validation test. Therefore, data with low SNR values in-
evitably lead to higher NMSE values. For this reason models estimated from
input/output data at dimmer light levels inevitably show poorer performance
than models at bright light intensities.

3.2 Individual Model Estimation at each BG Level

In this part of the study, the structure and parameters of NARMAX models were
individually estimated from stimuli-response data BG0 to BG3 (cf. Fig. 1). For
BG4, no reliable model could be found. The low SNR = 0.558 suggests that for
this dim inputs the photoreceptors cannot discriminate light patterns anymore
from noise and produce mostly random quantum fluctuations [17].
Table 2 contains models MBG0 (bright input) to MBG3 (dim input) and their
performance index (NMSE). NMSE values show that models estimated from
responses to brighter inputs (MBG0 to MBG2) predict remarkably well through-
out the same light level, even for data sets that were not used for estimation.
Significantly poorer performs the model MBG3, this can be explained by the low
SNR at the dim light level.
Throughout all the tested light levels, second order polynomial models are suf-
ficient to model the observed dynamics of the underlying nonlinear system.
Higher order polynomial models were also investigated, but these did not im-
prove the model performance. Despite the input changes by 3 log units, the
structures of models MBG0 to MBG3 (Table 2) are very similar. Terms in models
of different BG levels vary mostly in +/− one lag. The strong similarity in the
set of detected terms for models of different light levels suggests that a global
model structure can explain the data for all tested input levels.
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terms�
models MBG0 MBG1 MBG2 MBG3 MG(Θ)

offset -58.42 -59.75 -66.39 -72.2423

c -2.026 -2.309 -1.792 -0.616 θ̂0

y(t-1) 0.964 1.009 1.089 0.949 θ̂1

y(t-2) – -0.154 -0.209 –

y(t-3) 0.173 – – – θ̂2

y(t-4) -0.348 – – – θ̂3

y(t-5) 0.093 – – 0.135 θ̂4

u(t-4) 0.165 1.551 17.15 – θ̂5

u(t-5) 0.279 3.857 27.06 – θ̂6

u(t-6) 0.257 3.523 21.90 132.83 θ̂7

u(t-7) 0.126 – – – θ̂8

y(t-1)u(t-5) – – -1.319 37.58

y(t-2)u(t-4) -0.030 0.311 – -12.778 θ̂9

y(t-2)u(t-5) – – – -38.5616

y(t-5)u(t-4) 0.051 0.671 – – θ̂10

y(t-5)u(t-5) – – 0.487 –

y(t-6)u(t-4) -0.039 -0.635 -0.881 – θ̂11

u(t-3)u(t-7) 0.012 – – – θ̂12

u(t-4)u(t-5) -0.015 -0.399 -87.15 – θ̂13

u(t-5)u(t-6) – -4.420 -89.13 -8602

u(t-6)u(t-7) -0.028 – – 2466 θ̂14

NMSEMPO 0.094 0.083 0.096 0.254
NMSEOSA 0.016 0.018 0.027 0.067

Table 2. Independently estimated NARMAX models for different light levels. Model
parameters are presented in columns. The first column contains corresponding terms for
each parameter. ”-” denotes that a term was not selected. The last column contains the
global model structure MG(Θ).

3.3 Parameter Estimated Models with Constant Structure

Various combinations of terms in Table 2 were tested to construct a global model
structure that performs well at all BG levels. The best structure was found to
be the previously detected MBG0 term set. Adopting the structure from MBG0,

the global structure is called MG(ΘBGi) with ΘBGi = [θ̂BGi
0
, ..., θ̂BGi

14
], i = 0, ..., 3,

being the model parameters estimated individually at light levels BG0-3. Table
3 summarizes the results for individually estimated parameter sets, from in-
put/output data at light levels BG0-3.
At all tested light levels, the model performance does not decrease for keep-

Uni Model MG(Θ̂BG0) MG(Θ̂BG1) MG(Θ̂BG2) MG(Θ̂BG3)

NMSEMPO 0.094 0.067 0.096 0.23
NMSEOSA 0.016 0.017 0.025 0.064

Table 3. Performance of models with global structure and BG-dependent parameter
estimates

ing a global model structure, compared to values of models with individually
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estimated structures. For dimmed inputs, parameter estimated models with
a constant structure even perform slightly better. This suggest that a single
nonlinear model with varying parameters indeed can be used to describe the
input-output data set.
To investigate adaptative changes in the frequency domain, the first and second
order GFRF’s H1,BGi( jω) and H2,BGi( jω1, jω2), i = 0..3 were computed for the
identified NARMAX models MG(ΘBG0) to MG(ΘBG3), respectively. Fig. 2 sum-
marizes the results in plots of the first-order functions (Fig. 2(a)) and selected
slices through second-order functions (Fig. 2(c), 2(d)). The location of slices is
shown in Fig. 2(b). Analysis on the first and second order GFRF magnitude plots
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Fig. 2. 1st order GFRF plots of and slices through 2nd order GFRF for models MG(ΘBG1)
to MG(ΘBG3). Changes between frequency responses of different light levels are indicated
by arrows

in Fig. 2 reveal that the 3dB bandwidth of the system remains constant, at about
20 Hz, regardless of the light level. An energy transference phenomenon like
described in [30] is not eminent. For decreasing intensity levels, the magnitude
curves are shifted upwards whilst their shape remains almost the same. This
suggests that the photoreceptor adaptation to lower light intensities is mani-
fested just through an increase of the input gain. If this hypothesis is correct
then we would expect that the second order magnitude plots will be shifted
upwards by an amount equal to the squared linear shift.
Indeed, assuming the Volterra Series in (10) is expanded up to the second order
kernel, then its Fourier transform yields, [34],

Y1( jω1, jω2) = H1( jω1)U( jω1) +H2( jω1, jω2)U( jω1)U( jω2) , (13)

where H1(.) and H2(.) are the first and second order GFRF in (12) and Y(.) and
U(.) are the Fourier Transforms of the output and input, respectively. Assuming,
the input signal is modified by a constant gain α, then (13) yields,

Y2( jω1, jω2) = H1( jω1)αU( jω1)) +H2( jω1, jω2)αU( jω1)αU( jω2)) (14)

⇔ Y2( jω1, jω2) = αH1( jω1)U( jω1)) + α2H2( jω1, jω2)U( jω1)U( jω2)) , (15)
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where Y1(.) , Y2(.). The underlines in equations (14) and (15) highlight that in a
second order Volterra Model, a change in the input signal by a constant gain α is
equivalent to a constant gain α in H1(.) and a quadratic gain α2 in H2(.). To test,
if this is the case for changes in GFRF’s of models MG(ΘBG0) to MG(ΘBG3), we
calculated α as the arithmetic mean EBGl|BGm of shifts between first order GFRF
curves H1,BGl(.) and H1,BGm(.) l,m = 0..3 as

E1(BGl|BGm) =
1
ωmax

ωmax
∑

ω=1
H1,BGl( jω) −H1,BGm( jω) . (16)

These, we compared to corresponding mean shifts between second order GFRF
surfaces calculated as

E2(BGl|BGm) =
1
ω2

max

ωmax
∑

ω1=1

ωmax
∑

ω2=1
(H1,BGl( jω1, jω2) −H2,BGm( jω1, jω2) , (17)

where H2,BGi(.) denotes the second order GFRF of model MG(ΘBGi), i = 0...3. Ac-
cording to previous argumentation, for a pure change in input gain, E2(BGl|BGm) ≈

α2 needs to be satisfied for all combinations of l,m = 0...3. To test this, we trans-

formed the second order shift into αp with p =
log(E1(BGl|BGm))

log(E2(BGl|BGm))
. As a measure, how

much curves deviate from being a pure shift, we additionally calculated the
variance between differences of GFRFs as

σ
2
1(BGl|BGm)

= 1
ωmax

ωmax
∑

i=1
(H1,BGl( jω) −H1,BGm( jω) − EBGl|BGm)2 and (18)

σ
2
2(BGl|BGm)

= 1
ω2

max

ωmax
∑

ω1=1

ωmax
∑

ω2=1
(H1,BGl( jω1, jω2) −H2,BGm( jω1, jω2) − E2(BGl|BGm))

2.

Results of the evaluation of shifts between first and second order GFRF functions
for ωmax =

100Hz
2π are summarized in Table 4. The analysis of the 2nd order

(l,m) (0, 1) (0, 2) (0, 3) (1, 2) (1, 3) , (2, 3)

α = E1(BGl|BGm) 22.66dB 41.37dB 53.95dB 18.70dB 31.29dB 12.58dB
αp = E2(BGl|BGm) 43.81dB 82.31dB 117.0dB 38.50dB 73.17dB 34.67dB
σ

2
1(BGl|BGm)

2.05dB2 1.84dB2 0.60dB2 0.10dB2 0.95dB2 0.93dB2

σ
2
2(BGl|BGm)

3.91dB2 4.94dB2 12.34dB2 1.38dB2 10.68dB2 5.93dB2

p 1.93 1.99 2.16 2.06 2.33 2.75
Table 4. Evaluation of adaptive changes between GFRFs of models MG(ΘBGl) and
MG(ΘBGm), estimated from data at the lth and mth light level BGl and BGm (arrows Fig.2).

GFRF magnitudes reveal that indeed the shifts in this case have a quadratic
tendency relative to the linear shifts. Only shifts to GFRFs of model MG(ΘBG3)
deviate. The shift between the linear GFRF of MG(ΘBG2) and its 2nd order one
is almost cubic (α2.75). There could be two reasons for this deviation. If, the
shifts to GFRFs for light level BG3 are accurate then, at very dim light levels
the nonlinear contribution the output signal enhances. Alternatively, if the high
amount of noise at dim light levels leads to biased parameter estimates, causing
corresponding GFRFs to be inaccurate while the system in fact would perform
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pure gain adaptation. In case of the latter, the system performs a normalization
of its frequency response at different input light levels, by holding on to a
constant spectral characteristic. By adjusting a gain, it maintains the response
amplitude within the limited range of 50 mV, while the same frequencies in the
output are kept constant throughout all the tested BG levels.

3.4 Global Model with Gain Adaptation

Frequency normalization in the form of a pure gain adaptation can be modelled
by a global model structure with a constant global parameter set ΘG and a
variable input gain α. Indeed, instead of a shifting the GFRF H1(.)→ αH1(.) and
H2(.) → α2H2(.) as in (15), the input can be altered by a constant gain U(.) →
αU(.) as in (14). The same can be shown in the time domain, considering the
inverse Fourier Transform of αU( jω) = αu(t). Assuming, there exists a unique
transformation between a Volterra-Model and a polynomial NARX-Model [35,
28], then it can be shown for a polynomial NARX model (5) that a change of the
input variable by a constant α, such that u(t)→ αu(t), is equivalent to a shift by
α, in its first order GFRF, by α2, in its 2nd order GFRF, etc (cf proof in [28]).
Motivated by this finding and results, shown in Table 4, we constructed a
global model, to explain the full input-output data set by adapting only one
parameter2, the input gain α. The global model consists of the global model
structure MG(ΘG) = MBG0, with the best tested parameter set ΘG = ΘBG0 and
an adjustable input gain αi, such that u(t) → αiu(t), where the index ”i” refers
to the ith light level BGi. Therefore, MG(ΘG, αi) denotes the global model. Table
5 summarizes the performance of the global model for predicting the output
at each light level BG0-3. The parameters αi , i = 0...3 have been estimated
using the MATLABr implementation of the L-M algorithm. The global Model

Uni Model MG(ΘG, α0) MG(ΘG, α1) MG(ΘG, α2) MG(ΘG, α3)

αi 1=0dB 11.80=21.4dB 79.14=38.0dB 290.4=49.3dB

NMSEMPO 0.094 0.081 0.106 0.239
NMSEOSA 0.016 0.018 0.028 0.07
Table 5. Performance of global model with BG-dependent input gain α

MG(ΘG, αi), i = 0...3 performs almost as good at each BG level, as if the full

set of parameters Θ̂ is estimated independently at each light level (cf Table 3).
Although, the 2nd order GFRF calculated from the parameter estimated model
MBG3(ΘBG3) was not exactly quadratic, however, forcing a quadratic change
by a global model, does not significantly decrease the models performance,
measured by the NMSE. It is therefore possible that even at very dim light
levels, like BG3, the system performs a frequency normalization. This result
suggests that the input-output data can, within its limitations at low light levels,

2 Note: Adjustments to small variations in the output offset have been applied. Since
these small adjustments do not change the results they are not further discussed here.
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be described by the suggested global model with light level dependent adjusted
input gain α.

4 Discussion

In this paper, nonlinear system identification and analysis techniques were used
to investigated the adaptation of Drosophila photoreceptors to different light in-
tensity levels. Instant changes between light levels cause the system to respond
in distinct adaptive modes, so as to discriminate light patterns, which can vary
10,000 fold. Such coding occurs reliably within the limited voltage range (50-60
mV) of photoreceptors.
For the first time, a unified nonlinear dynamical model of the photorecetor that
explains adaptation at each level of dynamic light inputs as a simple gain ad-
justment process was derived using nonlinear system identification based on
experimental measurements of photoreceptor responses to naturalistic stimuli.
The use of generalized frequency response functions was instrumental in reveal-
ing the underlying mechanism of this type of adaptation. The derived model
was validated extensively using data sets recorded for different light levels.
The graph shown in Fig. 3(b) summarizes the performance of all the estimated
models and highlights that the same model performance could be achieved for
individual estimated models, models with fixed structure, and the global model
with an adapted gain. The individual model performances are remarkably good
when compared to the natural data variation, measured by its SNR. Fig. 3 shows
the model predictions of parameter and gain adapted models in comparison to
the actual recorded voltage responses.
We showed that Drosophila photoreceptors adapt to changing light inputs to

(a) Experimental Setup
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individual model
global model structure
global model

(b) NMSE comparison of different modeling
approaches

preserve the spectral structure in its output to higher order neurons. These
dynamics are quite different from those shown previously for Gaussian White
Noise inputs [17], where the system integrated the dim and differentiated the
bright inputs. Instead, when Drosophila photoreceptors adapt to naturalistic
contrasts, it appears that they employ a pure gain control. This was tested by
simulating the system with fixed NARMAX model, whilst only optimizing the
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Fig. 3. Evaluation of model predicted outputs ŷMPO at different background light inten-
sities for gain- and parameter adjusted models

input gain. These new findings have implications on the understanding how in-
sect eyes code visual information. To learn more about the nature of adaptation,
similar experiments, involving visually impaired fly mutants will be carried
out. By replacing the constant gain with a variable gain, we will be able to
use the derived global model in future studies to investigate the influence of
stimulation patterns with different statistics onto adaptation.
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