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Abstract

Previously we presented a novel approach to program a robot controller based on system identification and robot training tech-

niques. The proposed method works in two stages: first, the programmer demonstrates the desired behaviour to the robot by driving

it manually in the target environment. During this run, the sensory perception and the desired velocity commands of the robot

are logged. Having thus obtained training data we model the relationship between sensory readings and the motor commands of

the robot using ARMAX/NARMAX models and system identification techniques. These produce linear or non-linear polynomials

which can be formally analysed, as well as used in place of “traditional robot” control code.

In this paper we focus our attention on how the mathematical analysis of NARMAX models can be used to understand the robot’s

control actions, to formulate hypotheses and to improve the robot’s behaviour. One main objective behind this approach is to avoid

trial-and-error refinement of robot code. Instead, we seek to obtain a reliable design process, where program design decisions are

based on the mathematical analysis of the model describing how the robot interacts with its environment to achieve the desired

behaviour. We demonstrate this procedure through the analysis of a particular task in mobile robotics: door traversal.

1. Introduction

Sensor-motor couplings form the backbone of most mobile

robot control tasks, and often need to be implemented fast,

efficiently and reliably. Robot training is a fast and efficient

method of obtaining robot control code [1, 2, 3]. It is also an al-

ternative to manual programming based on empirical trial-and-

error processes. This process involves the programmer writing

the program, testing it on the robot and refining the code con-

stantly until the behaviour of the robot resembles the desired be-

haviour within the desired degree of accuracy. Machine learn-

ing techniques, such as artificial neural networks are often used

to obtain the desired sensor-motor competences [4, 5, 6, 7, 8].

However, representing the relationship between perception and

action using neural networks has the disadvantage of being an

opaque mechanism, which does not reveal how the desired be-

haviour is achieved using the robot’s perception, in other words:

opaque models such as artificial neural network are not easily

comprehensible to humans. Therefore, we are not able to an-

alyze the generated controllers from a mathematical point of

view and learn more about how the robot interacts with its en-

vironment.

Our understanding of robot-environment interaction is so

limited that so far we are not able to find answers to ques-

tions like “Which sensors are the most important for the desired
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behaviour?”, “What would happen if one of the robot sensors

broke?” or “Is it possible to predict the behaviour of the robot

beforehand in untested environments?”. Furthermore, when the

obtained controllers are not comprehensible by humans, or they

cannot be expressed mathematically, they neither can be anal-

ysed using mathematical tools. The only way of evaluation is

to test them in the target environment and measure their perfor-

mance based on some performance metrics [9]. For example if

the task under investigation is to follow a wall from a certain

distance, the perpendicular distance between the robot and the

wall is one such performance metric [10]. If the desired task

is to traverse through door-like openings, one test option is to

start the robot from many different initial positions and see if it

passes through the door successfully in each attempt [11].

However, these kind of performance measures do not vali-

date the obtained controllers from a theoretical point of view.

For instance, 20 successful attempts of door traversing do not

guarantee that the 21st will be successful, too. Moreover, when

the robot fails to achieve the desired task, the analysis of the

controllers is even more complex, and so far there is no for-

mal method of error-debugging or controller optimization. The

more robots are to be used in close interaction with humans,

the more important will be the safe operation of the robot. One

way to address the safety issue is to develop transparent and

analysable controllers, so that they can be evaluated in terms of

safety, efficiency and robustness, using mathematical tools.

In [11, 12] we presented a novel approach to program a robot

controller, which produces transparent, human comprehensible

models using mathematical functions. The proposed method
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works in two stages: first, the robot is driven manually, demon-

strating the desired behaviour. During this run, sensor readings

and the actions of the robot are logged. Then we model the rela-

tionship between sensory readings and the motor commands of

the robot using ARMAX/NARMAX system identification tech-

niques [13, 14]. These produce linear or non-linear polynomi-

als, which can be used in place of “traditional” robot control

code, but have the further advantage that they can be formally

analysed.

In this paper we focus our attention on how the mathemat-

ical analysis of NARMAX models can be used to understand

the robot’s control actions, to formulate hypotheses and to im-

prove the robot’s behaviour. In particular, we demonstrate that

the performance of the polynomial models obtained for the

episodic task of “door traversal” can be improved using Lya-

punov stability analysis.

The rest of the paper is organised as follows: Section 2 briefly

introduces the NARMAX models and training algorithm used

in our methodology. The methodology is applied to the door

traversal task in Section 3 using raw sensor readings, and the

performance of the robot traversing the door is also evaluated.

A new controller is obtained for a set of human readable vari-

ables as inputs in Section 4. The NARMAX model is validated

and a simple stability analysis is performed over it. Finally,

conclusions and future research are presented in Section 5.

2. NARMAX System Identification Methodology

The NARMAX modelling approach is a parameter estima-

tion methodology for identifying both the important model

terms and the parameters of unknown nonlinear dynamic sys-

tems. For multiple input, single output noiseless systems this

model takes the form:

y(n) = f (u1(n),u1(n−1),u1(n−2), · · · ,u1(n−nu),

u2(n),u2(n−1),u2(n−2), · · · ,u2(n−nu),

ud(n),ud(n−1),ud(n−2), · · · ,ud(n−nu),

y(n−1),y(n−2), · · · ,y(n−ny))

where y(n) and u(n) = (u1(n), · · · ,ud(n)) are the sampled

output and input signals at time n respectively, ny and nu are the

maximum regression orders of the output and input respectively

and d is the dimension of the input vector. The function f (·) is

a non-linear function of its arguments, in our case a polynomial

expansion. Other expansions such as multi-resolution wavelets

or Bernstein coefficients could be used as an alternative to the

polynomial expansions considered in this study.

2.1. Polynomial NARMAX Models

The polynomial representation of a NARMAX model is the

set of monomials of x. For example, a 2-input, second order

polynomial with no input and output lag (ny = nu = 0) takes the

form:

y(n) = C0 +C1u1(n)+C2u2(n) (1)

+C3u1(n)u2(n)+C4u2
1(n)+C5u2

2(n),

where C0, · · · ,C5 are the coefficients of each monomial term.

They must be estimated using an estimation algorithm like the

Orthogonal Parameter Estimation (described in section 2.2.1)

[15]. It has been shown in [16] that any continuous function

in a closed interval can be approximated by a polynomial. In

fact, any continuous real function can be approximated within

an arbitrary degree of accuracy by a polynomial of sufficient

order (Stone-Weierstrass theorem) .

2.2. Identification of Polynomial NARMAX Models

The first step towards modelling a particular system using a

NARMAX model structure is to select appropriate inputs ~u(n)
and output y(n). The general rule in choosing suitable inputs

and outputs is that there must be a causal relationship between

the input signals and the output response.

After the choice of suitable inputs and outputs, the NAR-

MAX method breaks the modelling problem into the following

steps: i) polynomial model structure detection — determining

input lag nu and output lag ny and the order of the polynomial

l, ii) model parameter estimation and iii) model validation.

For the first step it is useful to have some knowledge about

the system to identify, or at least a proper guess of the poly-

nomial order and the regression orders. The last two steps are

performed iteratively using two sets of collected data: (a) the

estimation and (b) the validation data set. Usually a single data

set collected in one long session is split in half, and the second

half is used for this purpose.

2.2.1. Orthogonal Parameter Estimation Algorithm

The orthogonal parameter estimation algorithm (OPE) [15] is

a technique which allows each parameter in a polynomial NAR-

MAX model to be estimated sequentially and independently

of the other parameters in the model. The main advantage of

this technique, compared to classical least square learning algo-

rithms, is that it provides an indication of the contribution that

each term in the model makes to the desired output variance.

This assists the user to detect the structure of the system under

investigation and yields a parsimonious system model [14].

Having parsimonious models is vital in polynomial system

identification since increasing the order of the dynamic terms

ny and nu and the order of the polynomial expansion (l) to

achieve the desired prediction accuracy will result in an ex-

cessively complex model and possible ill-conditioned compu-

tations [17].

Once the structure of the polynomial model is determined,

the coefficients of each term in the polynomial are determined

as follows:

1. An auxiliary model is defined such that the terms in the

model are orthogonal over the training data set.

2. The coefficients of the auxiliary model are estimated in the

least square manner.
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3. The individual contribution of each term in the auxiliary

model to the desired output is measured using the error

reduction ratio.

4. The terms having minimal or no contributions are deleted

from the model.

5. Steps (2) to (4) are repeated until the model convergences

to the desired degree of accuracy.

6. Finally the coefficients of the NARMAX model are esti-

mated from the remaining auxiliary model.

The OPE algorithm is a very well established technique and

is being widely used in many control applications. More de-

tailed discussion about parameter estimation and model valida-

tion can be found in [15] [18] and [19].

3. Experiment: Door Traversal

In mobile robotics applications, the NARMAX system iden-

tification method has been applied to generate various sensor-

motor tasks such as wall following [10], following a moving ob-

ject [20], and route learning [12]. The task investigated in this

paper is to model the sensor-motor couplings of a hard-wired

controller designed to achieve the episodic task of “door traver-

sal” where each episode comprises the movement of the robot

from a starting position to a final position, traversing through a

door-like opening.

3.1. Experimental Scenario and Acquisition of the Training

Data

The experiments were conducted in the 100 square meter cir-

cular robotics arena of the University of Essex. We used a Sc-

itos G5 mobile robot called DAX (Figure 1(a)). The robot is

equipped with a Hokuyo laser range finder which can deliver

distance readings up to 4 meters (0 ≤ d ≤ 4). This range sen-

sor has a wide angular range (240◦) with a radial resolution of

0.36◦ and distance accuracy of better than 1 cm. The base of

the robot is circular, its diameter is 60 cm.

The experimental scenario is presented in Figure 2, where

the width of the opening is 1 m. First we designed a hard-wired

door traversal control program manually, such that the con-

troller computes the linear and angular velocities of the robot

to make it approach to the door and pass through it safely. This

control program relies only on the current laser scan.

Instead of driving the robot towards the door, the controller

was designed to make it approach a point slightly in front of the

door with an angle orthogonal to the door. Both speeds were

controlled to reach the configured point and then cross the door

following a straight line trajectory.

We then let the hard-wired controller drive the robot to col-

lect the training data. The robot was started from 23 differ-

ent initial positions, so that the door was always visible to the

robot. In each run, laser readings and the angular velocity of

the robot were logged every 250 ms, forming the training data

set. Figure 3 shows the trajectories of the robot driven by the

hard-wired controller.

(a) Scitos G5 mobile robot Dax

robotangle 240 angle 0

laser

+

−
−

u1

u2

u3

u4

u5u6u7
u8

u9

u11

u10

+ ω

v

(b) Sensor coding and motion

configuration

Figure 1: The robot has two degrees of freedom and equipped with a Hokuyo

laser sensor. The range finder has a wide angular range (240◦) with a radial

resolution of 0.36◦ and distance accuracy of better than 1 cm. During the ex-

periments, in order to decrease the dimensionality of the input space, we coarse-

coded the laser readings into 11 sectors (u1 to u11) by averaging 62 readings for

each 22 degree intervals.

dw
= 1m

2.5m2.5m

robot

1m

0.5m

0.5m

0.6m

3m

A

Figure 2: The experimental scenario used in the door traversal experiments.

The region A indicates possible starting positions of DAX. The width of the

opening is 1 m and the base of the robot is 0.6 m. The length of the walls on

each side of the opening is 2.5 m.

3.2. Modelling the Door Traversal Controller

Having obtained the training data set, we coarse-coded the

laser readings into 11 sectors by averaging 62 readings for each

22◦ interval in order to decrease the dimensionality of the input

space (Figure 1(b)). We then used the coarse-coded laser read-

ings to model the rotational velocity of the robot using NAR-

MAX system identification method.

In the experimental setup, the relative position and orienta-

tion of the robot with respect to the door was such that the open-

ing was always detected by the robot’s laser scanner (if the door

were occluded at any time, some internal state would be neces-

sary to maintain the robot’s movement towards the door, but

since the laser scanner always perceives the door at each po-

sition, the robot always has the necessary sensor information

to drive through the passage, and there is no need of including

state or regression).

Therefore, the polynomial model was chosen to be
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Figure 3: The trajectories of the robot under the control of hard-wired door

traversal controller. The robot was started from 23 different starting positions

facing the direction of the door. In each run, the laser readings and the angular

velocity of the robot were logged every 250 ms in order to form the training

data set.

regression-less and a second degree expansion was used in the

inputs. The order of the polynomial was automatically selected

by the Orthogonal Parameter Estimation algorithm such that the

model error did not improve significantly when including new

terms. The result is a non-linear polynomial model with 49

terms, given in Table 1.

ωpol(n) = −6.698+0.670 ·u1(n)−0.113 ·u2(n)+0.372 ·u3(n)

+0.515 ·u4(n)+0.049 ·u5(n)+0.344 ·u6(n)+0.032 ·u7(n)

+0.013 ·u8(n)+0.310 ·u9(n)+0.251 ·u10(n)+0.829 ·u11(n)

+0.014 ·u2
2(n)+0.004 ·u2

3(n)−0.001 ·u2
4(n)+0.008 ·u2

5(n)

+0.001 ·u2
7(n)−0.003 ·u2

10(n)+0.012 ·u1(n) ·u2(n)

+0.001 ·u1(n) ·u3(n)−0.012 ·u1(n) ·u4(n)−0.039 ·u1(n) ·u5(n)

−0.010 ·u1(n) ·u6(n)+0.008 ·u1(n) ·u7(n)−0.089 ·u1(n) ·u9(n)

−0.032 ·u1(n) ·u10 +0.025 ·u2(n) ·u3(n)+0.002 ·u2(n) ·u4(n)

−0.032 ·u2(n) ·u6(n)+0.009 ·u2(n) ·u9(n)+0.008 ·u3(n) ·u4(n)

−0.021 ·u3(n) ·u6(n)−0.009 ·u3(n) ·u7(n)+0.005 ·u3(n) ·u9(n)

+0.112 ·u3(n) ·u11(n)−0.031 ·u4(n) ·u6(n)−0.011 ·u4(n) ·u7(n)

+0.001 ·u4(n) ·u8(n)−0.094 ·u4(n) ·u11(n)−0.009 ·u5(n) ·u7(n)

+0.012 ·u5(n) ·u8(n)+0.009 ·u5(n) ·u9(n)−0.004 ·u5(n) ·u11(n)

−0.007 ·u6(n) ·u7(n)+0.007 ·u6(n) ·u9(n)−0.005 ·u6(n) ·u11(n)

+0.009 ·u7(n) ·u10(n)+0.020 ·u7n ·u11(n)−0.029 ·u10(n) ·u11(n)

Table 1: Polynomial model for door traversal behaviour where ωpol(n) is the

angular velocity of the robot and u1(n) to u11(n) are the coarse-coded laser

readings at time step n.

3.3. Model Validation

Once we obtained the turning speed model ωpol , we let the

model drive the robot in the training environment. The linear

velocity of the robot was kept the same as the linear velocity of

the hard-wired door traversal controller. The robot was started

from 20 different positions always facing the direction of the

door. Figure 4 shows the trajectories of the robot under the

control of ωpol . The model was always successful driving the

robot through the door.

Figure 4: The performance of the robot driven by the polynomial NARMAX

model ωpol of Table 1. The robot was started from 20 different positions and

the model was successful to drive the robot through the gap in all experiments.

3.4. Quantitative Analysis of the Model ωpol

Besides the experimental validation of the controller model

in the real world, using the robot, we measured some quantita-

tive features to assess its performance. We compared the ωpol

model with the hand-coded door traversal program.

3.4.1. Imitating the Hard-wired Controller

In order to quantify the performance of the controller given

in Table 1, we measured how well ωpol was at imitating the

hard-wired door traversal control program in the training re-

gion. We fed the model and the hard-wired controller with iden-

tical sensory data, and then compared the corresponding angu-

lar speed outputs quantitatively in order to measure how similar

the model and the original controller are. The data logged along

60 different trajectories were used to compute the Spearman

rank correlation coefficient between turning speeds generated

by the hand-coded controller and the modelled robot controller

(0.937, p < 5%), showing a highly significant correlation.

3.4.2. Door centralization

We also measured how much the robot driven by the model

ωpol deviates from the center of the door while passing through

it. This measure was compared with the original, hand-coded

program. For each test run, we computed the horizontal dis-

tance between the center point and the trajectory of the robot

during crossing the door. The histograms for both the hard-

wired controller and the model ωpol , showing how much the

robot deviates from the center of the door (in cm) during exper-

iments, are given in Figure 5.
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Hard−wired Controller
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(a) Hard-wired controller
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(b) NARMAX controller ωpol

Figure 5: Distribution of deviations from the center of the door.
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The median deviation from the door center was 3.024 cm

(confidence interval at 5% significance level [1.559,7.143]) for

the ωpol model, and, slightly better, 2.857 cm ([1.429,4.286])
for the hardwired controller.

3.5. Investigating the Generalization Ability of the Model ωpol

After assessing and comparing the model with the hard-wired

controller, we evaluated the generalization ability of the model

ωpol . To do so, we started the robot from a region where the

model was not trained before (region B in Figure 6): the hard-

wired controller still drives the robot safely through the gap

when the robot was started from this area.

1m 1m

0.6m

robot

1.5m

1m

A

B

Figure 6: The area labelled A shows the region where the training data set was

obtained to model the controllers. The area labelled B shows the region where

the obtained model was tested to evaluate its generalization ability of the door

traversal behaviour.

We started the robot from 16 different initial positions in

area B. Figure 7 shows the trajectories of the robot under the

control of the model ωpol . The results show that the perfor-

mance of the model deteriorates as the robot starts further from

the known training region. Nevertheless, the robot traversed the

gap successful in all but one experiment.

Figure 7: The generalization performance of the robot driven by the polynomial

NARMAX model ωpol . The robot was started from 16 different initial positions

and the model managed to drive the robot through the gap 15 times out of 16

attempts.

4. Mathematical Analysis of the Trained Polynomial Model

One of the advantages of identifying unknown systems using

polynomial NARMAX models is that the obtained expressions

are transparent mathematical functions which can be directly

related to the task. Polynomials give us the additional advan-

tage of analysing models from a mathematical point of view in

order to identify and understand the underlying rules governing

the robot’s interaction with the environment. In this section we

will demonstrate how this advantage can be utilized to improve

the performance of the obtained polynomial.

4.1. Simplifying the Model

Since the second order polynomial model ωpol of Table 1

(with 49 terms) is a large polynomial, its mathematical analysis

is difficult. We therefore decided to obtain simpler models. To

do this, we did not use the raw sensor input as the input to our

model, but selected a smaller set of input variables computed

from them. At each time-stamp the laser scan contains in its

values the information of the robot’s relative position and ori-

entation to the door, the minimal information the robot needs

to perform the task. Therefore, the selected variables should

also contain sufficient information for the robot. This does not

only help reducing the dimensionality of the input and produce

a simpler model, but, as will be seen, allows us to get human-

comprehensible models in terms of the input variables.

4.1.1. Sensor data processing

We processed the raw laser readings to extract three input

variables which contain enough information to determine the

linear and angular speeds of the robot to drive the robot suc-

cessfully through the door-like openings. These inputs are (Fig-

ure 8):

d: The distance from the robot to the midpoint of the door,

where d is a positive value smaller than 4 m, since the

robot’s laser scanner range is limited to 4 m.

α: The angle between the heading of the robot and the direc-

tion to the center of the door. An obvious restriction on

this parameter is −90◦ < α < 90◦, since outside this range

the door cannot be in the angular field of view of the robot

(the actual range in the experiments is even smaller; if α
becomes too big, one of the sides of the opening is likely

to be out of view.

β : The angle of the line from the robot’s position to the door

centre and the normal to the door. The value of this input

variable falls in the range (−90◦,90◦).

The computation of the input vector (d,α,β ) as input to the

NARMAX model is relatively straightforward. First, the gaps

generated by the two door jambs are detected and the distances

d1 and d2 are computed, using a simple edge detection algo-

rithm. Figure 9 illustrates a sample laser scan of the robot dur-

ing door traversal.

These distances, jointly with the angular distance between

the two corresponding beams, are then used to compute d, α
and β .

5



d1

dw

d2

.

β
d

door

α

π/2−π/2

π/2

−π/2
n+d

robot

Figure 8: The three inputs (α , β and d) used as inputs to the simplified model.
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682341

Figure 9: A sample laser scan of the robot during door traversal, where d1

and d2 are the distances between the robot and the left and right door jambs

respectively, and id1 and id2 are the laser indexes of the two door jambs.

4.1.2. Obtaining angular and linear velocity models

Once d, α and β are computed, we used the NARMAX sys-

tem identification technique to model the relationship between

the input vector (d, α , β ) and the angular and linear velocities

of the robot. The resultant models were ARMAX models with

no lags in the inputs and output, both models contained only 2

terms (Table 2). The obtained models proportional controllers,

they are easily readable in terms of the variables d, α and β :

The linear velocity equation computes a velocity proportional

to the distance from the robot to the door.

The angular velocity depends on both angles α and β , and

it can be seen that it makes the robot point to the center of the

door. For example, if the robot is on the normal to the door (i.e.

β = 0), but does not face the center, the angular velocity con-

troller makes the robot turn in the correct direction. A similar

analysis can be performed for positions outside this line (this

type of analysis is much harder to perform for the previously

obtained controller ωpos).

v(n) =
d(n)

40
+

1

10

ω(n) =
β (n)

2
−

α(n)

4

Table 2: The simplified polynomial models to achieve the door traversal be-

haviour.

4.1.3. Model validation

Having obtained the models given in Table 2, we tested them

on the robot in the training environment, starting the robot from

23 different locations. In all episodes, the models were suc-

cessful in driving the robot through the gap (Figure 10). We

also evaluated the performance of the simplified models on im-

itating the hard-wired controller as in Section 3.4. The results

revealed that the performance of the simplified models were

far better than the previously obtained ωpol , the new models

had modelled the hard-wired controller perfectly (correlation

1.0 (p < 5%) for both models).

Figure 10: The trajectories of the robot under the control of simplified polyno-

mial NARMAX models given in Table 2.

4.2. Stability Analysis and Improving the NARMAX Controller

The analysis of the robot trajectories shown in Figure 10

demonstrate that the robot traversed the door successfully, al-

beit not centrally. During the crossing, the median deviation

of the robot from the center of the door was 3.284 cm (confi-

dence interval [1.635,4.475], p = 0.05). In this section we will

demonstrate how having transparent models allows us to opti-

mize the models systematically so that the performance of the

robot improves (passing through the gap more centrally).

To do so, we analysed the obtained models using Lyapunov

stability analysis [21]. The Lyapunov stability theorems check

if all the solutions of a dynamical system starting out near an

equilibrium point xc converge or stay close to it. In order to

prove the stability of an equilibrium point, the theorem requires

finding a function which must fulfil two conditions. Let V (x) :

ℜn → ℜ be a Lyapunov candidate function which describing

some energy of the dynamical system, the system of differential

equations ẋ = F(x) has a stability point at xc if for all x ∈ ℜ:

1. V (x)≥ 0, and V (x) = 0 ⇐⇒ x = xc (positive definite func-

tion).

2.
dV (x)

dt
= ∇V (x) · ẋ < 0, (negative definite function).

where ∇V (x) is the gradient of the Lyapunov function V (x),
and ẋ = F(x). For the door traversal behaviour, the state vector

x includes the three elements d, α and β . This is the set of

variables needed to completely characterise the system we are

considering.

We defined the equilibrium point xc as the center of the door,

where d = 0, α = 0 and β = 0 (see Figure 11) since we want
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the robot to be centralized in the doorway during crossing with

a heading orthogonal to the door.

= 0α
= 0d

β = 0

n

door
robot

equilibrium point

Figure 11: The equilibrium point or desired position and the orientation of the

robot while passing through the door where d = 0, α = 0 and β = 0.

The stability theorem implies that if the robot is near the equi-

librium point, the controllers for v and ω will drive the robot to

the origin and make the robot stay there forever. This means

that when the robot reaches the equilibrium point, both angu-

lar and linear velocities of the robot should be zero to keep the

robot on the equilibrium point. We find, however, when d = 0,

α = 0 and β = 0, the linear and angular speed models of Table 2

result in v = 0.1 and, correctly, ω = 0.

Obviously, having a non-zero linear velocity on the equilib-

rium point violates the stability of the controllers. We therefore

decided to modify the structure of the v controller, in such a way

that v = 0 at the equilibrium point (d = 0, α = 0 and β = 0).

We removed the constant term from the model and changed the

denominator of the second term to K so that new K parameter

compensates the effect of removing the constant term. The new

candidate v and ω controllers are given in Table 3.

v(n) =
d(n)

K

ω(n) =
β (n)

2
−

α(n)

4

Table 3: The candidate polynomial models to improve the door centralization.

4.2.1. Estimating the value of K

The value of the K was determined such that Lyapunov sta-

bility conditions hold for the controllers and therefore drive the

robot safely to the equilibrium point. For the stability analysis,

we derived the three differential equations in terms of the de-

fined state (ḋ, α̇ and β̇ ) defining the dynamical system of door

traversal behaviour. These equations describe how the three in-

puts (d, α and β ) change according to the actions of the robot.

These equations are, in fact, a unicycle kinematic model ex-

pressed in polar coordinates [22]:

ḋ = −vcos(α), (2)

β̇ =
−vsin(α)

d
, (3)

α̇ = ω, (4)

where v and ω are the robot velocities. The derivative of α
with respect to time is just the angular velocity of the robot,

while the change in d is proportional to the linear velocity com-

ponent of the robot parallel to the −d direction and change in

β is proportional to the linear velocity component perpendicu-

lar to d direction and also inversely proportional with the dis-

tance d (see Figure 12).

α = av
.

α =

d =

β =

d+

α=d
.

−v*cos(   )

door

β

α

equilibrium point

β
.

=
α

d

n

−v*sin(   )

0

0

0

Figure 12: Three differential equations which describes how the perception of

the robot (d, α , β ) changes according to the robot’s actions.

Substituting the candidate controller models given in Table 3

into Equations 4, 2 and 3, the resultant differential non-linear

equations modeling the dynamic behaviour of the robot be-

come:

α̇ =
β

2
−

α

4
, (5)

ḋ =
−d cosα

K
, (6)

β̇ =
−sinα

K
. (7)

Now we can use the following Lyapunov candidate function

V (d,α,β ):

V =
1

2
(α̇2 + ḋ2 + β̇ 2). (8)

This function is one of the most common choices among Lya-

punov candidate functions [21] which satisfies the requirement

of the first Lyapunov stability condition where V ≥ 0 for all the

values of d,α and β .

The derivative of V with respect to time can now be written

in terms of partial derivatives of the differential equations of d,

α and β .

dV

dt
=

1

2

(

∂V

∂α
α̇ +

∂V

∂d
ḋ +

∂V

∂β
β̇

)

, (9)

where
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∂V

∂α
=

1

2

(

α −2β

8
+(d2

−1)
sin2α

K2

)

, (10)

∂V

∂d
=

d cos2 α

K2
, (11)

∂V

∂β
=

1

8
(−α +2β ). (12)

Combining Equations 5-7 with Equations 10-12 we get the

individual terms of V̇ (d,α,β )

∂V

∂α
α̇ = −

1

64
(α −2β )2 +

1

8

(d2 −1)(α −2β )sin2α

K2
, (13)

∂V

∂d
ḋ = −

d2 cos3 α

K3
, (14)

∂V

∂β
β̇ =

(α −2β )sinα

8K
. (15)

Having identified V̇ = dV
dt

as a function of d, α and β , we

evaluated the equation on the computer to see the response of

the system for the input vector (d, α , β ) varying in the the range

of 0 ≤ d ≤ 4, −90◦ ≤ α ≤ 90◦, and −90◦ ≤ β ≤ 90◦, corre-

sponding to the possible positions of the robot. Different values

were tested for the parameter K within the range of 0 ≤ K ≤ 20.

The results revealed that to keep the system stable (V̇ < 0) (Fig-

ure 13), the value of K must be bigger than or equal to 10. As

the value of K gets smaller the stability of the system cannot be

guaranteed (V̇ > 0).

From a theoretical point of view, having a lower bound for K

was expected, since K is the parameter affecting only the lin-

ear speed of the robot. It is obvious that the v and ω models

are linked to each other for the generation of the proper be-

haviour of the robot. When K gets smaller, v increases and the

ω value does not increase enough to make the robot turn to de-

sired direction, i.e. the curvature of the trajectories (κ = ω/v)

is smaller and the robot cannot turn fast enough to head towards

the door.

x

dV(x)
dt

−0.20

−0.25

−0.15

−0.10

−0.05

0.00

0

Figure 13: The plot of
dV (x)

dt
function where x = [d,α,β ] and K = 10.

On the other hand, when K increases, v gets smaller and the

overall response of the system slows down, i.e. the robot spends

more time to achieve the desired task. We therefore chose K as

small as possible (K = 10) within the stability region. The final,

optimized controllers are given in Table 4.

v(n) =
d(n)

10
,

ω(n) =
β (n)

2
−

α(n)

4
.

Table 4: The optimized polynomial models to achieve better door centraliza-

tion.

4.2.2. Validation of the optimized model

Having obtained the new controller models, we tested them

on the real robot by starting from 32 different locations in the

training environment (note that the new controllers will drive

the robot to the equilibrium point, but will not make the robot

pass through the door since v and ω become 0 at the equilibrium

point). Therefore, just for demonstration purposes, we modified

the program in such a way that when the robot reaches the equi-

librium point, we set the linear velocity to 0.1 so that the robot

would carry on and actually pass through the door.

The results (see Figure 14) demonstrated that in all experi-

ments the models drove the robot successfully through the gap

and, more importantly, the robot traversed the door more cen-

trally (median deviation of the robot from the center of the door

is 1.254 cm, confidence interval = [0.567,1.345], p = 0.05),

significantly better than the previous models (3.284 cm, con-

fidence interval = [1.635,4.475]) at the 5% significance level

(U-test).

Figure 14: The trajectories of the robot under the control of the optimized poly-

nomial NARMAX models given in Table 4.

4.2.3. Measuring the generalization performance of the model

Having demonstrated that the obtained controllers are stable,

driving the robot to the center point of the door, we also postu-

late that the models would drive the robot successfully through
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any opening, as long as the width of the gap is bigger than the

width of the robot .

We tested this hypothesis by running the robot in an envi-

ronment composed of two consecutive door-like openings with

different widths, 70 cm and 80 cm. These are very small open-

ings, leaving just 5 cm manoeuvering space either side for a

robot of 60 cm diameter! Figure 15 shows the trajectories of the

robot, they confirm that the model indeed achieves this difficult,

high-precision task. The median deviations of the robot from

the center point for the first and the second gap are (1.389 cm,

confidence limits= [0.455,1.548]) and 1.456 cm, confidence

limits= [0.300,1.889], respectively. This controller performs

better than the non-optimized one, even for smaller door open-

ings.

Figure 15: The trajectories of the robot under the control of the optimized poly-

nomial NARMAX models of Table 4, passing through two consecutive open-

ings with 70 cm and 80 cm. The base width of the robot is 60 cm.

4.3. Obtaining Empirical Perception Models

In the previous section we defined three differential equations

(ḋ, α̇ and β̇ ), modelling the dynamical system of door traversal

behaviour. These equations describe how the three inputs (d,

α and β ) change, as a result of the actions of the robot. We

assumed these functions to be known beforehand.

However, in real robot applications these equations are rarely

known a priori, and have to be estimated by looking at the train-

ing data.

To obtain such models from real data, rather than from theo-

retical models, we again used the the NARMAX system iden-

tification method to obtain perception models describing how

the controller input vector (dk,αk,βk) changes in relation to the

actions of the robot, performing door traversal, at each time

stamp k. We also assume that the current state of the envi-

ronment perceived by the robot (dk,αk,βk) can be computed

from the previous environment state vector (dk−1,αk−1,βk−1)
and the previous velocity commands of the robot (vk−1,ωk−1).

We trained three polynomial NARMAX models to estimate

the controller inputs (dk,αk,βk) based on the previous input

values (dk−1,αk−1,βk−1) and the previous action commands

(vk−1,ωk−1). The obtained perception model can be stated as a

set of ARMAX models with no lag in the inputs and the outputs

(Table 5). This means that for our episodic task considering

only a linear polynomial is enough to make a good prediction.

dk = 0.21+1.05dk−1 −2.25vk−1

αk = 1.03αk−1 +0.3ωk−1

βk = 0.96βk−1 −0.1αk−1

Table 5: The perception models estimating position and orientation of the door

with respect to robot position, as a consequence of the actions of the robot.

The performance of the obtained perception models were

tested using a validation data set obtained during the training

session. Figure 16 presents the real and predicted values of

d,α and β along the whole set of testing trajectories chained

one after the other.

While computing d,α and β , the estimation models were

allowed to get real sensor input only at the starting position of

each trajectory, then predicting the rest using the real motor

commands and the previously estimated input values. Jumps

at the beginning of the sequences are the effect of chaining the

data of different trajectories.

To evaluate the performance of the models we computed the

Spearman rank correlation coefficient between the real and pre-

dicted values for d, β and α , given in Table 6, indicating quan-

titatively that the estimates of the prediction models closely

match the real values of d, β and α .

Mean Absolute Error Spearman Rank Correlation

d 0.081±0.010 (m) 0.951, (p < %5)
β 0.117±0.003 (rad) 0.757, (p < %5)
α 0.095±0.003 (rad) 0.963, (p < %5)

Table 6: We evaluated the performance of the perception models by computing

the mean absolute error and the Spearman rank correlation coefficients between

the real and predicted values for d, β and al pha respectively.

4.3.1. Validation of the perception models

Having obtained both perception and controller models, we

then validated the performance of the models by testing them

on the real robot in a real door traversal application. We used

the controller model to drive the robot, but rather than using

real sensory inputs (d,α,β ), the estimated values computed by

the perception models were fed to the controller. The robot was

allowed to get real sensor input only at the starting position, and

then the whole set of motion commands was generated by the

controller using the estimate of d, α and β at each step.

Figure 17 shows the resulting trajectories of the robot. The

results show the accuracy of the models, since the robot is able

to traverse the door successfully even with a single snapshot of

the environment at the starting position. Obviously the perfor-

mance of the robot is not as good as when the robot uses real

sensor signals to compute the speed outputs where the median
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real d
predicted d

0 800

4.0

0.0

2.0

(a) Validation graph of the real (line) and the predicted (dashed line) values of

the distance d to the centre point of the door

real alpha
predicted alpha

0 800
−1.0

0.0

1.0

(b) Validation graph of the real (line) and the predicted (dashed line) values of

the robot heading α relative to the centre point of the door

predicted beta
real beta

0 800
−0.8

0.0

0.8

(c) Validation graph of the real (line) and the predicted (dashed line) values of

the angle β between robot position and centre point of the door

Figure 16: Real values and predictions of the robot-environment variables over

the test trajectories.

Figure 17: The trajectories of the robot under the control of the controller and

perception models of Table 5. The robot was able to traverse through the door

almost blindly without using any real sensor inputs. The robot was allowed

to get real sensor input only at the starting position, and then the whole set of

motion commands was generated by the controller based on the estimate values

of d, α and β computed by the prediction models.

deviation of the robot from the mid-point of the door was 5.456

cm, [0.300,1.889]. However, this approach can be very useful

under unexpected circumstances; for instance if at some step of

the door traversal behaviour the door detection algorithm fails

to detect the door accurately, or if the laser sensor of the robot

breaks down for some reason. It can also be used for abnormal-

ity detection since the robot has an expectation about how its

perception changes according to its actions.

5. Conclusions and Further Work

5.1. Summary

This paper discusses the application of the NARMAX sys-

tem identification method to generate sensor-motor couplings in

mobile robotics applications. The main advantage of modelling

sensor-motor relationship of the robot to achieve a desired task

using polynomial NARMAX models is that polynomial models

are transparent mathematical functions which can be directly

related to the task under investigation. This allows an anal-

ysis of how each input entering the model affects the overall

behaviour of the robot but also an analysis to test whether the

obtained models are stable in the sense that they guarantee to

drive the robot to the desired end point.

In the example presented (Section 4.2), we demonstrated that

Lyapunov stability analysis can be used for analysing polyno-

mial NARMAX models. We computed the optimum value for

the parameter K in order to optimize the door traversal con-

trollers such that they drive the robot to the center point of the

door safely. Having demonstrated that the robot traverses the

gap well centered, we then postulated that the models would

drive the robot through any opening, as long as the width of

the gap is bigger than the width of the robot, and the door is de-

tected correctly. Testing our hypothesis by letting the optimized

models drive the robot in a test environment, the results con-

firmed that the optimized models are able to traverse through

the openings safely.

Furthermore we demonstrated that NARMAX system iden-

tification method can be used to obtain perception models that
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identify how the perception of the robot changes according to

its actions, in the context of the desired behaviour. In particular

we obtained models dk, αk, and βk that estimate how the posi-

tion and the orientation of the door relative to the robot alters

according to robot’s actions.

As demonstrated in Section 4.3, we validated the perfor-

mance of the models by testing them on the robot in a real door-

traversal application. Using the combination of controller and

perception models enabled the robot to cross door-like open-

ing almost blindly, using sensory perception only once right at

the beginning, after that computing motion commands en route,

based on the model-predicted values of d, β and α .

5.2. Future Work

Having controller and perception models identified in a trans-

parent form using mathematical models enables us to have a

complete mathematical description of the robot-environment

interaction for the desired behaviour. We believe that this

will give us the opportunity for further analysis of robot-

environment interaction from a mathematical point of view so

that we can have a better understanding of how the robot is

interacting with the environment to accomplish the desired be-

haviour. Therefore, we are currently investigating formal meth-

ods of analysing the obtained models to address scientific ques-

tions such as identifying if the generated controllers are stable

or not, or to predict the behaviour of the robot in untested envi-

ronments.

Overall, the work already carried out and the proposed future

work are part of ongoing research to develop a theory of robot-

environment interaction.
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