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Abstract

This paper focuses on developing a formal, theory-based design methodology to generate transparent robot control programs
using mathematical functions. The research finds its theoretical roots in robot training and system identification techniques such
as Armax (Auto-Regressive Moving Average models with eXogenous inputs) and Narmax (Non-linear Armax). These techniques
produce linear and non-linear polynomial functions that model the relationship between a robot’s sensor perception and motor
response.

The main benefits of the proposed design methodology, compared to the traditional robot programming techniques are: (i) It is
a fast and efficient way of generating robot control code, (ii) The generated robot control programs are transparent mathematical
functions that can be used to form hypotheses and theoretical analyses of robot behaviour, and (iii) It requires very little explicit
knowledge of robot programming where end-users/programmers who do not have any specialised robot programming skills can
nevertheless generate task-achieving sensor-motor couplings.

The nature of this research is concerned with obtaining sensor-motor couplings, be it through human demonstration via the
robot, direct human demonstration, or other means. The viability of our methodology has been demonstrated by teaching various
mobile robots different sensor-motor tasks such as wall following, corridor passing, door traversal and route learning.

1. Introduction

Fundementally, the behaviour of a robot is influenced
by three components: i) the robot’s hardware, ii) the pro-
gram it is executing, and iii) the environment the robot is
operating in. Because this is a highly complex and often
non-linear system, most of the existing robot programming
techniques are based on empirical trial-and-error process
where the programmer refines the code iteratively until the
robot’s behaviour resembles the desired one to a tolerable
degree of accuracy [Nehmzow, 2003]. We believe that this
approach has certain disadvantages:

(i) The code generation process is costly, time consuming
and error prone [Iglesias et al., 2005].

(ii) There is a lack of understanding in robot-environment
interaction. The generated controllers may achieve
driving the robot in a desired way but they don’t tell
us about the underlying rules which characterize the
relationship between the robot and the environment.

(iii) The generated controllers are usually slow in execu-
tion and consume large memory space because of their
complex nature. Also, error debugging in thousands
lines of code is tiring and cumbersome.

(iv) Due to the iterative refinement, generated controllers
are highly robot platform-dependent, which makes

them almost impossible to be used in different plat-
forms.

(v) Above all, in the future, we believe that giving an
opportunity to people to program their own robots
for their individual needs and preferences, rather
than pre-programming robots for them will advance
robotics research one step further towards person-
alised robotics. However the today’s robot program-
ming techniques require specialised technical skills
from different disciplines and it is not reasonable to
expect end-users to have these skills.

In this paper we therefore focus on developing a for-
mal, theory based design methodology to generate trans-
parent robot control programs using mathematical func-
tions. The research finds its theoretical roots in robot train-
ing and system identification techniques such as Armax
(Auto-Regressive Moving Average models with eXogenous
inputs) and Narmax (Non-linear Armax).

The main benefits of the proposed design methodology,
compared to the traditional robot programming techniques
are: (i) It is a fast and efficient way of generating robot
control code, (ii) The generated robot control programs
are transparent mathematical functions that can be used
to form hypotheses and theoretical analyses of robot be-
haviour, and (iii) It requires very little explicit knowledge of
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robot programming where end-users/programmers, who do
not have any specialised robot programming skills, can nev-
ertheless generate task-achieving sensor-motor couplings.

In [Nehmzow et al., 2005], [Kyriacou et al., 2006]
and [Akanyeti et al., 2007a] we presented a new learning
paradigm where the programmer drives the robot manu-
ally using a joystick to demonstrate the desired behaviour
in a target environment. Once the training data is acquired
in this way, we use the NARMAX modelling approach to
obtain a model which identifies a coupling between sen-
sory perception and motor response as a linear/nonlinear
polynomial. This model is then used to control the robot
autonomously.

In [Nehmzow et al., 2007b], [Akanyeti et al., 2007b] and
[Nehmzow et al., 2007a] we then introduced a new mech-
anism to program robots — programming by demonstra-
tion — based on algorithmically translating observed hu-
man behaviours into robot control code, using transparent
system identification techniques. To obtain such sensor-
motor controllers, we first demonstrate the desired motion
to the robot by walking in the target environment. Using
this demonstration, we obtain recurrent, sensor free models
that allow the robot to follow the same trajectory (blindly).
During this motion the robot logs its own perception-action
pairs, which are subsequently used as training data for
the Narmax modelling approach that determines the final,
sensor-based models which identify the coupling between
sensory perception and motor responses as non linear poly-
nomials. These models are then used to control the robot.

This paper summarizes the two robot training paradigms
mentioned above and presents results from real experi-
ments. The investigated robot tasks are wall following, cor-
ridor following, door traversal and route learning.

1.1. Related Work

Robot training is not new in the robotics field. In the
1990s Dean Pomerleau developed the ALVINN system,
which learns how to steer a vehicle by observing a human
driver steer the vehicle for few minutes [Pomerleau, 1993].
In [Nguyen and Widrow, 1990], Nguyen showed that neu-
ral networks can be used to solve highly non-linear con-
trol problems: a two-layer neural network containing 26
adaptive neural elements learned to back up a computer-
simulated trailer truck to a loading dock, even when
initially “jack-knifed”.

Also in the 1990s, Nehmzow used a neural network con-
troller to train the mobile robot FortyTwo to perform a va-
riety of different tasks such as obstacle avoidance, wall fol-
lowing and route learning [Nehmzow, 1995]. These sensor-
motor competences were accomplished by simply retrain-
ing the robot without the need to alter the actual robot
control code.

Programming mobile robots by demonstration is now a
major trend in the robotics community
[Pardowitz et al., 2007,Allissandrakis et al., 2005]. Many

researchers demonstrate the viability of this approach in
tasks such as maze navigation [Hayes and Demiris, 1994]
[Demiris and Hayes, 1996], arm movement [Schaal, 1997]
[Calinon and Billard, 2007] or service robotics
[Demiris and Johnson, 2003].

Most research based on teaching a desired behaviour to
a robot — via robot training and programming by demon-
stration — relies on neural network structures to link per-
ception to action. This method is relatively fast, and gener-
alizes well, but has the main disadvantage of using opaque
mechanisms which do not reveal how the desired behaviour
is achieved, using the robot’s perception.

In the research presented in this paper we therefore aim
to combine robot training and programming by demonstra-
tion techniques with system identification methods in order
to generate transparent, mathematically analysable sensor-
motor couplings so that we can investigate the underlying
rules which govern robot-environment interaction.

2. Methodology

2.1. Narmax Modelling Methodology

The NARMAX modelling approach is a parameter es-
timation methodology for identifying both the important
model terms and the parameters of unknown nonlinear dy-
namic systems. For multiple input, single output noiseless
systems this model takes the form:

y(n) = f(u1(n), u1(n − 1), u1(n − 2), · · · , u1(n − Nu),

u1(n)2, u1(n − 1)2, u1(n − 2)2, · · · , u1(n − Nu)2,

· · · ,

u1(n)l, u1(n − 1)l, u1(n − 2)l, · · · , u1(n − Nu)l,

u2(n), u2(n − 1), u2(n − 2), · · · , u2(n − Nu),

u2(n)2, u2(n − 1)2, u2(n − 2)2, · · · , u2(n − Nu)2,

· · · ,

u2(n)l, u2(n − 1)l, u2(n − 2)l, · · · , u2(n − Nu)l,

· · · ,

· · · ,

ud(n), ud(n − 1), ud(n − 2), · · · , ud(n − Nu),

ud(n)2, ud(n − 1)2, ud(n − 2)2, · · · , ud(n − Nu)2,

· · · ,

ud(n)l, ud(n − 1)l, ud(n − 2)l, · · · , ud(n − Nu)l,

y(n − 1), y(n − 2), · · · , y(n − Ny),

y(n − 1)2, y(n − 2)2, · · · , y(n − Ny)2,

· · · ,

y(n − 1)l, y(n − 2)l, · · · , y(n − Ny)l)

where y(n) and u(n) are the sampled output and input
signals at time n respectively, Ny and Nu are the regres-
sion orders of the output and input respectively, d is the
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dimension of the input vector and l is the degree of the
polynomial. f() is a non-linear function and here taken to
be a polynomial expansion of its arguments. Expansions
such as multi-resolution wavelets or Bernstein coefficients
can be used as an alternative to the polynomial expansions
considered in this study.

The first step towards modelling a particular system us-
ing a NARMAX model structure is to select appropriate in-
puts u(n) and the output y(n). The general rule in choosing
suitable inputs and outputs is that there must be a causal
relationship between the input signals and the output re-
sponse, usually ascertained by computing the correlation
between chosen inputs and outputs.

After the choice of suitable inputs and outputs, the NAR-
MAX methodology breaks the modelling problem into the
following steps:

(i) Polynomial model structure detection: During this
step we determine the linear and non-linear combina-
tions of inputs and outputs to detect the significant
model terms.

(ii) Model parameter estimation: Then we estimate the
coefficients of each term found in the polynomial
using an orthogonal parameter estimation algo-
rithm( [Korenberg et al., 1988]).

(iii) Model validation: Finally we measure the prediction
error of the obtained model.

The last two steps are performed iteratively (until the
model estimation error is minimised) using two sets of col-
lected data: (a) the estimation and (b) the validation data
set. Usually a single set that is collected in one long session
is split in half and used for this purpose.

The model estimation methodology described above
forms an estimation toolkit that allows us to build a con-
cise mathematical description of the input-output system
under investigation. We are constructing these models in
order to learn the underlying rules from the data. This is
similar to theoretical or analytical modelling, but we let
the data inform us regarding what terms and effects are
dominant etc. Models are therefore constructed term by
term.

One decisive advantage of the Narmax modelling proce-
dure is that the relevance or irrelevance of model terms is
determined automatically, using the Error Reduction Ra-
tio [Korenberg et al., 1988], a process that does not require
knowledge about the system being modelled.

ARMAX and NARMAX procedures are now well es-
tablished and have been used in many modelling do-
mains [Billings and Chen, 1998]. A more detailed dis-
cussion of how structure detection, parameter estima-
tion and model validation are performed is presented in
[Korenberg et al., 1988,Billings and Voon, 1986].

3. Robot Training: Method 1

The first training method is based on demonstrating the
desired behaviour to the robot by driving it manually using

a joystick ( [Nehmzow et al., 2005], [Kyriacou et al., 2006]
and [Akanyeti et al., 2007a]). The method has three stages:

3.1. Driving Robot Manually using a Joystick

(i) Acquisition of training data: The programmer
demonstrates the desired behaviour to the robot by
driving it manually using a joystick in the target en-
vironment. During this run, the sensor perception
and the desired velocity commands of the robot are
logged.

(ii) Obtaining sensor based models: Having obtained
the training data, the sensor based control models
are obtained using the Narmax system identification
method described in section 2.1. These models are
mathematical descriptions that link the perception of
the robot to the desired motor commands to achieve
the desired task.

(iii) Model validation: Once the sensor based con-
trollers are obtained, they are used to drive the
robot in the training environment to validate their
performances.

3.2. Experiment 1: Wall Following

In order to demonstrate the viability of our approach, we
trained a Magellan Pro mobile robot, Radix (figure 1) to
achieve a right-hand wall following behaviour.

(a) (b)

Fig. 1. (a) Radix, with a 40cm diameter, has two degrees
of freedom (translational and rotational). The robot is
equipped with a laser range finder, sonar and infrared sen-
sors as well as a camera. The range finder has a wide angular
range (180◦) with a radial resolution of 1◦ and a distance
resolution of less than 1cm. (b) During experiments, in order
to decrease the dimensionality of the input space to Narmax
model, we coarse coded the laser readings into 9 sectors (u1

to u9) by averaging 20 readings for each 20◦ intervals.

All experiments described in this paper were conducted
in the 100 m2 circular robotics arena of the University of
Essex. The arena is equipped with a Vicon motion tracking
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system which can deliver position data (x, y and z), using
reflective markers and high speed, high resolution cameras.
The tracking system is capable of sampling the motion upto
100Hz within a 1mm accuracy.

Acquisition of training data First the robot was driven
manually using a joystick for half an hour (figure 2). During
this time, the coarse coded laser readings and the rotational
velocities of the robot were logged every 250ms. The laser
perception of the robot was coarse coded in 9 segments by
averaging the laser readings over 20◦ intervals.

Fig. 2. The programmer demonstrates the desired behaviour,
wall following, to the robot by driving it manually using a
joystick for half an hour. During this time, the coarse coded
laser readings and the rotational velocities of the robot
were logged every 250ms.

Sensor signal encoding The coarse coded laser readings
bigger than 0.8 and smaller than 0.3 were clamped to 0.8
and 0.3 respectively so that the robot would take into ac-
count the walls which are close enough to the robot. The
readings were then normalized to be distributed between 0
and 1 and filtered to two element input vector (û1, û2) by
extracting the minimum laser reading (û1) among all the
normalized readings and the right-most normalized laser
reading (û2).

Obtaining sensor-based polynomials After the collection
of training data, a polynomial model was obtained, iden-
tifying the rotational velocity ω of the robot as a function
of the two filtered laser readings (û1, û2). The model was
chosen to be a linear ARMAX polynomial structure of first
degree with no regression in the inputs and output (i.e. l =
1, Nu = 0, Ny = 0), and contained the 3 terms given in
table 1.

In table 1 ω(n) is the rotational velocity of the robot
(in rad/s) at time instant n, û1(n) is the minimum coarse
coded and normalized laser reading and û2(n) is the right
most coarse coded and normalized laser reading.

ω(n) = +0.463 − 1.967 ∗ û1(n) + 0.901 ∗ û2(n)

Table 1
Experiment 1. ARMAX controller which links the coarse-

coded laser readings of the robot to its angular velocity to
achieve right-hand wall following behaviour (see figure 2).

Testing the model Having obtained the sensor based con-
troller, first, we let the model drive the robot in the train-
ing environment for about 15 minutes (corresponding 5
laps around the arena). During the experiments, the travel
speed of the robot was kept constant at 0.15m/s. Figure 3
illustrates that the obtained trajectory matches the target
trajectory very closely (see figure 2).

Fig. 3. Experiment 1: The trajectory of the robot driven
by the ARMAX controller given in table 1 resembles the
training trajectory (figure 2) very closely. Note that the
robot traveled round the arena 5 times.

Then we tested our model in a different test environment
15 minutes (5 laps), to see if the model captured the fun-
damental relationship between the perception and action
of the robot in order to achieve the desired wall following
behaviour. The results (figure 4) are again satisfactory.

4. Robot Training: Method 2

The second robot training method is based on “pro-
gramming by demonstration” idea, where the pro-
grammer himself demonstrates the desired behaviour
to the robot by performing it in the target environ-
ment, rather than driving the robot via a joystick
([Nehmzow et al., 2007b,Akanyeti et al., 2007b]). This
method has 4 stages:

4.1. Programming by Demonstration

(i) Human demonstration: First, the programmer
demonstrates the desired behaviour by performing
it in the target environment. For the purpose of this
paper we confined our experiments to 2-dimensional
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Fig. 4. Experiment 1: Performance of the ARMAX controller
in a novel test environment, here the robot traveled round
the arena 5 times. The results show that the ARMAX con-
troller captured the fundamental relationship between the
coarse coded laser readings and the rotational velocity com-
mands in order to achieve right wall following behaviour,
even in an environment that differed from the training sce-
nario.

navigation problems reflecting the motion capabili-
ties of our robot (2 degrees of motion, translational
and rotational). During this initial demonstration,
we log the x and y position of the human user with
a sampling rate of 50Hz by using the Vicon motion
tracking system. Once the operator’s trajectory is
logged, we compute the translational and rotational
velocities of the demonstrator by differentiating con-
secutive (x, y) samples along the trajectory.

(ii) Sensorless trajectory following In the second
stage we use the Narmax system identification
method to obtain two sensor-free polynomials, one
expressing rotational velocity as a function of time
and past rotational velocities, the other expressing
the translational velocity as a function of time and
past linear velocities.

We then use these two sensor-free polynomials to
drive the robot blindly along the trajectory the hu-
man had taken earlier, now logging sensor readings
and velocities. We use a sampling frequency of 10Hz
at this stage.

(iii) Obtaining sensor based controllers The sensor-
free controllers obtained at stage II are ballistic con-
trollers that drive the robot along the desired trajec-
tory, as long as the robot is started from the same ini-
tial positions as the human. However, for real-world
applications it is essential that sensor feedback is used
to control the motion of the robot.

In the final stage we therefore use the Narmax
system identification method to obtain sensor-based
controllers, using the previously logged sensor-motor
pairings. This controller can subsequently be used to
control the robot in the target environment, copy-
ing the original behaviour exhibited by the human

demonstrator.
(iv) Model validation Finally we let the obtained con-

trollers drive the robot in the train and test environ-
ments to see if the models capture the necessary re-
lationship between the robot’s perception and action
in order to achieve the desired behaviour.

4.2. Experiment 2: Corridor Following

To demonstrate the viability of this second method, we
demonstrated to a Scitos G5 mobile robot (figure 5) how
to follow the U-shaped corridor of 150 cm width shown in
figure 6. The programmer started at right side and then
walked to the end of the corridor. During this time, the
position of human was logged in every 20ms by using the
Vicon motion tracking system.

robotangle 240 angle 0

laser

av

lv
+

−
−

u1

u2

u3

u4

u5u6u7
u8

u9

u11

u10

+

(a) (b)

Fig. 5. (a) The Scitos G5 robot Dax. Dax, with a base diameter of
60cm, has two degrees of freedom (translational and rota-
tional). The Hokuyo range finder mounted on the robot has
a wide angular range (240◦) with a radial resolution of 0.36◦

and distance resolution of less than 1cm. (b) In order to de-
crease the dimensionality of the input space to the Narmax
model, we coarse coded the laser readings into 11 sectors
(u1 to u11) by averaging 62 readings for each 22◦ intervals.

After we estimated the rotational and translational ve-
locities of the programmer along the desired trajectory
through differentiation of (x,y) positions, we used the Nar-
max system identification method to obtain two sensor-free
controllers for the translational velocity and the rotational
velocity of the robot. Both models are given in table 2.

After obtaining these sensor-free polynomials, we use
them to drive the robot in the U-shaped corridor (figure 7).
During this run, the laser readings and the robot’s trans-
lational and rotational velocities were logged every 100ms.

Sensor Signal Encoding In order to decrease the dimen-
sionality of the input space to the Narmax model, we
coarse coded the laser readings into 11 sectors by averag-
ing 62 readings for each 22◦ interval. We then used the
Narmax identification procedure to estimate the robot’s
translational and rotational velocities as a function of the
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Fig. 6. Experiment 2: The trajectory of the human demonstra-
tor in the U-shaped corridor environment. The width of the
corridor is 150 cm.

lv(n) = av(n) =

+0.347 −0.005

+0.004 ∗ t(n) +0.001 ∗ t(n)

−0.001 ∗ t(n)2 +0.001 ∗ t(n)2

−0.001 ∗ t(n)3

+0.818 ∗ y(n − 1)

+0.158 ∗ y(n − 1)2

−0.276 ∗ y(n − 1)3

+0.001 ∗ t(n) ∗ y(n − 1)

−0.001 ∗ t(n)2 ∗ y(n − 1)

Table 2
Two sensor-free polynomials to drive the robot “blindly”

along the human trajectory given in figure 6. lv(n) is the
translational velocity in m/s, av(n) the rotational velocity
in rad/s and t(n) is time variable at time instant n.

coarse coded laser readings (u1, u2, · · · , u11). Both models
are given in table 3.

Models validation We then validated the sensor-based
models given in table 3 by letting them control the robot
in the U shaped corridor. We started the robot from 10
different locations, and observed correct corridor following
behaviour in all cases. The resulting trajectories are shown
in figure 8.

5. Extending Method 2

The experiments presented so far used an external, cam-
era based motion tracking system to log trajectory infor-
mation. However, such tracking systems are complicated
to set up, have to be calibrated, and, most importantly for
service robotics applications, are not found in real world
environments.

Fig. 7. Experiment 2: The trajectory of the robot under con-
trol of the sensor-free polynomials given in table 2. The
models drive the robot along the human trajectory given in
figure 6 without using any sensory perception. During this
run, the robot logs its own perception and velocity com-
mands. The logged data is then used to obtain the final, sen-
sor-based controllers which link the perception of the robot
to motor commands.

lv(n) = av(n) =

+1.011 +0.570

−0.037 ∗ u1(n) +0.002 ∗ u1(n)

+0.164 ∗ u2(n) +0.069 ∗ u2(n)

+0.147 ∗ u3(n) +0.052 ∗ u3(n)

−0.128 ∗ u4(n) −0.181 ∗ u4(n)

−0.116 ∗ u5(n) −0.046 ∗ u5(n)

−0.051 ∗ u6(n) −0.049 ∗ u6(n)

−0.075 ∗ u7(n) −0.038 ∗ u7(n)

−0.051 ∗ u8(n) −0.020 ∗ u9(n)

−0.074 ∗ u9(n) −0.050 ∗ u10(n)

−0.131 ∗ u10(n)

Table 3
Two sensor-based polynomials which link the robot’s percep-
tion to motor commands in order to achieve the behaviour
shown in figure 6. lv(n) and av(n) are the robot’s transla-
tional velocity in m/s and rotational velocity in rad/s at
sampling point n. u1 to u11 are the laser bins defined in fig-
ure 5.

In [Nehmzow et al., 2007a], we therefore proposed a new
method for replacing the Vicon motion tracking system,
estimating the position of the programmer by interpreting
camera images through a Narmax model, which was trained
to predict the position of the demonstrator from the camera
image.
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Fig. 8. Experiment 2: Ten trajectories of the robot under
control of the sensor-based controllers given in table 3.
Note the convergence to one stable trajectory, irrespective
of starting point.

5.1. Demonstrator position estimation, using perceptual

features

Our method is based on tracking the red jacket worn by
the programmer during demonstration. Theoretically, as-
suming that the programmer is always facing to the robot’s
camera — so that the jacket appears as a rectangular ob-
ject in the images — the position of the programmer can be
estimated using the position and the size of the jacket blob
appeared in the images (see figure 10 and 9). The informa-
tion about the apparent position and the size of the jacket
is obtained by extracting the “top left” and “bottom right”
coordinates of the jacket blob in the images (figure 9a) and
these coordinates are then fed to the Narmax models as
inputs (figure 10).

xmin ymin

y
maxmaxx

X axis

Y
 a

xi
s

0,0

(a) (b)

Fig. 9. (a) The output image after a pre-processing stage.
The demonstrator’s jacket was isolated from the rest of
the image using a blob colouring algorithm. (b) The position
information of the jacket is then fed to Narmax models which
identify the position of the demonstrator relative to the
robot’s reference coordinate.

Fig. 10. Position estimation models, identifying the relation-
ship between the position of the jacket in the image and the
position of the demonstrator referenced to the robot’s co-
ordinate system. (xmin, ymin) and (xmax, ymax) are the coor-
dinates of the “top left” and “bottom right” corners of the
rectangle surrounding the red jacket (see figure 9 ). These
coordinates are computed by separating the red jacket from
the background of the image using a blob colouring algo-
rithm.

Note that, the position of the programmer is computed
relative to the robot’s coordinate frame which is given in
figure 9b.

Finding the position of the jacket Figure 11 shows the
block diagram that illustrates how we extract the two co-
ordinates (xmin, ymin) and (xmax, ymax) from the captured
images.

Fig. 11. The block diagram that illustrates how the red
jacket is extracted from the captured images. First the lens
distortions are removed from the raw image. Then the cor-
rected image is converted into chromaticity space which is
less illumination dependent. In the final stage, the jacket is
separated from the background of the image by blob colour-
ing algorithm (see figure 9).

First we remove lens distortions from the captured im-
ages. Once the image is corrected, we convert it into “chro-
maticity colour space” which is less illumination dependent
that the RGB colour space (equations 1-3).

Cr =
R

R + G + B
, (1)
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Cg =
G

R + G + B
, (2)

Cb =
B

R + G + B
, (3)

where Cr, Cg and Cb are the red chromaticity, green chro-
maticity and blue chromaticity components respectively,
and R, G and B are the red, green and blue values respec-
tively of the colour to be described.

In the final stage, we separate the jacket from the back-
ground of the image by using a blob colouring algorithm.
Blob colouring is a technique used to find regions of similar
colour in the image. The connected pixels are grouped to-
gether if they have similar intensity values and assigned to
different regions if the difference in their intensity values is
bigger than a certain threshold.

After completion of the blob colouring algorithm we as-
sume that the biggest red coloured region corresponds to
the red jacket, making sure that assumption holds through
our experimental procedure. We then compute the mini-
mum rectangular box which can frame the jacket entirely
(figure 9). The coordinates of the “top left” and “bot-
tom right” corners of the rectangle are then fed to Narmax
polynomials obtained to predict the position of the demon-
strator.

Acquisition of the training data In order to collect train-
ing data for the estimation of the programmers’s position
during the demonstration, the human trainer wearing a red
jacket walked randomly in the robot’s field of view for half
an hour. During the training session the robot was station-
ary, and the robot’s camera was aligned parallel to the floor
so that the robot’s field of view has the maximum coverage
area for the demonstrator.

During this time the “top left” and “bottom right” co-
ordinates of the jacket blob and the relative position of the
demonstrator referenced to the robot — obtained through
the Vicon motion tracking system — were logged syn-
chronously every 250ms. Figure 12 shows the stream of
the original and the processed images captured during the
training session.

Obtaining position prediction models We then used the
Narmax system identification procedure to estimate the
position of the demonstrator as a function of (xmin,xmax)
and (ymin,ymax). The Z direction position prediction model
Zj was chosen to be second degree with no regression in
the input and output (i.e. l = 2, Nu = 0, Ny = 0). The
resulting model contained 6 terms. The Y direction position
prediction model Yj was chosen to be fourth degree with no
regression in the input and the output (i.e. l = 4, Nu = 0,
Ny = 0) and contained 7 terms. Both models are given in
table 4.

Figure 13 shows the predicted and actual position of
the demonstrator using validation data set obtained during
training.

1 2 3 4

5 6 7 8

Fig. 12. Stream of images captured by the robot’s camera dur-
ing the acquisition of the training data set used in obtain-
ing Narmax model in order to calculate the position of the
demonstrator. Each image is pre processed using the proce-
dure given in figure 11 in order to extract the position of
the red jacket in the image.

Zj(n) = Yj(n) =

+14.684 −4.128

+0.148 ∗ u3(n) −0.015 ∗ u1(n)

−0.184 ∗ u4(n) +0.051 ∗ u2(n)

+0.001 ∗ u3(n)2 −0.001 ∗ u2(n)2

+0.001 ∗ u4(n)2 +0.001 ∗ u1(n) ∗ u2(n)2

−0.001 ∗ u3(n) ∗ u4(n) +0.001 ∗ u1(n) ∗ u1(n)3

−0.001 ∗ u1(n) ∗ u2(n)3

Table 4
Two position polynomials which link the perception of the

robot to the position of the demonstrator relative to the
robot’s coordinate frame. Zj(n) and Yj(n) are the z position
(in m) and y position (in m) of the demonstrator at time
instant n and u1 to u4 are the xmin, xmax, ymin and ymax

coordinates of the “red jacket blob” extracted from the
image as described in figure 11.

Model validation We compared the predicted position of
the demonstrator with the actual position by analysing the
error distributions. The results show that the average error
between the predicted and actual position of the demon-
strator is less than 10mm±3mm for both models (see fig-
ure 14).

5.2. Experiment 3 Door Traversal

After obtaining the position prediction models (Zj ,Yj),
we replaced the Vicon motion tracking system with the
new models tested the whole system by teaching a Scitos

G5 mobile robot, Rex (figure 15) to achieve door-traversal
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Fig. 13. The predicted and actual position of the demonstra-
tor in the robot’s coordinate frame (in meters).

behaviour. The programmer walked through two consecu-
tive door like openings of 120 cm width. During this time,
the robot calculates the trajectory of the programmer us-
ing the trajectory capturing mechanism described in sec-
tion 5.1 every 250ms. Figure 16 shows the general exper-
imental scenario in which the programmer performed the
desired behaviour while the robot was observing him. Fig-
ure 17 shows the stream of images which were captured and
processed by the robot during the demonstration.

Analysis of the observed trajectory reveals that there is
noise in the data because of two reasons:

(i) There is a constant oscillation in the motion of the
demonstrator, which originates from the swinging
motion perpendicular to the heading direction. This
is a general characteristic of the two legged locomo-
tion in humans.

(ii) The polynomials that compute the position of the
demonstrator with respect to the robot are very sen-
sitive to how accurate the position and the size of
the jacket is extracted from the image. So far we as-
sumed that the red jacket is a rectangular, rigid ob-
ject; in other words, that the coordinates of the top
left and bottom right corners of the jacket would give
us the position in the image and the size of the jacket
accurately. However the information about the posi-
tion and the size can be noisy when the shape of the

+−
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4003002001000.0−100−200−300
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Fig. 14. The error distributions of the Z position prediction
model and the Y position prediction model. The average er-
ror between the predicted and actual position of the demon-
strator is less than 10mm±3mm for both models.

robotangle 240 angle 0

laser

av

lv
+

−
−

u1

u2

u3

u4

u5u6u7
u8

u9

u11

u10

+

(a) (b)

Fig. 15. (a) Rex has two degrees of freedom (translational
and rotational) and is equipped with a Hokuyo laser range
finder. The range finder has a wide angular range (240◦)
with a radial resolution of 0.36◦ and distance resolution
of less than 1cm. During experiments, in order to decrease
the dimensionality of the input space to Narmax model, we
coarse coded the laser readings into 11 sectors (u1 to u11)
by averaging 62 readings for each 22◦ intervals (b).
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REX

HUMAN

Fig. 16. Experiment 3: The trajectory taken by the demonstra-
tor while passing through the two openings of 120cm width.
While the demonstrator was performing this behaviour, the
robot was observing him and calculating the demonstrator’s
relative trajectory according to the robot itself using po-
sition prediction models given in table 4.

jacket is deformed due to the shoulder motions of the
demonstrator.

We eliminated some noise by using a low pass filter, as-
suming that the demonstrator did not do sharp changes
in the heading direction while performing the desired task.
We then computed the translational and rotational veloci-
ties of the demonstrator along the trajectory.

Having obtained the velocity information of the program-
mer along the desired path, we used them to drive the robot
blindly in the test environment. During this first robot
interaction with the environment, laser readings and the
robot’s translational and rotational velocities were logged
in every 250ms (see figure 18).

Sensor signal encoding In order to decrease the dimen-
sionality of the input space to the Narmax model, we
coarse coded the laser readings into 11 sectors by averag-
ing 62 readings for each 22◦ interval. We then used the
Narmax identification procedure to estimate the robot’s
translational and rotational velocities as a function of the
coarse coded laser readings (u1, u2, · · · , u11), see figure 15.

Both the translational and the steering speed model were
chosen to be second degree. No regression was used in the
inputs and output (i.e. l = 2, Nu = 0, Ny = 0) resulting in
non linear Narmax structures. Both the models contained
18 terms (table 5).

Models validation We then let the sensor based models
drive the robot in the test environment starting from 15 dif-
ferent locations. Figure 19 shows that the obtained mod-
els are successfull in driving the robot through both the
door like openings without collisions.

t =18 t =39 t =50

t =61 t =72 t =80

Fig. 17. Stream of six images captured by the robot’s camera
during the demonstration of the desired behaviour. The num-
bers below each image indicate the frame number of the im-
age (frame rate 4Hz). The captured images are then pre pro-
cessed as described in section 5.1 in order to extract the
position of the red jacket.

REX

Fig. 18. Experiment 3: The trajectory of the robot under the
control of the given velocity commands obtained from the
human trajectory given in figure 16, not using any sensory
perception. During this pass, Rex logs its own perception per-
ceived along the trajectory and the velocity commands. The
logged data is then used to obtain sensor-based controllers
which link the perception of the robot to the desired be-
haviour.

6. Better Position Prediction

The method of estimating the programmers’s position
described in the previous section assumes that his red jacket
is a rigid and rectangular object where the size of the jacket

10



lv(n) = av(n) =

−0.751 +2.260

+0.059 ∗ u3(n) −0.054 ∗ u3(n)

+0.243 ∗ u4(n) −0.480 ∗ u4(n)

+0.040 ∗ u5(n) −0.144 ∗ u5(n)

+0.139 ∗ u6(n) −0.637 ∗ u6(n)

+0.219 ∗ u7(n) −0.195 ∗ u7(n)

−0.040 ∗ u8(n) +0.212 ∗ u8(n)

−0.001 ∗ u9(n) −0.056 ∗ u9(n)

−0.003 ∗ u3(n)2 −0.003 ∗ u3(n)2

−0.008 ∗ u4(n)2 +0.014 ∗ u4(n)2

−0.007 ∗ u6(n)2 +0.004 ∗ u5(n)2

−0.024 ∗ u7(n)2 +0.085 ∗ u6(n)2

+0.008 ∗ u8(n)2 −0.029 ∗ u8(n)2

−0.003 ∗ u9(n)2 +0.013 ∗ u9(n)2

−0.010 ∗ u3(n) ∗ u4(n) +0.012 ∗ u3(n) ∗ u4(n)

−0.001 ∗ u3(n) ∗ u5(n) −0.004 ∗ u3(n) ∗ u8(n)

−0.028 ∗ u4(n) ∗ u6(n) +0.033 ∗ u4(n) ∗ u6(n)

−0.024 ∗ u4(n) ∗ u7(n) +0.050 ∗ u4(n) ∗ u7(n)

Table 5
Experiment 3. Two sensor-based polynomials which link the

perception of the robot to the desired behaviour shown in
figure 18. lv(n) and av(n) are the translational velocity (in
m/s) and rotational velocity (in rad/s) of the robot at time
instant n and u1 to u11 are the coarse coded laser readings
starting from the right extreme of the robot.

REX

Fig. 19. Experiment 3: The trajectories of the robot under
the control of sensor based controllers given in table 5. The
robot was started from 15 different locations and it passed
through the both door like openings successfully.

only changes as a function of the position of the program-
mer. This assumption is limiting, for two reasons:

(i) The programmer always has to face to the robot’s
camera during demonstration so that the jacket is
visible to the camera as a rectangular object. Besides
being uncomfortable trying to walk always facing to
the camera, it is almost impossible to do so consis-
tently, and some noise is thereby introduced.

(ii) The jacket takes the form of the programmer’s body,
therefore the size and the shape of the jacket does not
only depend on the position of the programmer, but
also on body form and demonstrator movements.

We therefore decided to track an orange sphere, rather
than the red jacket, because the perception of a sphere is
orientation-independent (figure 20).

Fig. 20. Tracking an orange ball to estimate the position
of the programmer during demonstration. Once the image is
captured, the ball is extracted from the image using a blob
colouring algorithm where Xc and Yc are the centre position
and r is the diameter of the ball in the blob image.

6.1. Position prediction using an orange ball

For narrow angle view and good quality cameras like
the one mounted on the robot, we can assume that the
perspective projections of the ball correspond to circular
regions on the image plane regardless of the position and
the orientation of the ball in the real world. Therefore:

(i) The radius of the circular region on the image plane
is directly proportional with the radius of the ball
and inversely proportional to the distance between
the ball and the robot’s camera. As the ball is fur-
ther away from the camera, the size and therefore the
radius of the ball get smaller and vice versa.

(ii) The perspective projection of the ball is independent
from the orientation of the ball, therefore during the
demonstration the programmer does not have to face
the camera all the time.

Based on the above assumptions, the relative position of
the ball according to the robot can be computed as:

Zb =
R

r
∗ f (4)

Yb =
R

r
∗ yc (5)

where Zb and Yb are the relative z and y positions of the
ball centre according to the robot, R is the diameter of the
ball in the real world, r is the diameter of the circular region
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on the image plane corresponding to ball, yc is the y pixel
coordinate of the ball silhouette on the image plane and f

is the focal length of the camera (figure 21).

Fig. 21. The perspective projection of the ball on the image
plane where R and r are the diameter of the ball and ball
silhouette on the image plane respectively.

Training position prediction models We did not use intrin-
sic camera parameters such as focal length and the image
centre of the camera, but decided to train an ARMAX poly-
nomial in the same form with theoretical formulae given in
equations 4 and 5 to identify the coefficients of the formu-
lae without needing to know the camera parameters.

In order to collect training data for the estimation of
the programmers’s position, the human trainer holding an
orange ball walked randomly in the robot’s field of view
for half an hour. During the training session the robot was
stationary, and the robot’s camera was aligned parallel to
the floor so that the robot’s field of view had maximum
coverage area for the demonstrator.

During this time the position and the radius of the ball in
the captured images and the relative position of the demon-
strator referenced to the robot — obtained through the Vi-

con motion tracking system — were logged synchronously
every 100ms. Figure 22 shows stream of original and the
processed images captured during the training session.

In order to find the centre and the radius of the ball in
the images, we modified the blob colouring algorithm —
previously described in section 5.1 — in such a way that it
extracted the biggest orange coloured region in the image.

We then used an ARMAX system identification process
to find the coefficients of the theoretical formulae which
express the relative position of the ball with respect to the
robot coordinate frame in the real world as a function of
the position and the diameter of the ball silhouette in the
image. The resulting models are given in table 6, where
Zb(n) is the position of the ball in z direction and Yb(n) is
the position of the ball in y direction.

Figure 23 shows the actual and predicted positions of the
ball in the robot’s coordinate frame.

Models analysis and validation The analysis of the Z posi-
tion prediction graph in figure 23 confirms the expectation
that prediction gets worse as the distance between ball and

1 2 3 4

5 6 7 8

Fig. 22. Stream of images captured by the robot’s camera
during the training session. The captured images are then
preprocessed to compute the position and the diameter of
the ball in the image (see also figure 20).

Zb(n) = Yb(n) =

+128.321 −63.429

+145792.540 ∗ uz(n) −209.167 ∗ uy(n)

Table 6
Two position predictors which model the balls z and y po-

sitions (in mm) within the robot’s coordinate system as a
function of the balls image positions. uz(n) is 1

r
and uy(n) is

yc

r
at time instant n.

camera increases. As the apparent diameter of the ball de-
creases prediction models become more sensitive to errors
during the calculation of the input terms at the end of the
blob colouring algorithm.

In order to find out how sensitive the performance of the
Zb position predictor is to the smallest possible error of
“one pixel” we took the first derivative of the Zb position
prediction model with respect to the diameter of the ball:

dZb

duz

=
−145792.540

u2
z

(6)

and plotted the resultant equation (6) for different di-
ameter values varying between 20 pixels (when the ball is
approximately 6 metres away from the camera) to 140 pix-
els (when the ball is approximately 1 meter away from the
camera) .

The resulting graph (figure 25) shows that the perfor-
mance of the prediction model is very robust when the ball
is close to the camera. When the distance between the cam-
era and the ball is around 1m, the diameter of the ball in
the camera image is around 140 pixels and the error be-
tween the actual and the predicted position for one pixel
miscalculation error is less than a centimeter. As the ball
gets further away from the camera, the performance of the
position prediction model drops drastically. When the di-
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Fig. 23. The predicted (red) and actual position (blue) of the
ball relative to the robot’s coordinate frame (in meters).

ameter of the ball is around 20 pixels (the ball is approx-
imately 6m away from the camera) the one pixel miscal-
culation of the balls diameter causes approximately 35cm
error in predicting the position.

We also computed the error distributions between the
actual and the predicted positions of the demonstrator in
the y and z directions (figure 26).

Comparing performance using the two different markers

When we compare the error distributions of the two posi-
tion prediction models obtained for the orange ball (Zb, Yb)
with the two models obtained for the red jacket (Zj , Yj),
we see that the red jackets models with an average error of
10mm±3mm are significantly more accurate in predicting
the position of the programmer than the models obtained
for the orange ball where the mean error is 100mm±3mm
(U-test, p< 0.05).

This result was exactly the opposite of what we expected
to see at the beginning of the experiments because we as-
sumed that, opposite to the jacket, the image silhouette of
the ball is not affected from the motions of the programmer
during the demonstration and therefore we expected to ob-
tain more accurate position estimations when we track the
ball rather than the jacket.

However the error analysis revealed that the performance
of the position prediction models also depends on the size
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Fig. 24. These figures show how the diameter of the ball sil-
houette on the image plane is related to the relative posi-
tion of the ball according to the camera. As the ball goes
further away from the camera, the diameter of the ball on
the image plane gets smaller and vice versa.

Ball’s
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Fig. 25. The plot of
dZb

duz
= −145792.540

u2
z

where uz, the diameter

of the ball in the image, varies between 20 and 140. This
graph indicates how much error would be expected from the
performance of the Z position prediction model for a “one
pixel error” with respect to the true diameter of the ball.

of the object being tracked, here as the size of the object
increases, the models become less sensitive to the noise
introduced while computing the position and the size of the
tracked object during image processing stage (figure 25.

In this particular experiment, eventhough the noise intro-
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Fig. 26. The error distributions of the position prediction
models obtained for predicting the position of the orange
ball. Compared with the performance of the models obtained
for the red jacket (figure 14), we see that the red jackets
models with an average 10mm±3mm are significantly more
accurate in predicting the position of the programmer than
the models obtained for the orange ball with an average
100mm±3mm (U-test, p< 0.05).

duced by the motions of the programmer to image silhou-
ette of the ball is less than the image silhouette of the jacket,
since the ball has smaller size compared to the jacket, the
position prediction models obtained for the ball give worse
performance.

6.2. Experiment 4: Route Learning

After obtaining position prediction models (Zb,Yb), we
tested the viability of the models by teaching Rex (fig-
ure 15) to follow a user-specified route in the environment
given in figure 27. The programmer walked once to show
the robot the desired route. During this time, the robot
calculated the position of the demonstrator using Zb and
YB every 100ms. Figure 28 shows a stream of images which
were captured and used by the robot to obtain the position
information of the programmer during the demonstration.

Fig. 27. Experiment 4: The trajectory followed by the pro-
grammer while following the desired route. The green line
shows the real trajectory of the programmer obtained from
vicon motion tracking system and the red line shows the pre-
dicted trajectory of the programmer computed by the posi-
tion prediction models given in table 6.

1 2 3 4

5 6 7 8

Fig. 28. Stream of images captured by the robot’s camera
during the demonstration of the desired route following
behaviour.

Acquisition of the training data We then computed the
translational and rotational velocities of the programmer
along the desired trajectory. Having obtained the veloc-
ity information, we drove the robot blindly in the target
environment. During this time the laser readings and the
robot’s translational and rotational velocities were logged
in every 100ms (figure 29).

Obtaining sensor based polynomials As in the previous
door traversal experiment described in section 5.2, we
coarse coded the laser readings into 11 sectors by averaging
62 readings for each 22 degree intervals in order to de-
crease the dimensionality of the input space to the Narmax
model. We then used the Narmax identification procedure
to estimate the robot’s translational and rotational veloc-
ities as a function of the coarse coded laser readings (u1,
u2, · · · , u11 (see figure 15)).
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Fig. 29. Experiment 4: The trajectory of the robot while fol-
lowing the desired route blindly (figure 27). During this run,
the robot logs its own perception and the desired velocity
commands every 100ms. The logged data were then used in
the training of NARMAX polynomials to obtain sensor-based
controllers given in table 7.

Both the translational and the steering speed model were
chosen to be second degree. No regression was used in the
inputs and output (i.e. l = 2, Nu = 0, Ny = 0) result-
ing in non linear Narmax structures. The linear velocity
model contained 43 terms and the angular velocity model
contained 40 terms (table 7).

Model analysis and validation Having obtained the mod-
els given in table 7, we used them to drive the robot in
the test environment starting from 10 different locations.
Figure 30 shows that the obtained models successfully ne-
gotiate the route, but that in three runs the robot did not
finish at the exact route end F .

Fig. 30. Experiment 4: The trajectories of the robot under
the control of the sensor-based polynomials given in table 7.
During the experiments the robot was started from 10 dif-
ferent locations. The robot completed the route in all ten
cases, but in three cases did not finish at location F .

We observed that the obtained perception models are not
robust, but sensitive to small perturbations, such as the ini-
tial starting positions of the robot. We attribute this to the
complexity of the route which we were trying to learn where
along the desired trajectory the relationship between the
robot’s perception and the desired motor responses vary,
depending on the robot’s position along the trajectory. For
example when the robot is in region A (figure 31) the ac-
tions of the robot are related to the input readings coming
from the sensors found on the right side of the robot. Later

lv(n) = +0.218 av(n) = −0.608

−0.008 ∗ u1(n) +0.059 ∗ u1(n)

−0.109 ∗ u2(n) −0.178 ∗ u2(n)

+0.071 ∗ u3(n) −0.070 ∗ u3(n)

−0.075 ∗ u5(n) +0.040 ∗ u4(n)

−0.039 ∗ u6(n) +0.032 ∗ u5(n)

+0.132 ∗ u7(n) +0.089 ∗ u6(n)

+0.029 ∗ u8(n) +0.264 ∗ u7(n)

−0.037 ∗ u9(n) +0.235 ∗ u8(n)

−0.045 ∗ u10(n) −0.110 ∗ u9(n)

−0.092 ∗ u11(n) −0.080 ∗ u10(n)

+0.010 ∗ u1(n)2 −0.100 ∗ u11(n)

+0.023 ∗ u2(n)2 +0.008 ∗ u1(n)2

−0.015 ∗ u3(n)2 +0.037 ∗ u2(n)2

+0.001 ∗ u4(n)2 +0.030 ∗ u3(n)2

+0.007 ∗ u5(n)2 −0.002 ∗ u4(n)2

+0.003 ∗ u6(n)2 −0.009 ∗ u5(n)2

−0.029 ∗ u7(n)2 −0.017 ∗ u6(n)2

−0.005 ∗ u8(n)2 −0.047 ∗ u7(n)2

+0.010 ∗ u9(n)2 −0.025 ∗ u8(n)2

+0.014 ∗ u10(n)2 +0.030 ∗ u9(n)2

+0.016 ∗ u11(n)2 +0.025 ∗ u10(n)2

−0.006 ∗ u1(n) ∗ u2(n) +0.020 ∗ u11(n)2

+0.001 ∗ u1(n) ∗ u4(n) +0.001 ∗ u1(n) ∗ u2(n)

−0.004 ∗ u1(n) ∗ u6(n) −0.020 ∗ u1(n) ∗ u3(n)

−0.001 ∗ u1(n) ∗ u7(n) −0.022 ∗ u1(n) ∗ u5(n)

−0.003 ∗ u1(n) ∗ u8(n) −0.004 ∗ u1(n) ∗ u6(n)

−0.001 ∗ u2(n) ∗ u4(n) +0.004 ∗ u1(n) ∗ u7(n)

+0.001 ∗ u2(n) ∗ u5(n) +0.004 ∗ u1(n) ∗ u9(n)

+0.005 ∗ u2(n) ∗ u6(n) +0.001 ∗ u1(n) ∗ u10(n)

+0.008 ∗ u2(n) ∗ u7(n) +0.008 ∗ u2(n) ∗ u3(n)

−0.001 ∗ u2(n) ∗ u8(n) +0.001 ∗ u2(n) ∗ u5(n)

−0.003 ∗ u2(n) ∗ u9(n) −0.008 ∗ u3(n) ∗ u8(n)

−0.005 ∗ u2(n) ∗ u10(n) −0.001 ∗ u4(n) ∗ u5(n)

+0.002 ∗ u3(n) ∗ u4(n) −0.003 ∗ u4(n) ∗ u7(n)

−0.003 ∗ u3(n) ∗ u8(n) −0.004 ∗ u4(n) ∗ u9(n)

−0.002 ∗ u4(n) ∗ u10(n) +0.027 ∗ u5(n) ∗ u6(n)

+0.005 ∗ u5(n) ∗ u6(n) −0.008 ∗ u5(n) ∗ u9(n)

+0.009 ∗ u5(n) ∗ u8(n) −0.011 ∗ u7(n) ∗ u10(n)

−0.003 ∗ u5(n) ∗ u9(n) −0.031 ∗ u8(n) ∗ u10(n)

+0.002 ∗ u5(n) ∗ u11(n)

+0.004 ∗ u6(n) ∗ u8(n)

+0.005 ∗ u6(n) ∗ u11(n)

Table 7
Experiment 4. Two sensor-based polynomials which link the

perception of the robot to the desired route following be-
haviour.
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on in region B, the front sensors of the robot starts domi-
nating the behaviour and finally in region C the sensors on
the left side of the robot become more important.

Fig. 31. Experiment 4: The relationship between the robot’s
perception and the desired actions is dependent on the posi-
tion of the robot along the route.

Fig. 32. Experiment 4: This figure shows how the contribu-
tions of the sensors around the robot to obtain the desired
motor response changes along the desired route. In region
A the sensors on the right side of the robot are more impor-
tant than the rest. As the robot enters region B the sensors
in front of the robot are more correlated with the desired
motor response. Finally, in region C the sensors on the left
side of the robot become more dominant for the desired mo-
tor response.

These results indicate that when the causal relationship
between the perception and the desired motor responses of
the robot varies along the desired route, trying to represent
the whole relationship in a single polynomial may not be
possible.

We are currently investigating how to address this prob-
lem. On straightforward method would be to represent
complex, time-dependent sensor-motor tasks by a several
polynomial models, using a classifier which divides the
perception-action space of the robot into subspaces and
generates a separate model for each subspace. This method
has already been seen to work in initial experiments at Es-
sex. We are, however, also investigating ways of represent-
ing complex tasks in one model; this is work in progress.

7. Conclusion and Future Work

This paper discusses robot experiments aiming at devel-
oping a formal, theory based design methodology to gen-
erate transparent robot control programs using mathemat-
ical functions. The research finds its theoretical roots in
robot training and system identification techniques such as

Armax (Auto-Regressive Moving Average models with eX-
ogenous inputs) and Narmax (Non-linear Armax).

In the first set of experiments ([Nehmzow et al., 2005],
[Kyriacou et al., 2006] and [Akanyeti et al., 2007a]), we
operate the robot manually, using a joystick, to follow a
desired trajectory. Once training data is acquired in this
way, we use the NARMAX modelling approach to obtain
a model which identifies a coupling between sensory per-
ception and motor response as a polynomial model. This
model is then used to control the robot autonomously.

In ([Nehmzow et al., 2007b] and [Akanyeti et al., 2007b])
we introduced a new mechanism to program robots — pro-
gramming by demonstration — based on algorithmically
translating observed human behaviours into robot control
code, using transparent system identification techniques.
To obtain such sensor-motor controllers, we first demon-
strate the desired motion to the robot by walking in the
target environment. Using this demonstration, we obtain
recurrent, sensor free models that allow the robot to fol-
low the same trajectory blindly. During this motion the
robot logs its own perception-action pairs, which are sub-
sequently used as training data for the Narmax modelling
approach that determines the final, sensor-based models
which identify the coupling between sensory perception
and motor responses as non linear polynomials. These
models are then used to control the robot.

Previously we used an external, camera-based motion
tracking system to log the trajectory of the human demon-
strator during his initial demonstration of the desired mo-
tion. However, besides being expensive, such tracking sys-
tems are complicated to set up and not always available.

We therefore improved our training method by replac-
ing the Vicon motion tracking system with Narmax poly-
nomial models which are trained to predict the position of
the red jacket worn by the demonstrator using the robot’s
own vision system [Nehmzow et al., 2007a]. The statistical
analysis showed that the obtained models are able to pre-
dict the position of the demonstrator in our laboratory with
an accuracy of 10mm±3mm.

We compared the position prediction models obtained
for two different markers, a red jacket and an orange ball.
Even though the jacket is a non-rigid object, more accurate
predictions can be made using it since it is spatially bigger
than the ball — the larger objects make the position esti-
mation models less sensitive to the noise introduced by the
blob colouring algorithm.

Our experiments in modelling time-variant sensor motor
tasks using a NARMAX system identification technique
show that using a single model to represent complex sensor-
motor tasks (such as entire long routes) may not be viable,
and dividing perception-action spaces into subspaces may
be needed.
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7.1. Future work

Ongoing work in our laboratories addresses the following
three issues:

Automatic parameter selection for NARMAX methodology

Although the proposed method does not require any theo-
retical knowledge of robot programming, the need for model
structure identification remains.We are interested to auto-
mate this process.

Object Tracking under occlusion So far our position esti-
mation models only take the current image into account.
This can be brittle in cases where the tracked object is ei-
ther under occlusion or not visible in the image. We there-
fore are currently investigate methods of integrating extra
information about the tracked object into the model (such
as the previous position of the ball and the velocity of the
ball), and expect improved performance in cases of occlu-
sion.

Generating multi-polynomial sensor-motor couplings As
discussed in the previous section, if the sensor-motor task
under investigation is time-dependent or very complex, it
may not be possible to represent the whole sensor-motor re-
lationship in a single model. We therefore currently investi-
gate ways of automatically clustering the perception-action
space into subspaces, and generating a separate model for
each of the subspaces.
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