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Abstract: A new time-varying autoregressive (TVAR) modelling approach is proposed for 

nonstationary signal processing and analysis, with application to EEG data modelling and power 

spectral estimation. In the new parametric modelling framework, the time-dependent coefficients of 

the TVAR model are represented using a novel multi-wavelet decomposition scheme. The time-

varying modelling problem is then reduced to regression selection and parameter estimation, which 

can be effectively resolved by using a forward orthogonal regression algorithm. Two examples, one 

for an artificial signal and another for an EEG signal, are given to show the effectiveness and 

applicability of the new TVAR modelling method.  
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1.   Introduction 

Electroencephalography (EEG) is an important non-invasive technique for medical diagnosis in 

clinical neurophysiology, as well as for scientific study of brain function in cognitive neuroscience.  

Electroencephalographic records, or electroencephalograms, contain rich information of some aspects 

of brain activity associated with particularly mental processes during certain activities and task 

processing. Compared with other non-invasive techniques, for example, positron emission tomography 

(PET) and functional magnetic resonance imaging (fMRI), EEG has two main advantages. Firstly, 

EEG signals typically have very high temporal resolution that can often be at a level of a single 

millisecond; the temporal resolution of PET and fMRI, however, is often between seconds and 

minutes. Secondly, EEG directly measures cortical activity; while PET and fMRI record changes in 

blood flow or metabolic activity that are indirect measurements of neural activity. The main drawback 

of EEG, compared with fMRI, is perhaps the poor spatial resolution. 

Conventionally, EEG analysis mostly relies on visual inspection of relevant EEG signals. In many 

cases, however, visual inspection of EEG signals may be subjective and insufficient because statistical 

information contained in EEG signals may not be adequately exploited and utilised. To obtain more 

relatively objective and reliable analysis results, several methods have been proposed for quantitative 

analysis of EEG signals. Among these, the Fourier transform based algorithms are the most commonly 

used tool for revealing the frequency components of EEG signals. The Fourier transform, however, 

has some disadvantages for dealing with non-stationary EEG signals. Therefore, other parametric and 

non-parametric spectral estimation methods have been proposed for EEG signal analysis (Gersch and 

Yonemoto, 1977; Isaksson, 1981; Pascualmarqui et al., 1988; Tseng et al., 1995; Pardey et al., 1996; 

Muthuswamy and Thakor, 1998; Quiroga et al., 1997, 2002, Guler et al., 2001; Panzica et al., 2003; 

Subasi, 2007; Zhou et al., 2008).  

Autoregressive (AR) models have been successfully applied to the analysis of EEG signals 

including simulation (Charbonnier et al., 1987; Kaipio and Karjalainen, 1997a), spectral estimation 

(Madhavan et al., 1991; Medvedev and Willoughby, 1999; Guller et al., 2001; Moller et al., 2001; 

Subasi, 2007), classification (Wada et al. 1996; Subasi et al., 2005), and synchronization (Franaszczuk 

and Bergey, 1999). A common routine for dealing with non-stationary EEG signals using time-

invariant AR models is to partition a long time-course of data into several segments and then apply an 

AR modelling approach to each of these segmentations that can be treated as stationary processes 

(Praetorius et al., 1977; Michael and Houchin, 1979; Barlow, 1985; Amir and Gath, 1989). Time-

invariant AR models, estimated from segmented data that are treated as stationary processes, can often 

reveal the main underlying features of EEG signals. In many cases, however, AR models may not 

work well for nonstationary EEG signals, where either the data cannot simply be partitioned into 

several stationary time series, or the segments turn out to be too short that the estimates may be 

unreliable due to the fact that some segments contain too few data points (Kaipio and Karjalainen, 
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1997b). This has led to a growing interest in nonstationary signal processing methods for EEG data 

analysis (Krystal et al., 1999; Prado and Huerta, 2002; Tarvainen et al., 2004, 2006; Pachori and Sircar, 

2008).  

One solution when dealing with nonstationary signals is to employ time-varying parametric 

models, where the associated model parameters are allowed to be time-varying or time-dependent. 

Methods for parametric modelling of nonstationary signals can roughly be categorized into two classes:  

adaptive recursive estimation and deterministic basis function expansion and regression (Bohlin, 1977; 

Barlow, 1985). The adaptive recursive estimation methods are a stochastic approach, where the 

coefficients of the associated models are treated as random processes with some stochastic model 

structure; the most popular methods to deal with this class of models are the recursive least squares, 

least-mean squares and Kalman filtering algorithms (Bohlin, 1977; Barlow, 1985; Hayes, 1996). The 

basis function expansion and regression method is a deterministic parametric modelling approach, 

where the associated time-varying coefficients are expanded as a finite sequence of pre-determined 

basis functions; generally, these coefficients are expressed using a linear or nonlinear combination of a 

finite number of such basis functions. The problem then becomes time invariant, and the unknown 

new adjustable model parameters are those involved in the expansions. Hence, the initial time-varying 

modelling problem is reduced to deterministic regression selection and parameter estimation.  

This paper aims to introduce a new time-varying AR (TVAR) modelling approach where the time-

dependent coefficients are approximated using a finite number of multi-wavelet basis functions. 

Wavelets have excellent approximation properties that outperform many other approximation schemes 

and are well suited for approximating general nonlinear signals, even those with sharp discontinuities 

Wei and Billings, 2007). Wavelets have been successfully applied to EEG signal processing and 

analysis, see for example Schiff et al. (1994), Kalayci and Ozdamar (1995), Blanco et al. (1998), and 

Adeli et al. (2003), as well as have been widely used in many other fields including nonlinear signal 

processing and system identification, see for example Billings and Coca (1999), Liu et al. (2002), 

Billings and Wei (2005a, 2005b), Wei and Billings (2004a, 2004b, 2006a), and Wei, Billings and 

Balikhin (2004). However, not much work has been done on exploiting the attractive properties of 

wavelets and applying them in time-varying system identification. Based upon a multi-wavelet 

expansion scheme, we propose a new approach for time-dependent parameter estimation. The meaning 

of the term ‘multi-wavelet’ here is twofold. Firstly, the time-varying coefficients of the AR model are 

approximated using several types of wavelet basis functions, that is, the time-dependent parameter 

estimation involves multiple wavelets. Secondly, these wavelet basis functions are combined in a form 

of multiresolution wavelet decompositions. Compared with decompositions involving only a single 

type of wavelets, the multi-wavelet expansion scheme is much more flexible in that it exploits the 

properties of both smooth and non-smooth wavelet basis functions and thus can effectively track the 

variations of time-varying coefficients. As will be illustrated later, in comparison with traditional 

power spectral estimation methods and classical time-invariant AR models, the new time-varying 
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modelling framework using multi-wavelet expansions are more effective for nonstationary EEG signal 

modelling. 

2.   The Time-Varying AR Model 

The p-th order time-varying AR model, TVAR(p), is formulated as below 
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where t is the time instant or sampling index of the signal y(t), e(t) is the model residual that can often 

be treated as a stationary white noise sequence with zero mean and variance 2
eσ , and )(tai  are the 

time-varying coefficients.  

One solution to the time-varying estimation problem (1) is to approximate the time-varying 
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Equation (3) can then be written as 
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where the upper script ‘T’ indicates the transpose of a vector or a matrix.  

Equation (4) is a standard linear regression model that can be solved using linear least squares 

algorithms. Let ĉ  be the estimate of c , )(ˆ tai  be the estimates of )(tai , and 2ˆeσ  be the estimate of 2eσ . 

The time-dependent spectral function relative to the TVAR model (1) is then given by 

2

1
/2

2

)(ˆ1

ˆ
),(

∑ =
−−

=
p
i

fifj
i

e

seta
tfH

π

σ
                                                                                    (5) 



 6 

where 1−=j  and sf is the sampling frequency. Note that the spectral function (5) is continuous with 

respect to the frequency f and thus can be used to produce spectral estimates at any desired frequencies 

up to the Nyquist frequency 2/sf . However, the frequency resolution is primarily not infinite, but is 

determined by the underlying model order and the associated parameters. 

Two basic issues are encountered when the basis function expansion and regression approach is 

applied to general time-varying parametric modelling problems, namely, how to choose the basis 

functions and how to select the significant ones from the pool of the basis functions. For the first issue, 

while there are a number of choices and alternatives, for example, Fourier (sinusoidal) bases, Walsh 

and Haar functions, wavelets, discrete prolate spheroidal sequences, different types of polynomials 

(including the Chebyshev and Legendre types)(Niedzwiecki, 1988; Wei and Billings, 2002; Chon et 

al., 2005; Pachori and Sircar, 2008), there is no a guideline on how to choose the appropriate ones 

from these available basis functions for a specific modelling problem. In fact, each family of basis 

functions possess its own unique tractability and accuracy, for example, polynomial and Fourier basis 

functions work well for most smoothly and slowly varying coefficients; Walsh and Haar functions, 

however, perform well for time-varying coefficients that have sharp variations or piecewise changes.  

The second issue involves regression selection and model refinement. For a high dimensional 

parametric regression modelling problem, the initial full regression model, produced by a basis 

function expansion approach, often involves a great number of regressors or model terms, whatever 

types of basis functions are employed. Experience and simulation results have shown that in most 

cases the initial full regression model may be redundant or ill -posed, meaning that many of the 

candidate regressors in the initial full regression equation are linearly dependent on the others and 

therefore can be removed from the model, and the resultant parsimonious model with just a relatively 

small number of regressors can often produce satisfactory results (Wei and Billings, 2002). 

Biomedical signals including EEG records often involve both fast and slowly variations. In order 

to alleviate the dilemma that the choice of basis functions has to be highly dependent on a priori 

information on the signals to be studied, and also to make the modelling algorithm more flexible and 

able to track both fast and slowly varying trends, we propose a new TVAR modelling approach using 

a multi-wavelet basis function expansion scheme, where properties of different types of wavelets are 

exploited and combined in a form of multiresolution decompositions. 

3.   The Multi-Wavelet Basis Functions 

From wavelet theory (Mallat, 1989; Chui, 1992), a square integrable scalar function )(2
RLf ∈ can 

be arbitrarily approximated using the multiresolution wavelet decomposition below 
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where the wavelet family )2(2)( 2/
, kxx jj
kj −= ψψ and )2(2)( 2/

, kxx jj
kj −= φφ , with Z∈kj,  (Z is a 

set consisting of whole integers), are the dilated and shifted versions of the mother wavelet ψ and the 

associated scale functionφ , kj ,0
α  and kj ,β  are the wavelet decomposition coefficients, 0j  is an 

arbitrary integer representing the coarsest resolution or scale level. Also, from the properties of 

multiresolution analysis theory, any square integrable function f can be arbitrarily approximated using 

the basic scale functions )2(2)( 2/
, kxx jj
kj −= φφ by setting the resolution scale level to be 

sufficiently large, that is, there exists an integer J, such that  

∑=
k
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Cardinal B-splines are an important class of basis functions that can form multiresolution wavelet 

decompositions (Chui, 1992).  The first order cardinal B-spline is very the well-known Haar function 

defined as  
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The second, third and fourth order cardinal B-splines )(2 xB , )(3 xB  and )(4 xB  are given in Table 1 

(Wei and Billings, 2006b). For detailed discussions on cardinal B-splines and the associated wavelets, 

see Chui (1992).  

One attractive feature of cardinal B-splines is that these functions are completely supported, and 

this property enables the operation of the multiresolution decomposition (6) to be much more 

convenient. For example, the m-th order B-spline is defined on [0, m], thus, the scale and shift indices 

j and k for the family of the functions )2(2)( 2/
, kxBx j

m
j

kj −=φ should satisfy mkxj ≤−≤ 20 . 

Assume that the function f(x) that is to be approximated with decompositions (6) or (7) is defined 

within [0, 1], then for any given scale index (resolution level) j, the effective values for the shift index 

k, are restricted to the collection }12:{ −≤≤− jkmk .  

Note that while the first and second order B-splines )(1 xB  and )(2 xB are non-smooth piecewise 

functions, which would perform well for signals with sharp transients and burst-like spikes, B-splines 

of higher order would work well on smoothly changing signals. Motivated by this consideration, this 

study proposes using multi-wavelet basis functions for TVAR model identification. An example of the 

new multi-wavelet based algorithm is given in the following. 

Take the B-splines of order from 1 to 5 as an example, and consider the decomposition (7). Let 

}12:{ −≤≤−=Γ J
m kmk , with m=1,2, …, 5; let )2(2)( 2/)( kxBx J

m
Jm

k −=φ , with  mk Γ∈ . The time-

varying coefficients )(tai in (1) can then be approximated using a combination of functions from the 

families };5,,1:{ )(
m

m
k km Γ∈= φ . For example, one such combination can be chosen as, 
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)(1 xB  )(2 xB  2 )(3 xB  6 )(4 xB  

10 <≤ x  1 x  2x  
3x  

21 <≤ x  0 x−2  362 2 −+− xx  412123 23 +−+− xxx  

32 <≤ x  0 0 2)3( −x  4460243 23 −+− xxx  

43 ≤≤ x  0 0 0 644812 23 +−+− xxx  

elsewhere 0 0 0 0 

 

 

Table 1   Cardinal B-splines of order from 1 to 4. 
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where 51 ≤<<≤ srq , t=1,2, …, N, and N is number of observations of the signal.  Simulation results 

have shown that for most time-varying problems, the choice of q=3, r=4 and s=5 work well to recover 

the time-varying coefficients. If, however, there is strong evidence that the time-dependent 

coefficients have sharp changes, then the inclusion of the first and second order B-splines would work 

well. The decomposition (9) can easily be converted into the form of (2), where the collection 

},,2,1:)({ Lmtm =π is replaced by the union of the three families: }:)({ )(
q

q
k kt Γ∈φ , }:)({ )(

r
r

k kt Γ∈φ   

and }:)({ )(
s

s
k kt Γ∈φ . Further derivation can then lead to the standard linear regression equation (4). 

As mentioned earlier, the initial full regression equation (4) may involve a great number of free 

parameters; the associated regressors may be highly correlated, and the ordinary least squares 

algorithm may fail to produce reliable results for such ill-posed problems. These problems, however, 

can easily be overcome by performing an effective model refinement procedure where significant 

model terms or regressors can be selected one by one (Billings et al., 1989; Chen et al., 1989). 

4.   Model Identification and Parameter Estimation 

The well-known orthogonal least squares (OLS) type of algorithms (Billings et al. 1989; Chen et 

al., 1989; Aguirre and Billings, 1995; Zhu and Billings, 1996; Wei et al. 2004; Billings and Wei, 2007; 

Wei and Billings, 2008) have been proven to be very effective to deal with multiple dynamical 

regression problems, which involve a great number of candidate model terms or regressors that may be 

highly correlated. In the present study, the OLS algorithm given in Billings et al. (2007), is used to 

solve the regression equation (4). This includes a model refinement procedure involving the selection 

of significant regressors and model parameter estimation. The resultant estimates will then be used to 

recover the time-varying coefficients )(tai in the TVAR model (1). 

As to the model order determination issue, this can be solved by using some model order 
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determination criteria including the well-known Akaike information criterion (AIC) (Akaike, 1974) 

and Bayesian information criterion (BIC)( Schwarz, 1978; Efron and Tibshirani, 1993) below: 

)ln()ˆln()(AIC 2 N
N

p
p p += σ                                                                                                       (10) 
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where 2ˆ pσ  is the variance of the model residuals calculated from the associated p-th order model.  

5.   Artificial Data Modelling 

Prior to applying the proposed TVAR modelling approach to real EEG data analysis, a benchmark 

on an artificial time-varying signal was considered. The signal was defined as below: 
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where α =0.5, β =0.25, 1f =3Hz, 2f =8Hz, 3f =15Hz. The above signal was sampled with a sampling 

interval 0.01, and thus a total of 600 observations were obtained. A Gaussian white noise sequence, 

with mean zero and variance of 0.04, was then added to the 600 data points.  

A second order TVAR model was estimated to describe the time-varying signal. The third, fourth 

and fifth order B-splines, as shown by (9) where the scale index (resolution level) J was chosen to be 3, 

were employed to approximate the time-varying parameters )(tai with i=1,2 and n=1,2, …, 600. An 

OLS algorithm (Billings et al., 2007) was then applied to estimate and refine the model including 

significant regressor selection and model parameter estimation.  

The estimates of the two time-varying coefficients )(1 ta and )(2 ta are shown in Figure 1. The 

topographical map of the time-dependent spectrum estimated from the TVAR model is shown in 

Figure 2, and the 2-D image of the time-dependent spectrum produced from the 3-D topographical 

map is shown in Figure 3. The transient power spectra, calculated at different time instants from t=1 to 

t=600, were overlapped and these are shown in Figure 4. From these results, it is very clear that the 

second order TVAR model can characterize the relevant signal very well. 
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Figure 1  The estimates of the two time-varying coefficients )(1 ta and )(2 ta  for the artificial signal presented 

by (12).   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2  The 3-D topographical map of the time-dependent spectrum estimated from the TVAR(2) model for 
the signal presented by (12).  
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Figure 3  The 2-D image of the time-dependent spectrum produced from the 3-D topographical map shown in 
Figure 2.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4  The overlap of the transient power spectra calculated at different time instants from t=1 to t=600 for the 
problem described by (12).  
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6.   EEG Data Modelling and Analysis 

The proposed TVAR modelling framework has been applied to the analysis of numerous EEG 

recordings. As an example, in the following, an EEG recording given and described in Andrzejak et al. 

(2001) was considered to illustrate the application of the proposed multi-wavelet based TVAR 

modelling approach. Figure 5 shows the EEG sequence of 1048 data points, recorded during 6 seconds, 

with an sampling rate of 173.61 Hz. This recording is for a sort of seizure activity of a patient. A 

detailed description can be found in Andrzejak et al. (2001).  

Similar to the example given in the previous section, the third, fourth and fifth order B-splines, 

with the resolution level (scale index) J=3, were employed to construct TVAR models for the EEG 

data. Several TVAR models with different model orders were estimated using the OLS algorithm 

(Billings et al., 2007), and both the AIC and BIC criteria suggested that the model order can be chosen 

to be 4 when using these B-splines as building blocks to represent the time-varying coefficients in the 

TVAR model.  

The estimates of the four time-varying coefficients )(tai with i=1,2,3,4 are shown in Figure 6. The 

recovered signal, calculated from the TVAR model using these two time-varying coefficients, is 

shown in Figure 7, where only part of the data are presented for a clear visualization. The 

topographical map of the time-dependent spectrum estimated from the TVAR model is shown in 

Figure 8, and the 2-D image and the contour plot of the time-dependent spectrum produced from the 3-

D topographical map are shown in Figure 9.  

From Figures 8 and 9, the power spectrum of the EEG signal considered here is mainly distributed 

in the range from zero to 17 Hz, and three frequency bands can be obviously observed: i) the low 

frequency band (less than 2.5Hz); ii) the frequency band that is centralized around 6 Hz; and the high 

frequency band that is centralized around 17Hz. The 2-D image and the associated contour plot of the 

time-dependent spectrum given in Figure 9 clearly reflects how these frequencies are distributed along 

the time course of the signal. In other words, the variations of the time course signal can clearly be 

observed in this 2-D image of transient spectrum. For example, during the period from 2.7 to 3.9s the 

power spectrum is dominated by a high frequency component (about 17 Hz), and during the period 

from 4 to 5s the spectrum is dominated by a frequency component (about 6Hz), while during the 

period from 5 to 6s, the time course is determined by low frequency component (about 3Hz), but with 

higher frequency (17Hz) activity superposed to it.  These properties, possessed by the proposed TVAR 

model, cannot be obtained using any time-invariant parametric modelling framework including the 

commonly used AR models. 
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Figure 5  The EEG signal, for a sort of seizure activity of a patient, recorded during 6 seconds, with an sampling 
rate of 173.61 Hz.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  The estimates of the four time-varying coefficients )(tai (i=1,2,3,4) for the EEG signal.  
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Figure 7  A comparison of the recovered signal from the identified second-order TVAR(4) model and the 
original observations for the EEG signal. Solid (blue) line indicates the observations and the dashed (red) line 
indicates the signal recovered from the TVAR(4) model. For a clear visualization only the data points of the 
period from 4.5 to 6s are displayed. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8  The 3-D topographical map of the time-dependent spectrum estimated from the TVAR(4) model for 
the EEG signal.   
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(b) 

 

 
(a) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9  The 2-D image and the contour plot of the time-dependent spectrum produced from the 3-D 
topographical map shown in Figure 9.  (a) the 2-D image; (b) the contour plot.  
 

7.   Conclusions 

A new time-varying parametric modelling approach has been developed in this study, where the 

associated time-dependent coefficients are approximated using multi-wavelet basis functions. The 

realization of the time-varying AR (TVAR) model here is distinguished from existing time-varying 

parametric models where the relevant time-dependent coefficients are represented using basis function 

expansions. In most existing time-varying parametric models, the basis functions used for representing 

the time-dependent coefficients are global, while the basis functions involved in the new proposed 

modelling approach are locally defined; the multi-wavelet and multiscale expansion scheme enables 

the time-varying models to be much more flexible and adaptable for tracking the variations of 

nonstationary signals including EEG recordings.  

The time-dependent spectrum, calculated from the multi-wavelet based TVAR model, has a 

capability that not only reveals the global frequency behaviour of the signal but also reflects the local 

variations of the signal along the time course. In this respect, the proposed TVAR model outperforms 

the traditional time-invariant AR models.  

A further study in this direction is to extract more features of EEG signals using the multi-wavelet 

based TVAR modelling method, so that these can be applied for EEG signal classification, 

synchronization and other diagnostic tasks. 
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