
This is a repository copy of The properties of output frequencies of nonlinear volterra 
systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74628/

Monograph:
Jing, X.J., Lang, Z.Q. and Billings, S.A. (2008) The properties of output frequencies of 
nonlinear volterra systems. Research Report. ACSE Research Report no. 972 . Automatic 
Control and Systems Engineering, University of Sheffield 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 1

The Properties of Output Frequencies of 
Nonlinear Volterra Systems 

 
 

X. J. Jing, Z. Q. Lang, and S. A. Billings 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Department of Automatic Control and Systems Engineering 

The University of Sheffield 

Mappin Street, Sheffield 

 S1 3JD, UK 

Research Report No. 972 
Feb 2008 



 2

The Properties of Output Frequencies of 
Nonlinear Volterra Systems 

 

Xing Jian Jing*, Zi Qiang Lang, and Stephen A. Billings 

Department of Automatic Control and Systems Engineering, University of Sheffield 
Mappin Street, Sheffield, S1 3JD, U.K. 

X.J.Jing@sheffield.ac.uk, +44 (0)1142225678 

 

 

Abstract: Nonlinear systems usually have complicated output frequencies in the 

frequency domain. For the class of nonlinear Volterra systems, some interesting 

properties for system output frequencies are studied in this paper. These properties 

provide a novel insight into the output frequencies of Volterra systems, i.e., the 

periodicity of the output frequencies. They also demonstrate several novel frequency 

characteristics of system output spectrum such as the opposite property, and reveal 

clearly the nonlinear effects on system output spectrum from different nonlinearities. 

These new results have significance in the analysis and design of nonlinear systems and 

nonlinear filters in order to achieve a specific output spectrum in a desired frequency 

band by taking advantage of nonlinearities, and provide an important guidance to 

applications of Volterra system theory in practices for analysis and design of nonlinear 

systems. Examples and discussions are given to illustrate these new results. 

Keywords: Volterra systems, Volterra series, Output frequencies, Output spectrum 

 

 

1 Introduction 
 

The frequency domain analysis of non-linear systems has been studied for many years [1-

3]. For a class of nonlinear systems, the frequency domain analysis can be conducted by 

using the Volterra series theory [3-4]. It is shown in [5-6] that a considerably large class 

of nonlinear systems, referred to as Volterra systems, have a convergent Volterra series 

expansion. Extensive studies also show that Volterra systems have large numbers of 

applications for modelling, identification, control and signal processing in many systems 

and engineering practices, for example, electrical systems, biological systems, 

mechanical systems, communication systems, nonlinear filter, image processing, 

materials engineering, chemical engineering and so on [3-12,18, 26-29]. Based on the 

theory of Volterra series expansion, the study of nonlinear systems in the frequency 

domain was initiated by the introduction of the concept of the generalized frequency 

response functions (GFRFs) [13]. Thereafter, many results have been achieved for the 

frequency domain analysis of nonlinear systems [3,12,14-19,21-23,27,28].  

 

An important phenomenon for nonlinear systems in the frequency domain is that they 

always have very complicated output frequencies, for example, super-harmonics, sub-

harmonics, inter-modulation, and so on. This usually makes it rather difficult to analyse 
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and design the output frequency response behaviour for nonlinear systems, compared 

with linear systems. The output frequencies for Volterra systems have been studied by 

several authors [18-23, 27] by using the frequency domain method above. These results 

provide algorithms from different viewpoints for the computation and prediction of the 

output frequencies for nonlinear systems. It can be seen from the previous researches that 

Volterra systems can effectively be used to account for super-harmonics and inter-

modulation in the output spectrum of nonlinear systems.  

 

In this study, some important properties for the output frequencies of Volterra systems 

are established. They provide a straightforward and complete insight into the super-

harmonic and inter-modulation phenomena in the output frequencies of nonlinear systems, 

especially when the effects from different system nonlinearities are considered. The new 

properties demonstrate several novel frequency characteristics of the output spectrum for 

nonlinear systems. They have significance in the analysis and design of nonlinear 

systems and nonlinear filters in order to achieve a specific output spectrum in a desired 

frequency band by taking advantage of nonlinearities. These new results can provide an 

important guidance to modelling, identification, control and signal processing by using 

the Volterra series theory in practices. Examples and discussions are provided to illustrate 

the results.  

 

2 Output frequencies for nonlinear Volterra systems 
    

Consider nonlinear systems which has a Volterra series expansion up to order N as [3-5] 
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where ),,( 1 nnh ττ L is a real valued function of nττ ,,1 L  called the nth-order Volterra kernel. 

The nth-order GFRF of system (1) is defined as [13]  
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The GFRF for a practical system can be obtained by the probing method [3]. The output 

spectrum of system (1) subject to a general input can be described as [16] 
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where ∫
=++

⋅
ωωω

ωσ
n

d
L1

)( represents the integration on the super plane ωωω =++ nL1 . )( ωjYn is 

referred to as the nth-order output spectrum. Similarly, when the system is subject to a 

multi-tone input described by 

∑
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i
iii FtFtu
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)cos()( ω                                                 (4) 

(where K is a positive integer, Fi is a complex number) the system output spectrum can be 

written as: 
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As mentioned, nonlinear systems usually have complicated output frequencies, which are 

quite different from linear systems which have output frequencies completely identical to 

the input frequencies. From Equations (3) and (5), it can be seen that the output 

frequencies corresponding to the nth-order output spectrum, denoted by Wn and simply 

referred to as the nth-order output frequencies, are completely determined by 

nωωωω +++= L21  or 
nkkk ωωωω +++= L

21
 

which produce super-harmonics and inter-modulation in system output frequencies. 

Consider any continuous and bounded input function u(t) in 0≥t with Fourier transform 

)( ωjU  whose input domain is denoted by V, i.e., V∈ω . Note that V can be any closed set 

in real. Let V =-V∪V, whose meaning will be discussed later. 

   Therefore, for the general input )( ωjU defined in V, the nth-order output frequencies are 

{ }niVW inn ,...,2,1,21 =∈+++== ωωωωω L                                 (6a) 

or for the multi-tone input (4), 

{ }niVW
in kkkkn ,...,2,1,

21
=∈+++== ωωωωω L                              (6b) 

This is an analytical expression for the super-harmonics and inter-modulations in the nth-

order output frequencies of nonlinear Volterra systems. Then the whole system output 

frequencies, denoted by W, can be written as 

NWWWW ∪∪∪= L21                                               (6c) 

In Equations (6abc), V represents the input frequency range corresponding to the nth-

order output spectrum, V is the original input frequency range corresponding to the first 

order output spectrum and W1 represents the output frequencies of linear part in the 

system. For example, V may be a real set [a,b] ∪ [c,d], thus V =[-d,-c] ∪ [-b,-

a]∪ [a,b]∪ [c,d], where abcd ≥≥≥ >0. Especially, when the system subjects to the multi-

tone input (4), then the nth-order input frequency range is { }
K

V ωωω ±±±= ,,, 21 L , which is 

obviously a special case of the former one.  

 

3 Fundamental properties and the periodicity property 
    

In this section, some fundamental properties for the output frequencies of system (1) with 

assumption that V is any closed set of frequency points in real are developed. Especially, 

the periodicity of the output frequencies is revealed under the general input case. 

Although the computation of the system output frequencies for the case with V=[a,b] has 

been studied in [18,19], and for the multi-tone case was also studied in [21, 23, 27], and 
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some of the properties discussed in this section have been partly demonstrated in the 

previous results for the case V =[a,b] and multi-tone case { }
K

V ωωω ,,, 21 L= , all the 

properties of this section are established in a uniform manner based on the analytical 

expressions (6abc) for any input domain V. Let max(.) denote the maximum value of the 

elements in (.), and min(.) the minimum value. 

    
Property 1. Consider the nth-order output frequency Wn, 

(a) Expansion, i.e., Wn-2⊆ Wn; 

(b) Symmetry, i.e., nW∈Ω∀ , then nW∈Ω− ; 

(c) n-multiple, i.e., max(Wn) = )max(Vn ⋅ and min(Wn) = )max(Vn ⋅− .Ƒ 

 

The proof is omitted. Property 1 shows that the output frequency range will expand larger 

and larger with the increase of the nonlinear order, the expansion is symmetric to zero 

and its rate is n-multiple of the input frequency range. Property 1(a) shows that, the (n-

2)th order output frequencies Wn-2 are completely included in the nth order output 

frequencies Wn. This property can be used to facilitate the computation of output 

frequencies for nonlinear systems. That is, only the highest order in odd number and the 

highest order in even number, to which the corresponding GFRFs are not zero, are 

needed to be considered in Equation (6c). For example, supposing the system maximum 

order N=10, only W10 and W9 are needed to be computed if H10(.) and H9(.) are not zero, 

and the system output frequencies are 109 WWW ∪=  ( in case that H9(.) is zero, W9 should 

be replaced by the output frequencies corresponding to the highest odd order of nonzero 

GFRFs). For the case that V=[a,b], Property 1(a) has be shown in [19]. Here it is shown 

to hold for any V. 
    

Properties 1 provide some fundamental characteristics for the output frequencies of 

system (1) subject to any input frequencies. The following proposition demonstrates a 

novel property for the output frequencies of Volterra systems, and provides a new insight 

into the system output frequency characteristics.  

    
Proposition 1 (Periodicity property). The frequencies in Wn can be generated 

periodically as follows 

U
1

1

)(

+Γ

=

Π=
n

i

in nW                                                     (7a) 

{ }ijijVn jjjni ≥>−≤≤<∈+++==Π for  0,11for  0,)( 21 ωωωωωωω L   or  (7b) 

{ }ijijVn
jjjn kkkkkki ≥>−≤≤<∈+++==Π for  0,11for  0,)(

21
ωωωωωωω L     (7c) 

nn =Γ                                                           (7d) 

The above process has the following properties 

)max()1()min()1())(max( VinVini +−+−−=Π  and                        (8a) 

)min()1()max()1())(min( VinVini +−+−−=Π                             (8b) 

)max()min())(min())(min())(max())(max( 11 VVnnnn iiii +=Π−Π=Π−Π −−        (8c) 

))min()(max())(min())(max()( VVnnnn ii −⋅=Π−Π=Δ                      (8d) 
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Especially, when the system subjects to a general input )( ωjU  defined in [a,b] or the 

multi-tone input (4) with 01 >=−+ constii ωω for i=1,�, K -1, 

Tnn ii −Π=Π − )()( 1  for i=2,�, n+1                                   (8e) 

where Tni −Π )(  is a set whose elements are the elements in )(niΠ minus T, T 
)max()min( VV +=  is referred to as the frequency generation period, and )(nΔ  is referred to 

as the frequency span in each period.  

Proof. It is omitted. Ƒ 

    
Property 2. Consider the ith frequency generation period )(niΠ  in Wn,  

(a) If the system input is the multi-tone function (4), then for any two frequencies Ω  

and Ω′  in )(niΠ and any two frequencies ω  and ω ′  in V, min(Ω -Ω′ ) = )min( ωω ′− .  

(b) If )(nΔ >T, then ))(min())(max( 1 ii nn Π>Π + for i=1,�, nΓ . That is, there is overlap 

between the successive periods of frequencies in Wn. Ƒ 

 

The proof is omitted. Proposition 1 and Properties 2 explicitly demonstrate, for the first 

time, an interesting and useful nature of the output frequencies ------ the periodicity of the 

output frequencies. This property can not only be used to simplify the computation of the 

output frequencies for some special cases as stated in Proposition 1 (where only one 

period of output frequencies need to be computed) but also make light for the 

computation of the output frequencies in general case. Especially, it reveals a new insight 

into the output frequency characteristics of nonlinear systems for the understanding of the 

nonlinear output frequency response behaviour for Volterra systems. Some important 

issues will be discussed further in the following sections. From Proposition 1, the 

following corollary is straightforward.  

 
Corollary 1. All the conclusions in Proposition 1 and Properties 1-3 hold for the case that 

the system subjects to a general input )( ωjU  defined in U
Z

i

ibia
1

])1(,)1([
=

−+−+ εε  where 

)(, abab −≥≥ ε and Z is a positive integer.  

 

Note that when V does not satisfy the condition in Corollary 1, the property in Equation 

(8e) can not hold. Example 1 is given to illustrate the results above. 

    
Example 1.Consider a simple nonlinear system as follows 

3201.0 buauyy ++−= &  

 

The input is a multi-tone function u(t)=sin(6t)+sin(7t)+sin(8t). The output spectra are 

given in Figures 1-2 for different cases. Note that there are only input nonlinearities with 

order 2 and 3 in the system, thus only the 1
st
, 2

nd
 and 3

rd
 order GFRFs are not zero and all 

the other orders of the GFRFs are zero [15]. Hence, the nonlinear output frequencies of 

the system are the same as the 2
nd

 and 3
rd

 order output frequencies. That is, when a=1 and 

b=0, then W=W2; when a=0 and b=1, then W=W3; and when a=1 and b=1, 

then 32 WWW ∪= . Figures 1-2 demonstrate clearly the results in Properties 3-4 and 

Proposition 1, and also show that the system output frequencies are simply the 
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accumulation of all the output frequencies corresponding to each order output spectrum 

when the involved nonlinearities have no crossing effect and no overlap as stated in 

Property 5. When and how there are crossing effects between different nonlinearities will 

be discussed in the next section.  
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Figure 1. Output frequencies when a=1 and b=0 (left) and when a=0 and b=1 (right) 
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Figure 2. Output frequencies when a=1 and b=1 

 

4 Nonlinear effect in each frequency generation period 
 

The periodicity of output frequencies is revealed and demonstrated in the last section. In 

this section, the nonlinear effect on system output spectrum in each frequency generation 

period, and especially the nonlinear interaction between different nonlinearities of the 

same nonlinear degree and nonlinear type are studied. 
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From (3) and (5), it can be seen that the operators ∫
=++

⋅
ωωω

ωσ
n

d
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)( and ∑
=++

⋅
ωωω

nkk L
1

)(  have an 

important and fundamental role in the frequency characteristics of the nth order output 

spectrum in each frequency generation period. The following property can be obtained.  

    

Property 3. For )(niΠ∈ω  ( ⎡ ⎤2)1(1 +≤≤ ni ), ∑
=++ ωωω

nkk L
1

1  reaches its maximum at the central 

frequency 2)))(min())((max( nn ii Π+Π or around the central frequency if the central 

frequency is not available, and has its minimum value at frequencies ))(max( niΠ and 

))(min( niΠ , i.e., 1
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Especially, for the multi-tone input case with 01 >=−+ constii ωω for i=1,�, K -1, 

∑∑
⋅′+Π=++⋅′−Π=++

=
constknconstkn inkkinkk ))(min())(max(

11

11
ωωωω LL

 for constTk /0 ≤′≤  

where, ⎡ ⎤2)1( +n  is the smallest integer which is not less than 2)1( +n , >+< Tω is the 

frequency in )(1 ni−Π which is the most approximate to T+ω . The similar results also hold 

for the general input case defined in Corollary 1 by replacing ∑
=++ ωωω

nkk L
1

1 as ∫
=++ ωωω

ωσ
n

d
L1

1 . Ƒ 

 

The proof is omitted. Property 3 shows that in each frequency generation period, the 

effect of the operator ∫
=++

⋅
ωωω

ωσ
n

d
L1

)( and ∑
=++

⋅
ωωω

nkk L
1

)(  on system output spectrum tends naturally 

to be more complicated at the central frequency. That is, there is only one case for the 

operator ∑
=++

⋅
ωωω

nkk L
1

)(  at the two boundary frequency of each period, it reaches the maximum 

at the central frequency of the same period and tends to be decreased in different period 

with the frequency increasing. These can be regarded as the natural characteristics of the 

output frequencies that can not be changed (This can be verified by Figure 3 in Example 

2). 

    

Note that different nonlinearities may have quite different effect on system output 

spectrum. In order to study the nonlinear effect between different nonlinearities of the 

same nonlinear degree and kind, consider the nonlinear Volterra systems which are 

described by a nonlinear differential equation (NDE) model as follows: 

0
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l
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, p+q=m, ∑∑∑
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K
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K
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K

ll qpqp 000,
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11

L , M is the maximum degree of 

nonlinearity in terms of y(t) and u(t), and K is the maximum order of the derivative. In 

this model, the parameters such as c0,1(.) and c1,0(.) are referred to as linear parameters, 

which correspond to the linear terms in the model, i.e., 
l

l

dt

tyd )(
 and 

l

l

dt

tud )(
for k=0,1,�,K, 
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and )(, ⋅qpc  for p+q>1 are nonlinear parameters corresponding to nonlinear terms in the 

model of the form ∏∏
+

+==

qp

pi
l

lp

i
l

l

i

i

i

i

dt

tud

dt

tyd

11

)()(
, e.g., qp tuty )()( . p+q is called the nonlinear degree 

of the nonlinear parameter )(, ⋅qpc . Similar results discussed in this study can also be 

established immediately for a discrete nonlinear model known as NARX model.  

    

When different kinds and degrees of nonlinearities exist in the system, there will be much 

crossing effects at the same frequency from different nonlinearities. This will make the 

output spectrum at the interested frequency to be enhanced or suppressed. For example, 

different nonlinearities of the same order and the same kind bring the same output 

frequencies from [15]. However, the effect from different nonlinearities at the same 

frequency generation period may counteract with each other such that the output 

spectrum may be suppressed in some periods and others enhanced. Clearly, this property 

is of great significance in the design of nonlinear systems for suppressing output 

vibration [25]. 
    

In this study, consider there are only input nonlinearities in the NDE model above with 

cp,q(.)=0 for all p+q>1 and p>0. In this case, the GFRFs can be written as [17] 
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From (10-11) and (5), the nth-order output spectrum under the multi-tone input (4) can be 

obtained 
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To reveal the nonlinear effect from input nonlinearities in each frequency generation 

period, the following results can be obtained. 

    

Definition 1 (Opposite property). Considering two input nonlinear terms of the same 

degree with coefficients ),,( 1,0 nn llc L  and ),,( 1,0 nn llc ′′ L , if there exist two positive real 

number  c1 and c2 satisfying ),,( 1,0 nn llc L = c1 and ),,( 1,0 nn llc ′′ L = c2, such that at a given 

frequency Ω >0,  
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with respect to a multi-tone input (4), then the two terms are referred to as opposite at 

frequency Ω , whose effects in frequency domain counteract with each other atΩ . 
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Note that the concept of the opposite property can be defined similarly for the other kinds 

of nonlinearities. The following result can be concluded for the opposite property of two 

input nonlinear terms.  

    
Proposition 2 (Opposite of input nonlinearity). Consider nonlinear systems with only 

input nonlinearities subject to multi-tone input, in which there are two nonlinear terms 
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                 (14) 

then the two nonlinear terms are opposite in the (m+1)th frequency generation period 

)(1 nm+Π . That is, the frequency domain effects from the two nonlinear terms counteract 

with each other in )(1 nm+Π . Here, )](1sgn),(1[sgn)sgn( babja =+ . Ƒ 

    

The proof is omitted. From Equation (12), it can be seen that the magnitude of )( ωjYn  is 

dependent on three terms: Ln( ωj ) and ∑
=

K

ll

l
k

l
knnkk

n

n

nn
jjllcFF

1,

1,0

1

1

11
)())(,,()()( ωωωω LLL , and 

the function operator ( )∑
=++

⋅
ωωω

nkk L
1

. ( )∑
=++

⋅
ωωω

nkk L
1

 represents the system natural effect which can 

not be changed as mentioned. The first term Ln( ωj ) represents the effect from the linear 

part of the system and the second term represents the nonlinear effect from input 

nonlinearities. These two terms can be designed purposely in practices. Therefore, the 

results in Proposition 2 provide guidance to the design of input nonlinearities to achieve a 

specific output spectrum. Similar results can also be established for the other kinds of 

nonlinearities. For paper limitation, this will be discussed in detail in a future publication. 

The following example illustrates the result in Proposition 2.  

    
Example 2. Consider a simple nonlinear system as follows 

23501.0 ubuauyy && ++−=  

The input is a multi-tone function u(t)=0.8sin(7t)+0.8sin(8t)+sin(9t), which can be 

written as u(t)=0.8cos(7t-90
0
)+0.8cos(8t-90

0
)+cos(9t-90

0
). Therefore, F( 1±ω )= m 0.8j, 

F( 2±ω )= m 0.8j and F( 3±ω )= m j. It can be verified that, sgn( )()(
51 kk FF ωω L ) is constant in 

each period )5(iΠ  (i= 1,..,6). This satisfies the condition in Proposition 2. The output 

spectrum under different parameter values are provided in Figures 3-4. It can be verified 
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that the two nonlinear terms are opposite at the second frequency generation period. For 

the nonlinear term 5au ,  
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For the nonlinear term 23ubu & , 
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Note that there are five combinations for },{,,,3
11

Ω−Ω+∈Ω=++
nn kkkk ωωωω LL , i.e.,  

-Ω ,Ω ,Ω ,Ω ,Ω ;Ω ,-Ω ,Ω ,Ω ,Ω ;Ω ,Ω ,-Ω ,Ω ,Ω ;Ω ,Ω ,Ω ,-Ω ,Ω ;Ω ,Ω ,Ω ,Ω ,-Ω ; 

Therefore ( ) ]0,1[sgn
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. Equation (13) or (14) is satisfied.  

    

From Figure 4 it can be seen that, the counteraction between the effects from the two 

input nonlinear terms results in suppression of the output spectrum in the second period 

and enhancement for the first and third periods, compared with the output spectrum under 

single nonlinear term au5
.  
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Figure 3. Output spectrum when a=1.3 b=0 (left) and a=0,b=0.1(right) 
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Figure 4. Output spectrum when a=1.3 b=0.1 

 

Moreover, it is obvious that given system model and input function, the system output 

spectrum can be analytically determined from (3-5). Contrarily, given system model in 

the multi-tone input case, the input function can be obtained from the output spectrum at 

a specific frequency generation period for example )(1 nΠ . Because each output frequency 

in )(niΠ  can be explicitly determined, thus a series of equations can be obtained in terms 

of )()(
1 nkk FF ωω L , and then )(,),( 1 nFF ωω L can be solved. That is, the original input signal 

can be recovered from the received signal in a specific frequency generation period. This 

is another interesting property based on the periodicity and is under study now.  

 

5 Parametric characteristic of the output frequencies 
    

There are three kinds of nonlinearities in model (9): input nonlinearity with coefficient 

c0,q(.) (q>1), output nonlinearity with coefficient cp,0(.) (p>1), and input output cross 

nonlinearity with coefficient cp,q(.) (p+q>1 and p>0) (where p and q are integers). 

Different kind and degree of nonlinearity in a system can bring different output 

frequencies to the system. How a nonlinear term affects system output frequencies and 

what the effect is for Volterra systems are a very interesting and important topic. 

However, few results have been reported for this. This section provides some useful 

results for this topic based on the properties developed above.  

    

Consider nonlinear Volterra systems described by the NDE model in (9). What model 

parameters contribute to a specific order GFRF and how model parameters affect the 

GFRFs can be revealed by using the parametric characteristic analysis in [15]. From 

Equations (3, 5), it can be seen that the nth-order output frequencies Wn are also 

determined by the nth order GFRF. If the nth order GFRF is zero, then Wn=[]. It is known 

that the nth order GFRF is dependent on its parametric characteristics [15], thus the nth-

order output frequencies are also determined by the parametric characteristics of the nth-

order GFRF. That is, Equations (6a-b) can be written as 
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{ }niVHCEW innnn ,...,2,1,)))),,(((1()( 121 =∈−⋅+++== ωωωδωωωω LL       (15a) 

and 

{ }niVHCEW
inn kkknkkkn ,...,2,1,)))),,(((1()(

121
=∈−⋅+++== ωωωδωωωω LL     (15b) 

where 
⎩
⎨
⎧ =

=
else    0

1or  01
)(

x
xδ , CE(.) is a coefficient extraction operator defined in [15], and 

CE(Hn(.)) can be recursively determined from the nonlinear parameters of model (9) [15]. 

In Equations (11ab), suppose Wn is empty when (.)))(( nHCEδ =1.  

    

Equations (15a-b) demonstrate the parametric characteristics of the output frequencies for 

Volterra systems described by (9) and (10), by which the effect on the system output 

frequencies from different nonlinearities can be studied. Since negative output 

frequencies are symmetrical with positive output frequencies with respect to zero 

(Property 2(b)), thus for convenience only non-negative output frequencies are 

considered in what follows.  

    

Property 4. Regarding nonlinearities of odd and even degrees, 

(a) when there are no nonlinearities of even degrees, the output frequencies brought 

by the nonlinearities with odd degrees happen at central frequencies (2l+1)T/2 for 

l=0,1,2,� with certain frequency span;   

(b) when there are only input nonlinearities of even degrees, the output frequencies 

happen at central frequencies Tl ⋅ for l=0,1,2,� with certain frequency span;  

(c) in other cases, the output frequencies happen at central frequencies Tl ⋅ /2 for 

l=0,1,2,� with certain frequency span.  

       The frequency span is )(nΔ  corresponding to the nth order output frequencies if 

applicable. Ƒ 

 

The proof is omitted. Property 4 shows that odd degrees of nonlinearities bring quite 

different output frequencies to the system from those brought by even degrees of 

nonlinearities. 

    

Property 5. Regarding different kinds of nonlinearities, 

(a) when there are only input nonlinearities of the largest nonlinear degree n, the non-

negative output frequencies are in the closed set [0, )max(Vn ⋅ ]; 

(b) in other cases, the output frequencies span to infinity. Ƒ 

 

The proof is omitted. Input nonlinearities of finite nonlinear degree can independently 

bring output frequencies to the system in a finite band width. 

    

Property 6. Regarding different kinds and degrees of nonlinearities, 

(a) when there are only input nonlinearities, a nonlinear term of degree n can only 

bring output frequencies Wn, and there are no crossing effect on output 

frequencies between different degrees of input nonlinearities;  

(b) in other cases, a nonlinear term of degree n contributes to not only output 

frequencies Wn but also some high order output frequencies Wm for nm >  due to 

crossing effect with other nonlinearities. Ƒ 
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The proof is omitted. From Property 6, the crossing effect happens easily between the 

nonlinearities from output nonlinearities and input-output cross nonlinearities.  

    

Properties 4-6 provide some novel and interesting results about the output frequencies for 

nonlinear systems when the effects from different nonlinearities are considered, based on 

the results from parametric characteristic analysis in [15]. Property 4 shows that odd 

degrees of nonlinearities have quite different effect on system output frequencies from 

even degrees of nonlinearities. Especially, it is shown from the properties above that 

input nonlinearities have special effect on system output frequencies compared with the 

other kinds of nonlinearities. That is, input nonlinearities can move the input frequencies 

to higher frequency bands without interference between different frequency generation 

periods. These properties may have significance in design of nonlinear systems for some 

special purposes in practices. For example, some proper input nonlinearities can be used 

to design a nonlinear filter such that input frequencies are moved to a place of higher 

frequency or lower frequency as discussed in [24]. The results in this section have also 

significance in modelling and identification of nonlinear systems. For example, if a 

Volterra system has only output frequencies which are odd multiples of the input 

frequency when subject to a sinusoidal input, the system may have only nonlinearities of 

odd degree according to Property 4. Obviously, the results in this section provide a useful 

guidance to the structure determination and parameter selection for the design of novel 

nonlinear filters and also for system modelling or identification.  

    
Example 3. Consider a simple nonlinear system as follows 

23501.0 cybyauyy −−+−= &  

The input is a multi-tone function u(t)=sin(6t)+sin(7t)+sin(8t). The output spectra under 

different parameter values are given in Figures 5-7, which demonstrate the results in 

Properties 4-6. For the input nonlinearity, the readers can also refer to Figures 1-2.  
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Figure 5. Output frequencies when a=0.1, b=0, c=0 (left) and a=0, b=5, c=0 (right) 
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Figure 6. Output frequencies when a=0.1, b=5, c=0 
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Figure 7. Output frequencies when a=0, b=0, c=0.09 
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When there are only odd nonlinearities, the output frequencies happen at around central 

frequencies 7*(2k+1). When there are even nonlinearities, the output frequencies appear 

at around central frequencies 7*k. The input nonlinearities only bring independently a 

finite band width of output frequencies to the system. The periodicity of the output 

frequencies can also be seen clearly from these figures.  

    

Especially, it is worthy pointing out from Figures 1, 2 and 5 that there can be no crossing 

effects between proper chosen input nonlinearities as mentioned before, which can not be 

realized by the other kinds of nonlinearities. Thus the input frequencies can be moved to 

higher frequency periodically without interference between different periods and then 

decoded by using some methods. This property may have significance when a system is 

designed to achieve a special output spectrum at a desired frequency band in practices by 

using nonlinearities.  

 

6 Conclusions 
    

The super-harmonics and inter-modulations in the output frequencies of Volterra systems, 

especially of the nonlinear Volterra systems described by a NDE model, are 

demonstrated clearly, and some interesting properties of the system output frequencies 

are revealed explicitly for the first time in a uniform and analytical form. These 

properties provide several novel insights into the nonlinear behaviour in output spectrum 

of Volterra systems such as the periodicity and opposite property in the frequency 

domain, and reveal clearly the nonlinear effects on system output spectrum from different 

kind and degree of nonlinearities. These results can be used for the design of nonlinear 

systems or nonlinear filters to achieve a special output spectrum in a desired frequency 

band by taking advantage of nonlinearities, and provide an important and significant 

guidance to the analysis and design of nonlinear systems in the frequency domain by 

using the existing theory for Volterra systems. Further study will focus on the application 

issues.  
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