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Abstract

Robot simulators are useful tools for developing robot behaviours. They provide
a fast and efficient means to test robot control code at the convenience of the office
desk. In all but the simplest cases though, due to the complexities of the physical
systems modelled in the simulator, there are considerable differences between the
behaviour of the robot in the simulator and that in the real world environment.

In this paper we present a novel method to create a robot simulator using real
sensor data. Logged sensor data is used to construct a mathematically explicit model
(in the form of a NARMAX polynomial) of the robot’s environment. The advantage
of such a transparent model — in contrast to opaque modelling methods such as
artificial neural networks — is that it can be analysed to characterise the modelled
system, using established mathematical methods

In this paper we compare the behaviour of the robot running a particular task in
both the simulator and the real-world using qualitative and quantitative measures
including statistical methods to investigate the faithfulness of the simulator.
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1 Introduction

Fundamentally, the behaviour of a robot is influenced by three components:
i) the robot’s hardware, ii) the program it is executing and iii) the environment
it is operating in (see figure 1). This results in a highly complex, usually non-
linear, system. A robot program written with a specific task in mind almost
never produces the desired robot behaviour right from the beginning. This is
because many idealistic assumptions are made as far as the the robot’s hard-
ware and environment are concerned. Furthermore, even though the robot’s
programming language provides a very precise means of dictating the task in
mind, a reasonably complex program can never be tested fully and is likely to
cause some unexpected behaviour at some point during its execution.

or Task
Program CodeRobot

Environment

Fig. 1. The behaviour of a robot emerges from the interaction between robot, task and
environment.

The lack of a formal design methodology that is based on a theory of robot-
environment interaction (which would allow the methodical design of mobile
robot control programs) means that control programs have to be developed
through an empirical trial-and-error process. This is costly, time-consuming
and error prone. This problem is addressed in previous work under the Robot-
MODIC project (see [1–3]).

The lack of a theoretical foundation for mobile robotics means that develop-
ment tools have to be based on assumptions (e.g. idealised, simplified models
of sensors, simplified environment models etc) that commonly result in signif-
icant discrepancies between predicted and actually observed behaviour of the
physical mobile robot.

The objective of the work described here is to establish a methodology for
creating faithful robot simulators with which we can: (i) make accurate pre-
dictions about robot behaviour and (ii) methodically investigate how robot
behaviour is influenced by the environment so that we can ultimately develop
a theoretical foundation of robot-environment interaction.
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Fig. 2. A diagrammatic representation of the function of the robot simulator. Based
on the robot’s position and orientation the environment model produces the estimated
sensor perception. This is then passed to the task model which computes the transitional
and rotational velocities of the robot. Finally the velocities are used by the robot model
in order to compute the next position and orientation of the robot in the environment.

Robot simulators are convenient robotics research tools for developing and
testing new robot controllers. One of their main advantages is that they save
significant time and effort which is otherwise spent in working with real world
experimental setups [4]. This is because: (i) time in simulation usually runs
faster than real time and therefore the results of experiments are ready quicker
and (ii) because less time is spent to setup an environment in simulation than
in the real world.

In addition, simulations provide the only absolutely consistent method for
experimental repetition. This is particularly helpful, for example, when we
need to compare two robot controllers under identical conditions (robot and
environment). Finally, with some learning paradigms such as reinforcement
learning, it is necessary to allow the robot to err in order to learn. Simulating
the robot, in such cases, would save any time required to reset the experimental
setup after such errors and will also minimise any damage risk to the robot.

The prediction accuracy of a robot simulator directly depends on the fidelity
of the three models that comprise it (see figure 2). By far the most complex
of the three, and the one we are most concerned with in this paper, is the
environment model. The environment model provides the sensor perception of
the robot, given the robot’s position and orientation. This model depends on
the structure of the environment as well as the properties of the material it is
made of.
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1.1 Mobile Robot Simulation

The advantages, then, of mobile robot simulation are obvious, and computer
models of robot-environment interaction are clearly desirable as development
tools. Consequently, large parts of the robotics research community have adopt-
ed simulation as a viable and fundamental research tool, and a number of
simulators, such as Player-Stage [5] and Webots [6], as well as those supplied
with specific robot platforms[7–9], are widely used.

These general purpose robot simulators, as well as models of specific robots,
such as [10,11], have in common that they aim to be generally applicable, i.e.
generic, and that they are therefore based on general assumptions about kine-
matics and dynamics of the robot and environment properties. The Webots
simulation, for instance, defines mass distribution matrices for robot compo-
nents, friction coefficients, bounciness etc in order to achieve a certain degree
of fidelity, a RoboCup simulation is similar[11]. Player-Stage aims for “good
enough fidelity” [5], where “good enough” is not defined (see discussion in
section 3.2.1). Some simulations use generic kinematics and dynamics mod-
els as well as generic noise models, usually assuming all noise affecting robot
operation is Gaussian [10].

Generic robot simulators, based on general assumptions about the robot and
its environment, have attracted criticism in the past [12,13] that has, so
far, only been addressed to a limited degree by the research community. As
we argued in [14,15], and continue to believe, faithful simulation of robot-
environment interaction has to be data-driven, and can therefore only model
specific experimental scenarios. In all but the simplest robotics experiments
one finds that certain parts of the environment give rise to extreme percep-
tions, for example through specular reflections off smooth surfaces — a phe-
nomenon that a generic simulator can not model.

This paper therefore addresses the issue of faithful computer simulation of
robot-environment interaction, not generic simulation, and for this reason uses
a modelling technique that is data-driven. Related work that is therefore much
closer to our proposal here is the simulator built by Lund and Miglino [16],
which stores logged data in a lookup table and uses interpolation for the
prediction of sensory perception at unvisited locations, or the neural network-
based simulator presented in [14,15], which trains a multilayer Perceptron to
model the relationship between robot location and sensor perception. Both
of these approaches result in highly accurate models that are able to predict
sensory perceptions, even in areas having perceptual discontinuities.

Besides faithful simulation, there is, however, another motivation behind the
work presented in this paper: we would like to understand, at least partially,
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the relationship between location and perception. An opaque neural network
model is unsuitable for this, and an interpolation method is, strictly speaking,
not a modelling (i.e. generalising) approach at all.

In one sentence, we would like to obtain a faithful computer model of robot-
environment interaction that retains, in simplified form, the essence of that
interaction, and that is transparent and therefore amenable to analysis. We
achieve these three objectives using system identification[17].

Compared with other modelling approaches, such as artificial neural networks
or lookup tables, system identification offers noticeable benefits:

• The obtained models are extremely compact, consisting of one polynomial
of typically a few dozen terms.

• The models are transparent, and therefore analysable by standard tech-
niques such as sensitivity analysis. Examples of such analyses are given in
[18] and [19].

1.2 The NARMAX modelling procedure

The NARMAX modelling approach is a parameter estimation methodology for
identifying the important model terms and associated parameters of unknown
nonlinear dynamic systems. For multiple input, single output noiseless systems
this model takes the form:

y(n)= f(u1(n), u1(n − 1), u1(n − 2), · · · , u1(n − Nu),

u1(n)2, u1(n − 1)2, u1(n − 2)2, · · · , u1(n − Nu)
2,

· · · ,

u1(n)l, u1(n − 1)l, u1(n − 2)l, · · · , u1(n − Nu)
l,

u2(n), u2(n − 1), u2(n − 2), · · · , u2(n − Nu),

u2(n)2, u2(n − 1)2, u2(n − 2)2, · · · , u2(n − Nu)
2,

· · · ,

u2(n)l, u2(n − 1)l, u2(n − 2)l, · · · , u2(n − Nu)
l,

· · · ,

ud(n), ud(n − 1), ud(n − 2), · · · , ud(n − Nu),

ud(n)2, ud(n − 1)2, ud(n − 2)2, · · · , ud(n − Nu)
2,

· · · ,

ud(n)l, ud(n − 1)l, ud(n − 2)l, · · · , ud(n − Nu)
l,

y(n − 1), y(n− 2), · · · , y(n − Ny),

y(n − 1)2, y(n − 2)2, · · · , y(n − Ny)
2,

· · · ,
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y(n − 1)l, y(n − 2)l, · · · , y(n − Ny)
l)

were y(n) and u(n) are the sampled output and input signals at time n re-
spectively, Ny and Nu are the regression orders of the output and input re-
spectively and d is the input dimension. f() is a non-linear function, this is
typically taken to be a polynomial or wavelet multi-resolution expansion of
the arguments. The degree l of the polynomial is the highest sum of powers
in any of its terms.

Noise is always present in physical systems and can be accommodated as part
of the NARMAX model. In the present study we have initially assumed that
the effects of the noise are small and can be neglected. In later studies the
effects of any noise will be accommodated by fitting noise models as part of
the identification procedure to ensure that unbiased models are obtained.

The NARMAX methodology breaks the modelling problem into the following
steps:

(1) Structure detection,
(2) Parameter estimation,
(3) Model validation,
(4) Prediction and
(5) Analysis.

These steps form an estimation toolkit that allows the user to build a con-
cise mathematical description of the system. These procedures are now well
established and have been used in many modelling domains [20].

A detailed procedure of how structure detection, parameter estimation and
model validation is done is presented in [21]. A brief explanation of these
steps is given below.

Any data set that we intend to model is first split in two sets (usually of equal
size). We call the first the estimation data set and it is used to determine
the model structure and parameters. The remaining data set is called the
validation data set and it is used to validate the model.

The initial structure of the NARMAX polynomial is determined by the in-
puts u , the output y, the input and output orders Nu and Ny respectively
and the degree l of the polynomial. Any signal that influences the output
should be assigned as an input. The number of initial terms of the NARMAX
model polynomial can be very large depending on these variables, but not all
of them are significant contributors to the computation of the output. Be-
cause the models are constructed by adding one term at a time (the most
significant term) all the redundant terms are discarded. The final structure of
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the estimated NARMAX model will indicate any insignificant or redundant
inputs.

Before any removal of model terms an equivalent auxiliary model is computed
from the original NARMAX model. The model terms of the auxiliary model
are orthogonal. This allows the computation of their associated parameters to
be done in a sequential manner which is computationally more efficient.

The calculation of the auxiliary model parameters and the refinement of the
model’s structure is an iterative process which allows the model to be built
up one term at a time. This is followed by model validation.

After the model validation step, if there is no significant error between the
model-predicted output and the actual output, non-contributing model terms
are removed in order to reduce the size of the polynomial as much as possible.
This is primarily done to increase the speed of computation of the model
output during its use and also to avoid over-fitting the model to the training
data.

To determine the contribution of a model term to the output the Error Re-
duction Ratio (ERR) [21] is computed for each term. The ERR of a term is
the percentage reduction in the total mean-squared error (i.e. the difference
between model-predicted and true system output) as a result of including (in
the model equation) the term under consideration. The bigger the ERR is, the
more significant the term. Model terms with ERR under a certain threshold
(usually around 0.05%) are removed from the model polynomial in the last
step of each iteration during the refinement process.

In the following iteration, if the error is higher as a result of the last removal
of model terms then these are re-inserted back into the model equation and
the model is considered as final. Finally, the NARMAX model parameters are
computed from the auxiliary model.

In the next section we describe how we apply the NARMAX methodology
to obtain a model of the robot’s environment. The inputs of the system (i.e.
the environment) are the robot’s position and orientation and output is the
robot’s sensor perception.
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2 Experimental methods

2.1 Experimental setup

The robot used in our experiments is the Magellan Pro autonomous mobile
robot Radix (figure 3). The robot is equipped with 16 sonar, 16 infra-red and
16 tactile sensors distributed uniformly around its circumference. A SICK

laser range finder is also present which scans the front semi-circle of the robot
([0◦, 180◦]) with a radial resolution of 1◦ and a distance resolution of less
than 1 centimetre. The robot also incorporates a video camera. In the work
presented in this paper primarily the laser sensor is used.

Fig. 3. Radix, the Magellan Pro mobile robot used in the experiments described in
this paper. The visual target visible on the top of the robot was used for vision-based
trajectory tracking.

During experiments with Radix, the input from all its sensors (apart from the
video camera), the robot’s position, orientation, transitional and rotational
velocities were recorded every 250 ms. Position and orientation of the robot
were obtained by placing two point-targets on top of the robot (see figure 3)
and using an overhead video camera to track them continuously. The position
error of this tracking method was approximately 1 cm. After a logging session
the sensor data from the robot and the position/orientation data from the
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tracking system are aligned using time as the common reference. Finally, due
to the high sampling rate used, it is often necessary to subsample the collected
data before it is used for modelling and analysis.

Experimental setups of the robot’s static environment are built in a dedicated
robot arena usually using carton boxes. An example of one such experimental
setup is shown in figure 4.

Fig. 4. Bird’s eye view of an experimental setup. The longest width and height of the
environment is 3.9 and 2.4 metres respectively. The image is taken with the overhead
camera used for tracking the position of the robot.

To build the simulator, Radix is first used to collect data from the environment
that needs to be modelled. This is done using an exploratory task in order
to scan the environment using the robot’s sensors as thoroughly as possible.
Figure 5 shows the trajectory of the robot during one such exploration session.

2.2 Environment modelling

2.2.1 Method 1: Continuous Model building

After collecting sensor data during the exploration phase, a model is com-
puted which can predict the sensor perception given the robot’s position and

9



Fig. 5. The trajectory of the robot during an exploration of the environment. The task
that was being executed was an obstacle avoidance task using the robot’s laser sensor.
To produce the shown trajectory, the robot moved in the environment for approximately
2 hours.

orientation in the environment. This is the basis of our robot simulator.

The environment model MCSM is comprised of a set of functions, each of
which is itself a model of the environment but only as perceived by the robot
when it is at a particular location:

MCSM = {Smp} (1)

Smp

(xm,yn) = f(ϕ) (2)

m = 1, ..., w

n = 1, ..., h

ϕ ∈ [−π, +π]

where Smp

(xm,yn) is the model-predicted sensor perception when the robot is
at location (xm, yn). This is a function of the angle ϕ in which the particular
sensor is facing. We shall, from now on, call Smp

(xm,yn) the model-predicted sensor

signature of location (xm, yn). The set of locations {(x, y)} are chosen to be
on an equally spaced grid (xg, yg) (comprised of w×h locations) which covers
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Fig. 6. A 10 cm grid superimposed on the image of the environment. Location (1.78,
2.31) is shown in black, the laser perception of the robot at this location is given in
figure 7.

the surface area of the environment to be modelled. As an example, the grid
locations of a 10 cm spaced grid for the environment shown in figure 4 are
shown in figure 6.

Each sensor signature, perceived at a particular grid location, is then modelled
using a NARMAX polynomial, using real sensor data obtained during the
exploration of the environment. This approximated sensor signature {Sa

(xm,yn)}
for location (xg

m, yg
n), represented by a non-linear polynomial, contains two

elements: the sensor angle ϕ and the approximated range value of the sensor
vϕ corresponding to this angle:

Sa
(xm,yn) = {(ϕ, vϕ)} (3)

ϕ ∈ [−π, +π]

The sensor range value is approximated because it is taken to be the same as
that of the nearest value available in the exploration data (i.e. the same as
that of the nearest robot position and sensor angle, in the exploration data, to
the grid position and sensor angle for which the signature is approximated).
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Fig. 7. The laser sensor signature at grid location (1.78, 2.31) metres. The sensor values
are shown starting from 0 radians (east direction with respect to figure 6) clockwise to
2π radians.

sinϕ

cos ϕ

NARMAX model νϕ

Fig. 8. Inputs and output of the NARMAX model for each sensor signature in the grid
of locations chosen to model the environment, were ϕ is the sensor angle and vϕ the
approximated range value perceived by the sensor at this angle.

The resolution of the angle ϕ is π/180 rad thus making Sa a signature of 360
samples. Figure 7 shows the approximated signature of the laser sensor at grid
location (1.78, 2.31) metres (shown as a black square in figure 6).

After obtaining each approximated grid signature (Sa), the NARMAX mod-
elling methodology is used to estimate the continuous function (Smp) that rep-
resents Sa. To avoid the discontinuity at ϕ = ±π, we use sin(ϕ) and cos(ϕ)
as inputs to the model, rather than ϕ directly. The output of the model is the
sensor range value ν (see figure 8).

The NARMAX models obtained were of degree 5 and no input or output lags
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were used (i.e. l = 5, Nu = 0, Ny = 0). For the signature shown in figure 7
the following polynomial was obtained:

Smp

(1.78,2.31) = (4)

+1.489

−1.625 ∗ u1

−0.766 ∗ u2

−0.602 ∗ u2
1

+4.726 ∗ u3
1

+1.258 ∗ u3
2

+0.379 ∗ u4
1

−2.860 ∗ u5
1

+0.329 ∗ u1 ∗ u2(n)

−0.164 ∗ u1 ∗ u2(ϕ)3

+1.178 ∗ u2 ∗ u1(ϕ)4

where

u1 = sin(ϕ)

u2 = cos(ϕ)

ϕ ∈ [−π, +π]

Following the example of the grid location (1.78, 2.31) the model-predicted
laser signature values at this location produced by evaluating the function
above for values of ϕ in the range [−π, +π] is shown in figure 9. The approxi-
mated sensor signature at location (1.78, 2.31) is also shown for comparison.

In a similar way, the complete environment model is composed by finding
the models corresponding to each approximated grid signature. Note that the
degree of the model polynomials (here degree 5) is adaptive and is decided
based on how well the model fits the experimental data. This can be bigger or
smaller depending on the complexity of the sensor signature which is related
to the complexity of the environment topology.

When the environment model is used during simulation, the robot’s sensor
perception is determined using the polynomial of the environment model that
corresponds to the grid location nearest to the robot’s actual position. This
is done by simply evaluating the selected polynomial for the range of angles
which correspond to the simulated robot sensor angles.
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Fig. 9. Approximated (thin line) and model-predicted (thick line) sensor signature at
location (1.78, 2.31) metres.

2.2.2 Model validation

In order to validate the environment models obtained by the method described
thus far, test data is collected in the real environment while the robot exe-
cutes a new, different task in the laboratory (the validation task) right after
the exploratory phase. The validation task is also executed in the robot simu-
lator and the two obtained trajectories are compared. A complete example of
environment modelling and validation is presented in section 3.

2.2.3 Method 2: Piecewise signature modelling

We implemented an alternative to the above method that improves the pre-
diction accuracy of the environment model considerably by modelling smaller
segments of each grid signature rather than the entire signature. Here, each
grid signature is modelled using a set of NARMAX polynomial functions in-
stead of only one. We call this the piecewise signature modelling method.

The segments of the signature modelled are chosen to be those between cusps,
the points where there is a relatively big change either in the value or the
derivative of the signature. In a typical environment this occurs when the
sensor faces a surface as the robot moves, either at a different angle compared
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with the previous surface or at a different distance (see figure 10).

θ 3 θ 2

θ 1

θ 4

θ 1 θ 3 θ 4θ 2

S
en

so
r 

pe
rc

ep
tio

n

Bearing angle

Robot

Environment wall

Fig. 10. Two occasions where cusps appear in the sensor signature. As the robot rotates
anti-clockwise at the same location one laser sensor scans the wall surface from ϕ1 to
ϕ4. Two cusps appear in the signature recorded: the first at ϕ2 and the other at ϕ3.
Actually in the latter case two cusps exist, one on top of the other.

Figure 11 shows the location of the cusps of the laser sensor signature shown
in figure 7.

The complete environment model MPSM is now defined as:
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Fig. 11. The circles indicate the location of the cusps. These are determined from the
magnitude of the second derivative of the sensor signature.

MPSM = {Smp} (5)

Smp

(xm,yn) = {f i(ϕ), ϕi 6 ϕ < ϕi+1} (6)

m = 1, ..., w

n = 1, ..., h

i = 1, ..., k

ϕ ∈ [−π, +π]

where Smp

(xm,yn) is now a set of k polynomials each of which models a segment
of the approximated sensor signature at grid location (xm, yn).

As an example, the piecewise model of the signature shown in figure 11 is given
in table 1, figure 12 shows the piecewise model-predicted sensor signature and
the approximated signature.

where

u1 = sin(ϕ)

u2 = cos(ϕ)
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+2.130 , ϕ = 0.000

+2.065 + 15.186 ∗ u1 , 0.000 < ϕ < 0.035

+5.349 − 0.042 ∗ u1 − 2.695 ∗ u2 , 0.035 6 ϕ < 0.209

+15.945 − 61.998 ∗ u1 , 0.209 6 ϕ < 0.244

+4.063 − 1.482 ∗ u1 − 3.210 ∗ u2 , 0.244 6 ϕ < 0.576

−35.633 + 65.876 ∗ u1 , 0.576 6 ϕ < 0.611

+3.772 − 2.336 ∗ u1 − 0.051 ∗ u2 , 0.611 6 ϕ < 1.990

+3.203 − 0.793 ∗ u1 + 2.404 ∗ u2 , 1.990 6 ϕ < 2.985

+1.138 − 3.238 ∗ u1 , 2.985 6 ϕ < 3.037

+1.772 − 8.793 ∗ u1 , 3.037 6 ϕ < 3.089

+2.719 − 0.005 ∗ u1 + 1.471 ∗ u2 , 3.089 6 ϕ < 3.822

+2.953 + 2.233 ∗ u1 , 3.822 6 ϕ < 3.927

+4.624 + 4.580 ∗ u1 , 3.927 6 ϕ < 3.979

+2.283 + 1.375 ∗ u1 + 0.043 ∗ u2 , 3.979 6 ϕ < 5.655

+0.890 − 1.220 ∗ u1 , 5.655 6 ϕ < 5.760

+1.747 + 0.481 ∗ u1 , 5.760 6 ϕ < 5.864

+7.620 + 6.408 ∗ u1 − 3.803 ∗ u2 , 5.864 6 ϕ < 6.021

+3.546 − 0.265 ∗ u1 − 1.426 ∗ u2 , 6.021 6 ϕ < 6.266

+2.130 , ϕ = 6.266

(7)

Table 1
Piecewise model of the sensor signature shown in figure 11

In simulation, the environment model obtained using the piecewise approach
is used to obtain the robot’s sensor perception in a similar fashion as with
model MCSM but in this case there is an additional step: The bearing of
the sensor whose value is sought determines which polynomial function of the
signature must be used. In the example given above (equation 7), if the robot
in simulation is nearest to location (1.78, 2.31) metres so that model Smp

(1.78,2.31)

is selected and, say, a single laser sensor component is facing 0.75 rad, then
the polynomial

Smp

(1.78,2.31)|ϕ=0.75 = +3.772 − 2.336 ∗ u1 − 0.051 ∗ u2

would be used to obtain the model-predicted perception of that laser sensor
component (in this case 2.14 metres).

In the following section we present the results of an environment modelling
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Fig. 12. Approximated (dark-coloured line) and model-predicted (light-coloured line),
using the piecewise modelling method, sensor signature at location (1.78, 2.31) metres.

example using both modelling approaches explained above. Both models ob-
tained are tested by comparing the robot’s behaviour in a simulator and that
in the real world for the same robot task.

3 Experimental results

The environment shown in figure 4 was modelled using the two methods de-
scribed in the previous section. Only the laser sensor was modelled in the
following example.

Initially the robot was allowed to execute an exploratory task using its laser
sensor. This was essentially an obstacle avoidance task. The aim was to cause
the robot to visit the entire environment as thoroughly as possible in order
to record, through its sensors, all features in the environment. The trajec-
tory of the robot after executing the exploratory task in the environment for
approximately 2 hours is shown in figure 5.

The grid locations whose signatures are approximated using sensor data from
the exploration phase are shown in figure 6. The grid spacing in both x and y
directions is 0.1 metres.
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Using the two modelling methods described in section 2.2, two models of
the environment were obtained: first, by modelling the entire approximated
laser sensor signature of each grid location using one NARMAX polynomial
(Complete Signature Model MCSM, see section 2.2); second, by modelling
the approximated laser sensor signature of each grid location using multiple

NARMAX polynomials (Piecewise Signature Model MPSM, see section 2.2.3).
Model MCSM resulted in a set of 680 polynomials (one for each grid location),
model MPSM in a set of 14280 polynomials (i.e. an average of 21 polynomials
for each grid location).

In order to evaluate each model, the behaviour of the robot while running a
particular, new task in the simulated environment (using either of the models)
was compared with that of the real robot executing the same task in the real
environment. This test data was obtained in the environment that had been
modelled during the initial exploration shown in figure 5. The test control
program was a wall-following task using the robot’s laser sensor. The trajec-
tory of the robot during the collection of the test data is shown in figure 13.
The same wall-following task was then implemented in a simulator using, first,
model MCSM and then model MPSM.

Fig. 13. The trajectory of the robot during the execution of the wall-following task in
the environment.

Figures 14 and 15 show the trajectory of the robot in simulation (using models
MCSM and MPSM respectively) with the trajectory of the robot in the real
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world (used as the “ground truth”) when executing the wall-following task.
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Fig. 14. The trajectory of the robot in the simulator using environment model MCSM

(light-coloured line). This is the environment model which uses one NARMAX polyno-
mial for each grid location. The robot’s trajectory obtained during the collection of the
test data (ground truth) is also shown (dark-coloured line) for comparison.
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Fig. 15. The light-coloured line shows the trajectory of the robot in the simulator
using environment model MPSM (piecewise signature model). This is the environment
model which uses several NARMAX polynomial for each grid location. The robot’s
trajectory obtained during the collection of the test data (ground truth) is also shown
(dark-coloured line) for comparison.

In order to compare the performance of the two environment models with
a standard look-up table simulation methods (such as the one used in [16])
a further simulation run was performed using this approach. This was done
by using the signature of the nearest grid location to the simulated robot’s
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location to determine the robot’s sensor perception. The trajectory of the
simulated robot during this run is shown in figure 16.
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Fig. 16. The trajectory of the robot in the simulator using sensor data directly from the
approximated grid signatures (look-up table model) to determine the sensor perception
of the simulated robot (light-coloured line). The robot’s trajectory obtained during
the collection of the test data (ground truth) is also shown (dark-coloured line) for
comparison.

To assess the faithfulness of each of the three models obtained we conducted
a qualitative and a quantitative comparison between the pairs of trajectories
presented in figures 14, 15 and 16, which is discussed in the following section.

3.1 Qualitative assessment of experimental results

Visual comparisons between figures 14 and 15 show that the piecewise envi-
ronment model MPSM produces a trajectory that matches the test trajec-
tory more closely than the trajectory obtained with the complete signature
model MCSM. This is particularly noticeable at the vicinity of the turn at
(1.0, -2.8) metres and the part where the robot follows the straight wall in the
environment which appears at the top of image 13. This was expected since
MPSM models the grid signatures more precisely than MCSM.

We also observe qualitatively that the trajectory predicted by the look-up
table model (figure 16) appears to follow the actual robot trajectory more
closely than those trajectories predicted by models MCSM and MPSM.

In general, however, we can see that all simulated trajectories display the char-
acteristics of the original wall-following behaviour very well. We believe that
some of the differences between the actual and simulated behaviours can be
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attributed to inevitable changes in the environment and/or the robot proper-
ties regardless of our best efforts to keep these constant. The exploration data
(with which the models were estimated) and the test data were collected in
two consecutive days because the robot had to be recharged in the meantime.
Small changes in the positioning of the environment setup, variations of envi-
ronmental conditions, differences in robot battery voltage level etc. could all
have contributed to different robot sensor and/or actuator properties during
the collection of the two data sets.

3.2 Quantitative assessment of experimental results

3.2.1 What is a faithful robot simulator?

Qualitative comparisons between original and model prediction, such as the
ones given in figures 14, 15 and 16 will give an intuitive “feel” for the fidelity
of a model, but do not allow any precise, quantitative comparison. They do
not, in other words, provide any scientific argument to prefer one model over
another.

The method we propose in this paper to compare different models with each
other is to i) define a performance criterion that captures the essence of the
simulation, and ii) to compare the performance of different models with respect
to this criterion, using a statistical analysis.

Kohler and Wehner have recently published a very interesting analysis of tra-
jectories of desert ants melophorus bagoti [22] that is relevant to this aspect of
this paper. In their experiment, the ants’ task was to return home from a dis-
tant location. Taking the straight line between release site and home location
as a reference, Kohler and Wehner then analyse the deviation to the left or
right of each path from that reference line, using an analysis of variance test.

We analysed the model predictions obtained in our experiments in a similar
way, taking one circuit of the reference trajectory as a baseline, and statisti-
cally analysing the distance of all other trajectories, including different circuits
of the reference trajectory, to that baseline. This is shown in figure 17.

3.2.2 Statistical analysis of simulation results

Besides comparing the simulator-predicted trajectories and actually observed
trajectories visually (section 3.1), we were interested to measure if predictions
and actual trajectory differ in a statistically significant way. Quantitative tra-
jectory analysis is still a young research area, and only very few examples of a
quantitative comparison between robot trajectories are found in the literature,
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Circuit to 
be assessed

Sampling 
point d

Reference circuit

Fig. 17. Trajectories were compared by assessing the distribution of distances to a
reference trajectory. The distance d between the reference trajectory (dark line) and the
trajectory that is to be assessed (light line) is defined as shown above.

for example [19] and [23]. Here, we are interested to determine if the trajec-
tories shown in figures 14, 15 and 16 resemble the actual trajectory taken by
the physical robot globally, i.e. whether the predicted trajectories deviate to
the left and the right of the reference trajectory (the trajectory of Radix in
the laboratory) in the same manner that the robot’s own trajectory deviates
as the robot completes separate rounds of its wall following task.

As stated above, we took one circuit of the reference trajectory as a baseline,
and determined the distance of circuits of all other trajectories, including
different circuits of the reference trajectory, to that baseline (figure 17).

For each of the four trajectories — continuous model, piecewise model, inter-
polated model and actual robot trajectory — we took 15 circuits (shown in
figure 18), and computed the distribution of distances to the reference circuit
(which was an additional circuit taken from the reference trajectory). These
distributions are shown in figure 19.

We then established whether there is a statistically significant difference in the
deviation from the reference circuit and any of the four trajectories: The four
distributions do not differ from each other significantly (parametric ANOVA,
p>0.05), meaning that all four trajectories deviate from the reference circuit
in the same manner.

This means that lookup table model or polynomial model do not differ with
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Fig. 18. Actual circuits taken by the robot, circuits predicted by the three simulators,
and reference circuit used for comparison (see figure 17)

respect to their deviation around the reference circuit, i.e. that they have a
similar global fidelity to the original. We argue, however, that a polynomial
NARMAX model is preferable for two reasons:

(1) The models obtained are transparent and are thus amenable to analysis
using established mathematical tools. Such analysis can lead to the char-
acterisation of the environment and the determination of those important
factors that predominantly influence the robot’s behaviour. For examples
of such analysis of NARMAX models see [3] and [18].

(2) The polynomial models occupy considerably less memory space compared
to the look-up table model. In the example presented above, the look-up
table model occupied approximately 2.1MB of memory whereas the two
NARMAX models occupied 1.3MB (MCSM) and 0.9MB (MPSM) 1 . Such
saving become important when larger and more complex environments
are modelled.

1 This may come as a surprise as MPSM comprises of a considerably larger number
of polynomials compared to MCSM, however the polynomials in MCSM are of much
higher degree than those in MPSM which results in them containing more terms
and thus taking more memory space
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Fig. 19. Distributions of distances measured to the reference circuit for the reference
trajectory itself, the continuous model, the piecewise model, and the model based on a
lookup table.

4 Discussion

4.1 Summary

We have presented the RobotMODIC (Robot MODelling Identification and
Characterisation) approach for robot environment modelling using the NAR-
MAX model estimation methodology.

Initially, a real robot is used to sample the environment in order to collect loca-
tion and corresponding sensor information to be used for the model estimation
process. The collected data are used to approximate the sensor perception of
the robot at each node of a regular grid of locations which covers the entire
environment area. Two methods are presented for modelling the approximated
sensor perception signatures at every grid location:

(1) using a single NARMAX polynomial to model the signature as a whole,
and

(2) using a set of NARMAX polynomials to model the signature in a piece-
wise fashion.
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In order to assess the accuracy of each of the estimated models we compared
the behaviour of the robot when executing a particular task in the real world
with that when executing the same task in simulation.

No statistically significant difference was found between the real-world and
simulated robot behaviours in our example.

4.2 Conclusions

Purpose The purpose of the work presented in this paper is to obtain ac-
curate robot simulators that speed-up the development of robot control pro-
grams.

The interaction of a robot with its environment is complex and can be ex-
pressed in many ways (trajectory, velocity, acceleration, battery voltage, re-
sponse to obstacles etc). Here we have chosen the trajectory profile of the
robot to describe its function (wall-following) because we felt that this would
represent the task best. Future work will look into the comparison of different
modes of behaviour while the robot is performing the same task or even dif-
ferent tasks (such as obstacle avoidance, route learning etc). This will allow
a more complete and thorough comparison between the simulated and real
environments.

Contrast to SLAM The method presented in this paper is not to be con-
fused with a SLAM (Simultaneous Localisation And Mapping) method such
as the one presented in [24]. The purpose of the work presented here is the gen-
eration of a faithful simulator for location-perception mappings, rather than
map-building and localisation for navigation purposes.

Contrast to sensor signal interpretation [25] and [26] describe how to
interpret the robot’s sensor perception (the sonar sensor in particular) in order
to recognise specific features of the environment. Again, this is quite different
from what we expect to attain in the work presented here. We do not aim
to identify environment features, but would like to be able to reproduce the
robot’s perception accurately as a function of its position. Different tasks such
as SLAM or landmark identification algorithms, for example, can then be
compared qualitatively under the exact same environment model.

The most important aspect of our method is that it uses transparent math-
ematical functions to model the environment. This allows the analysis of the
models, which in turn will provide a better theoretical understanding of the
complex interaction between a robot and its environment.
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Future Work This paper addressed the issue of faithful, transparent and
abstracted modelling of robot-environment interaction, and did so by introduc-
ing a modelling method based on system identification. To assess the fidelity
of the obtained models, two identified models and a lookup-table model were
compared with each other in a laboratory environment.

We see two possible extensions to this work, both of which are under investi-
gation in our laboratories: i) to conduct experiments in larger, more complex
and possibly dynamic environments, and ii) to compare our system identifica-
tion method with other commonly used modelling methods, using quantitative
statistical analysis.
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