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Abstract

Robot training is a fast and efficient method of obtaining robot control
code. Many current machine learning paradigms used for this purpose,
however, result in opaque models that are difficult, if not impossible to
analyse, which is an impediment in safety-critical applications or applica-
tion scenarios where humans and robots occupy the same workspace.

In experiments with a Magellan Pro mobile robot we demonstrate that
it is possible to obtain transparent models of sensor-motor couplings that
are amenable to subsequent analysis, and how such analysis can be used
to refine and tune the models post hoc.

1 Introduction: Robot Training

Sensor-motor couplings form the back-bone of most mobile robot control tasks,
and often need to be implemented fast, efficiently, and reliably. Machine-
learning techniques, such as artificial neural networks are commonly used to
obtain the desired sensor-motor competences. However, although these meth-
ods speed up the development of a reactive controller significantly, most of them
produce opaque models that cannot be used to investigate and “understand”
the characteristics of the robot’s behaviour further.

In [Nehmzow et al., 2006] we presented a novel procedure to program a robot
controller, based on system identification techniques. Instead of refining an ini-
tial approximation of the desired control code through a process of iterative
refinement by trial an error, the robot training procedure we proposed iden-

tifies the motion of a manually, “perfectly” driven robot, and subsequently
uses the result of the identification process to achieve autonomous robot op-
eration. Through the use of a system identification approach the behaviour
of the robot is modelled through a polynomial representation that is easily
and accurately transferable to any robot platform with similar sensor config-
uration [Kyriacou et al., 2005]. Moreover, this polynomial representation can
be analysed to understand the main aspects involved in robot behaviour: we
can for instance identify the most relevant hardware components of the robot
(e.g. sensors) [Iglesias et al., 2005, Nehmzow et al., 2006], or predict the robot’s
response to particular inputs [Kyriacou et al., 2006].

The robot-training process we proposed works in two stages: first, the robot
is driven under manual control demonstrating the target behaviour. While the
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robot is being manually moved, sensor readings and the robot actions are logged.
In a second stage, system identification techniques like ARMAX [Eykhoff, 1981]
or NARMAX [Chen and Billings, 1989] are applied to model the relationship be-
tween sensor readings, i.e. perception and actuator signals, i.e. action. These
ARMAX and NARMAX models are transparent (i.e. expressed as a mathemat-
ical equation) and can therefore be formally analysed, as well as used in place
of “traditional” robot control code.

In this paper we focus our attention on how the mathematical analysis of
NARMAX models can be used to understand the robot’s control actions, to
formulate hypotheses, and to correct or improve the robot’s behaviour. One
main objective behind this approach is to avoid trial-and-error refinement of
robot code. Instead, we seek to obtain a reliable design process, where program
design decisions are based on the mathematical analysis of the model which
describes the robot’s behaviour. We demonstrate this procedure for different
robot-behaviours.

2 The NARMAX Modelling Procedure

To obtain the desired sensor-motor couplings, we used the nonlinear system
identification of Narmax (nonlinear, auto regressive moving average models with
exogenous inputs). Due to space limits we can only provide a brief description of
the Narmax modelling strategy, nevertheless this approach is discussed in detail
in [Chen and Billings, 1989], and examples of robotics applications are given in
our previous publications [Analytical and Cognitive Robotics Group, 2007].

The NARMAX modelling approach is a parameter estimation methodology
for identifying the important model terms and associated parameters of un-
known nonlinear dynamic systems. For multiple input, single output noiseless
systems this model takes the form:

y(n) = f(u1(n), u1(n − 1), u1(n − 2), · · · , u1(n − Nu),

u1(n)2, u1(n − 1)2, u1(n − 2)2, · · · , u1(n − Nu)2,

· · · ,

u1(n)l, u1(n − 1)l, u1(n − 2)l, · · · , u1(n − Nu)l,

u2(n), u2(n − 1), u2(n − 2), · · · , u2(n − Nu),

u2(n)2, u2(n − 1)2, u2(n − 2)2, · · · , u2(n − Nu)2,

· · · ,

u2(n)l, u2(n − 1)l, u2(n − 2)l, · · · , u2(n − Nu)l,

· · · ,

· · · ,

ud(n), ud(n − 1), ud(n − 2), · · · , ud(n − Nu),

ud(n)2, ud(n − 1)2, ud(n − 2)2, · · · , ud(n − Nu)2,
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· · · ,

ud(n)l, ud(n − 1)l, ud(n − 2)l, · · · , ud(n − Nu)l,

y(n − 1), y(n − 2), · · · , y(n − Ny),

y(n − 1)2, y(n − 2)2, · · · , y(n − Ny)2,

· · · ,

y(n − 1)l, y(n − 2)l, · · · , y(n − Ny)l)

were y(n) and u(n) are the sampled output and input signals at time n
respectively, Ny and Nu are the regression orders of the output and input re-
spectively and d is the input dimension. f() is a non-linear function, this is
typically taken to be a polynomial or wavelet multi-resolution expansion of the
arguments. The degree l of the polynomial is the highest sum of powers in any
of its terms.

Any data set that we intend to model is first split in two sets (usually of
equal size). We call the first the estimation data set and it is used to deter-
mine the model structure and parameters: basically the model parameters are
determined trying to minimise the difference (mean-squared error) between the
model predicted output and the actual one. The remaining data set is called
the validation data set and it is used to validate the model.

The structure of the NARMAX polynomial is determined by the inputs u ,
the output y, the input and output orders Nu and Ny respectively and the
degree l of the polynomial. The problem is that the number of initial terms of
the NARMAX model polynomial can be very large depending on these variables,
but not all of these terms are significant contributors to the computation of the
output. In order to remove the non relevant terms, the Error Reduction Ratio
(ERR) [Korenberg et al., 1988] is computed for each term. The ERR of a term
is the percentage reduction in the total mean-squared error (i.e. the difference
between model-predicted and true system output) as a result of including (in
the model equation) the term under consideration. The bigger the ERR is, the
more significant the term. Model terms with ERR under a certain threshold
(usually around 0.05%) are removed from the model polynomial.
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3 Route Learning by Demonstration

We applied our robot training strategy to program a reactive route following
controller (figure 1). Although this route looks quite simple, it is actually quite
difficult to learn due to the lack of landmarks in the environment. The sensor
readings when the robot is in the middle of the route (labelled A in figure 1)
are very similar but half of the time the robot has to turn right, while the other
half it has to turn left. In order to learn this route a Magellan Pro Robot
was first steered for 1 hour along the desired route by a human operator (fig-
ure 1,left). During this stage sensor perceptions (figure 2), position, transitional
and rotational velocities were recorded every 250 ms.

Figure 1: Left: Robot trajectory under manual control, used to
obtain training data. Right: Trajectory taken under control of
the obtained model given in table 1.

Figure 2: Location of each sonar and infrared sensor in the Magel-
lan Pro Robot we used in our experiments. The laser sensors have
been averaged in twelve sectors of 15 degrees each (laser bins).
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Having logged speeds and perceptions, we identified the robot’s movement
using the NARMAX process, taking all sonar and laser measurements as inputs
to the modelling process (figure 3). Laser ranges were averaged in twelve sec-
tors of 15 degrees each (laser bins), resulting in a twelve-dimensional vector of
laser-distances. Both laser bins and the 16 sonar sensor values were inverted
and normalised, so that large readings indicate close-by objects. The resulting
NARMAX model is shown in table 1. The model was then used to control the
robot directly (figure 1, right).

Figure 3: Inputs used to model robot’s behaviour in the route shown
in figure 1.

4 Behaviour Refinement through off-line Model

Analysis

Robot-environment interaction is strongly influenced by the environment in
which the robot operates, and it is a common occurrence in mobile robotics
that control code ceases to function correctly once the environment changes. To
investigate the susceptibility of our Narmax model to such changes, we modi-
fied the environment (by introducing or removing boxes, ladders etc.) until the
model was no longer able to control the robot correctly.

Instead of trying to “guess” what was wrong, we decided to analyse the
models to see the reasons behind the undesired behaviour, carrying out two
different analyses: i) we computed the sensitivity of our control model with
respect to each one of the inputs to see which inputs are the most relevant for
the robot-behaviour, and ii) we used the partial derivatives of our model with
respect to the identified most relevant inputs to analyse the stability of the
model.

4.1 Sensitivity Analysis

To determine which model-inputs contribute the most to the output (angu-
lar velocity), we used three different tests: partial derivative analysis, Sobol’s
mechanism [Sobol, 1993], and mutual information.
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θ̇(t) = +0.08 − 0.50 ∗ I1 − 0.62 ∗ I4 + 0.46 ∗ I6

+0.07 ∗ I7 − 0.09 ∗ I8 + 0.14 ∗ I9 + 0.02 ∗ I10

+0.20 ∗ I12 − 0.88 ∗ I13 + 0.22 ∗ I15 − 0.04 ∗ I17

+0.004 ∗ I18 − 0.04 ∗ I19 + 0.20 ∗ I22

−0.02 ∗ I26 + 0.11 ∗ I28 − 0.43 ∗ I30

+0.041 ∗ I2

1
+ 0.02 ∗ I2

2
− 0.06 ∗ I2

3

+0.53 ∗ I2

4
− 0.44 ∗ I2

6
+ 0.01 ∗ I2

9

−8.70 ∗ I2

30
− 0.07 ∗ I1 ∗ I2

+0.07 ∗ I1 ∗ I3 + 0.44 ∗ I1 ∗ I4

+0.40 ∗ I1 ∗ I10 − 0.24 ∗ I1 ∗ I11

+0.83 ∗ I1 ∗ I13 + 0.09 ∗ I1 ∗ I16

−0.79 ∗ I1 ∗ I23 − 0.04 ∗ I1 ∗ I25

+0.08 ∗ I1 ∗ I29 + 3.58 ∗ I1 ∗ I30

+0.36 ∗ I2 ∗ I4 − 0.73 ∗ I2 ∗ I9

−0.05 ∗ I2 ∗ I12 + 0.04 ∗ I2 ∗ I25

+0.63 ∗ I3 ∗ I8 − 0.28 ∗ I3 ∗ I12

+0.11 ∗ I3 ∗ I15 − 0.48 ∗ I4 ∗ I10

−0.27 ∗ I5 ∗ I8 + 0.11 ∗ I5 ∗ I13

+0.26 ∗ I6 ∗ I8 + 0.02 ∗ I7 ∗ I17

+0.15 ∗ I7 ∗ I18 − 0.18 ∗ I7 ∗ I24

−0.17 ∗ I8 ∗ I10 + 0.03 ∗ I8 ∗ I17

−0.10 ∗ I10 ∗ I22 + 0.05 ∗ I10 ∗ I24

+0.03 ∗ I12 ∗ I22 + 0.06 ∗ I12 ∗ I23

+0.01 ∗ I12 ∗ I28 + 2.68 ∗ I13 ∗ I18

−0.30 ∗ I13 ∗ I23 − 1.99 ∗ I14 ∗ I18

+3.91 ∗ I14 ∗ I30 + 0.13 ∗ I15 ∗ I17

−1.27 ∗ I15 ∗ I18 − 1.85 ∗ I15 ∗ I30

+0.05 ∗ I16 ∗ I23 − 0.13 ∗ I16 ∗ I29

−0.23 ∗ I18 ∗ I22 + 0.89 ∗ I18 ∗ I23

+0.08 ∗ I27 ∗ I28 + 5.06 ∗ I28 ∗ I29

Table 1: NARMAX model of the angular velocity θ̇ for the route
following behaviour shown in figure 1. I1 . . . I30, are the model in-
puts: the normalised laser bins, normalised sonar, inverted mini-
mum sonar and laser readings, shown in figures 2 and 3.

4.1.1 Partial Derivative Analysis

Using Taylor’s theorem [Apostol, 1974], it is possible to estimate the change in
the angular velocity of the robot due to changes in input sensor readings (eq 1).

∆θ̇ =
∑n

i=1
∂θ̇
∂Ii

∆Ii + 1
2!

∑n
j=1

∑n
i=1

∂2θ̇
∂Ij∂Ii

∆Ij∆Ii+

+ 1
3!

∑n
k=1

∑n
j=1

∑n
i=1

∂3θ̇
∂Ik∂Ij∂Ii

∆Ik∆Ij∆Ii + . . . ,
(1)

where θ̇ is the turning speed of the robot, n the number of input signals in
the model (30 in our case) and Ii and Ij represent model inputs 1. . .n (figure 3).
For the model shown in table 1, the third order derivatives are all zero, and the
contribution of the 97 non-zero second order derivatives is very small, which
allows us to rewrite equation 1 in the simplified form of equation 2.
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Figure 4: First full traversal of the desired route, taking 130 sec-
onds total travelling time.

θ̇t+1 ≈ θ̇t +

30
∑

i=1

∂θ̇

∂Ii

∆Ii . (2)

Using equation 2, we can estimate the influence of each model input upon
the robot’s steering speed. To estimate these influence values, we computed
for every model-input the difference between the angular velocity θ̇t and the
predicted angular velocity when the input under consideration is removed from
equation 2. Figure 5 shows the average influence of each model input for the
first full traversal of the route (figure 4). The most relevant inputs turn out to
be I13, I14, I15, I23,I28, I29 and I30.

4.1.2 Sensitivity Analysis: Sobol Indices

We also applied the mechanism proposed by I. M. Sobol [Sobol, 1993]
[Saltelli, 2002] to estimate the sensitivity of the model shown in table 1 with
respect to each of its inputs. This analysis determines which input parameters
contribute most to the model output, and which parameters are insignificant
and might therefore be eliminated from the model.

We assume that a mathematical model is described by y = f(~x), where
~x represents a vector of n independent random variables defined in a unit n-
dimensional cube. We’ll also assume that the joint probability density function
of the input is p(x1, x2, ..., xn) =

∏n
i=1 pi(xi). The total sensitivity of f(~x) with

respect to each one of the different variables xi, is calculated as the percentage
of the total variance of f(~x) which is due to the variance in xi.

Figure 6 shows the sensitivities computed for each model input. I13, I14,
I15, I18, I28 and I29 are the most relevant inputs. This result agrees with the
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Figure 5: Average influence (estimated through partial derivatives)
of each model-input.

Figure 6: Total sensitivity of the model with respect to each of its
inputs, calculated using Sobol’s method.
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conclusions we drew before from the partial derivative analysis (compare figure 6
with figure 5).

4.1.3 Mutual Information in Sensitivity Analysis

Finally, we estimated the sensitivity of the model with respect to each input by
using the mutual information Im between model input u and model output y,
given in equation 3.

Im = H(u) + H(y) − H(u, y), (3)

with H(m) = −
∑

k p(mk)ln p(mk) and
H(m,n) = −

∑

k,l p(mk, nl)ln p(mk, nl). p(mk) is the probability that the value
of variable m falls into bin k, and p(mk, nl) is the probability that variable m
falls into bin k and variable n falls into bin l.

Using a Monte Carlo simulation, we estimate the sensitivity of the model
with respect to input ui by generating a large number of random input vectors
~u, where only component ui is kept constant, and computing the mutual in-
formation between input ui and output y. As the mutual information can be
interpreted as a measure of how much information y contains about ui, it will be
particularly high for components ui that influence the model output y strongly
(in other words, inputs ui that are “important”).

Figure 7 gives the results, inputs I13, I14, I15, I18, I28, and I29 turn out to
be the most relevant — a good agreement with the results obtained in figures 5
and 6.

Figure 7: Sensitivity analysis: Mutual information between the
model-output and model-inputs u1. . . u30.
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4.2 Stability Analysis

The last aspect we analysed is how much the angular velocity of the robot would
change if one of the relevant sensors became noisy or if there were changes in
the environment: we calculated partial derivatives of the angular velocity model
with respect to the most relevant model inputs along the robot’s trajectory.

Figures 8 and 9 show the values of the partial derivatives of the model with
respect to inputs I15 and I18 (sonar sensor 3 and 6, respectively). As we can
see, the partial derivative with respect to the third ultrasound sensor is quite
often high during the first lap of the robot in the environment; this means that
if any obstacle is placed at the left side of the robot when it is turning to the
right (region A in figure 4), the robot-behaviour might be affected.

Figure 8: Value of the partial derivative of the control model with
respect to input 15 (sonar 3) during the first lap of the robot in
the environment shown in figure 4.

Regarding sonar 6 (figure 9), noisy readings would not be critical during
most of the trajectory. If we consider figure 9 and the time it takes the robot to
reach every part of the route (figure 4), we can see that the partial derivative is
only high when the robot is between the two boxes in the environment. This is
in good agreement with the results shown in figure 5.

If we now consider sonar 16 (model input I28), if a box was placed at, say,
location B (figure 4), the analysis given in figure 10 shows that that would affect

the robot’s steering speed considerably — there are numerous high values of ∂Θ̇
∂I28

between seconds 75 and 100.

10



Figure 9: Value of the partial derivative of the model with respect
to input 18 (sonar 6) during the first lap of the robot in the
environment shown in figure 4.

5 Refining the Narmax Control Model

The analysis in section 4.2 revealed that the model is affected by fluctuations
especially on sonars 3 and 16. We therefore decided to obtain a refined Narmax
model, whose inputs are “myopic” sensor readings that are deliberately set to
zero when they detect obstacles more than 2 m away. The model inputs Ii we
used are given in equation 4

Ii =

{

δi ·
2.0

bin(i) 0 ≤ i ≤ 12

δi ·
2.0

sonar(i) 12 ≤ i ≤ 28,
(4)

with

δi =

{

1 if bin(i) < 2.0 or sonar(i) < 2.0
0 otherwise

We obtained a revised model of 100 terms, the robot’s trajectory under
control of this model is given in figure 11.

11



Figure 10: Value of the partial derivative of the model with respect
to sonar 16 along the first lap of the robot in the environment
shown in figure 4.

Figure 11: Robot trajectory under the control of the new, refined
Narmax model (section 5).
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6 Sensitivity Analysis using Mutual Information

We have applied three different strategies to carry out a sensitivity analysis,
and consider mutual information to be the best amongst them, due to its low
computational cost and intuitive meaning: It measures the information ob-
tained about a particular model input, given a particular model output. If the
model output, y, is completely independent of a particular model input, u, then
H(u, y) = H(u) + H(y) and, therefore, Im = 0. To demonstrate the utility of
mutual information in sensitivity analysis, we will apply it to further models in
this section.

6.1 Door traversal behaviour

We have first considered a model that identifies the behaviour of a manually
driven robot across the door shown in figure 12. The model is given in table 2.

Figure 12: a) Robot trajectories under manual control (39 runs,
training data). b) Trajectories taken under model control (41
runs, test data). The white lines on the floor were used to aid the
human operator in selecting start locations, they were invisible
to the robot.

When we apply mutual information to analyse this model, we get the results
shown in figure 13. The relevant model inputs are the right side laser readings
(laser bins 1,4, and 6, figure 2), and the rear ultrasound sensor (sensor 21,
figure 2). These results agree with the ones published in [Iglesias et al., 2006],
where a new Narmax model using only the sensor information coming from the
right side of the robot was enough to identify the door traversal behaviour, and it
was also able to properly control the movement of the real robot. The relevance
of the rear ultrasound sensor 21, is due to a very interesting phenomena that
can be observed in figure 12: In the door traversal under human control, the
human operator moved the robot towards the centre of the door when the robot
was still far from the opening. As the human operator gained experience, he
was able to execute more efficient motions, nearer the door.
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Table 2: NARMAX model of the steering direction and velocity θ̇ of
the robot for the door traversal behaviour. The sonar readings
are represented as s1, · · · , s16, and the 12 laser bins are d1, · · · , d12.

θ̇(t) = 0.272 + 0.142 ∗ (1/d1(t)) − 0.470 ∗ (1/d3(t))
−0.070 ∗ (1/d4(t)) − 0.347 ∗ (1/d6(t)) + 0.157 ∗ (1/d8(t))
+0.091 ∗ (1/d9(t)) − 1.070 ∗ (1/s9(t)) − 0.115 ∗ (1/s12(t))
+0.130 ∗ (1/d3(t))

2 − 0.166 ∗ (1/d8(t))
2 + 0.183 ∗ (1/s9(t))

2

+0.081 ∗ (1/(d1(t) ∗ d3(t))) − 0.098 ∗ (1/(d1(t) ∗ d4(t)))
−0.382 ∗ (1/(d1(t) ∗ d5(t))) − 0.204 ∗ (1/(d1(t) ∗ d6(t)))
−0.049 ∗ (1/(d1(t) ∗ d8(t))) − 0.078 ∗ (1/(d1(t) ∗ s8(t)))
+0.060 ∗ (1/(d2(t) ∗ s7(t))) + 0.300 ∗ (1/(d3(t) ∗ d5(t)))
+0.037 ∗ (1/(d3(t) ∗ s5(t))) + 0.209 ∗ (1/(d3(t) ∗ s12))
+1.014 ∗ (1/(d4(t) ∗ d6(t))) + 0.061 ∗ (1/(d4(t) ∗ s4(t)))
+0.273 ∗ (1/(d4(t) ∗ s12(t))) − 0.536 ∗ (1/(d5(t) ∗ d6(t)))
+0.230 ∗ (1/(d5(t) ∗ d7(t))) − 0.503 ∗ (1/(d6(t) ∗ d9(t)))
+2.516 ∗ (1/(d6(t) ∗ s9(t))) − 0.067 ∗ (1/(d6(t) ∗ s13(t)))
−0.009 ∗ (1/(d7(t) ∗ s15(t))) + 0.086 ∗ (1/(d8(t) ∗ s3(t)))
−0.038 ∗ (1/(d8(t) ∗ s6(t))) − 0.060 ∗ (1/(d9(t) ∗ s4(t)))
−0.067 ∗ (1/(d10(t) ∗ d12(t))) − 0.040 ∗ (1/(d10(t) ∗ s12(t)))
+0.059 ∗ (1/(d11(t) ∗ s1(t))) − 0.045 ∗ (1/(d12(t) ∗ s7(t)))

Figure 13: Mutual information between the model-output and model-inputs for
the door traversal behaviour.
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6.2 Wall following behaviour

The second robot’s behaviour that we have analysed using mutual information
was a wall following behaviour [Kyriacou et al., 2005]. In this case, instead
of using the robot-training strategy described in the introduction, an artificial
neural network (ANN) based controller was used to drive the robot first, its
motion was then identified using the Narmax model shown in table 3. The
ANN-based controller [Iglesias et al., 1998] uses a set of self-organising maps
(SOM) [Kohonen, 1997] and a multilayer perceptron (MLP) neural network to
process the information provided by 9 ultrasound sensors and thus determine
the angular velocity the robot should attain at each instant, figure 14.

Figure 14: Diagrammatic representation of the ANN wall-following
program used to initially control the movement of the robot. This
controller uses the readings coming from the ultrasound sensors
1,2,3,16,15,14,13,12 and 11 (figure 2).

In order to avoid making assumptions about the relevance of specific sonar
sensors, all the ultrasound measurements were taken into account in the Nar-
max model. Nevertheless, when we applied the mutual information analysis
(figure 15), we got that the relevant sensor coincide with those sensors used by
the original controller: ultrasound sensors 1,13,14,15 and 16. This is an amazing
result which proves the high usefulness of the mutual information strategy.
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ωmodel(t) = −0.282 − 0.129 ∗ (1/s1(t))
−0.039 ∗ (1/s1(t − 1)) − 0.076 ∗ (1/s1(t − 2))
−0.017 ∗ (1/s3(t)) + 0.007 ∗ (1/s5(t))
+0.017 ∗ (1/s9(t)) + 0.009 ∗ (1/s10(t))
−0.007 ∗ (1/s12(t − 1)) + 0.165 ∗ (1/s13(t))
−0.019 ∗ (1/s13(t − 1)) + 0.079 ∗ (1/s14(t))
−0.051 ∗ (1/s15(t)) − 0.072 ∗ (1/s16(t))
+0.134 ∗ (1/(s1(t))

2) + 0.017 ∗ (1/(s1(t − 1))2)
+0.096 ∗ (1/(s1(t − 2))2) + 0.001 ∗ (1/(s2(t))

2)
+0.018 ∗ (1/(s7(t − 2))2) − 0.019 ∗ (1/(s13(t))

2)
+0.056 ∗ (1/(s15(t))

2) + 0.099 ∗ (1/s16(t))
2

+0.063 ∗ (1/(s1(t − 1) ∗ s16(t − 1))
−0.071 ∗ (1/(s1(t − 2) ∗ s9(t − 2))
+0.039 ∗ (1/(s2(t) ∗ s14(t)))
−0.038 ∗ (1/(s2(t − 1) ∗ s6(t)
+0.059 ∗ (1/(s3(t − 1) ∗ s15(t)))
+0.003 ∗ (1/(s13(t) ∗ s13(t − 1)))
−0.027 ∗ (1/(s13(t) ∗ s14(t)))

Table 3: The NARMAX model of the ANN wall-following task, showing the
rotational velocity ω as a function of the sonar sensor values si, ∀i = 1, ..., 16.

Figure 15: Mutual information between the model-output and
model-inputs for the wall following behaviour.
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7 Conclusions

Robot training using system identification is a novel method of obtaining robot
control code that eliminates the need for iterative refinement of code through
trial and error. To achieve sensor-motor tasks we first operate the robot under
human supervision, logging sensor motor information at the same time. We then
use the Narmax modelling approach to obtain a control model which identifies
the coupling between sensor perception and motor responses, which is used to
control the robot to move autonomously.

In this paper we show how the mathematical analysis of these models can be
used to formulate hypotheses that allow the post-hoc modification of models.
We demonstrate how sensitivity analysis can be used to determine the most
relevant sensors in the robot’s behaviour, so that a subsequent stability analysis
of those relevant sensors — through partial derivatives — pinpoint those regions
in the environment where sensor accuracy is crucial.

We used three different methods of sensitivity analysis, and in conclusion
argue that mutual information is the most suitable indicator of sensor relevance,
because it computes how much information an output conveys about a particular
input — it has an actual, physically grounded meaning.
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