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Abstract  

 
A multivariable polynomial model is introduced to describe n-state spatio-temporal 
systems. Based on this model, a new neighbourhood detection and transition rules 
determination method is proposed. Simulation results illustrate that the new method 
performs well even when the patterns are corrupted by static and dynamical noise. 
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1. Introduction 
 
Spatio-temporal systems are a class of dynamical systems which can be studied by 
discretizing space and time. So that the cells evolve in discrete time steps according to 
deterministic rules that depend on a neighbourhood of influence. Because complex 
behaviours of patterns can be generated from simple mathematical constructs, spatio-
temporal systems have been used for simulating various complex systems, such as 
chemical, biological and ecological systems (Baier et al., 2002, Ermentrout, 1998, 
Filipe and Gibson, 1998, Rekeczky et al., 1997).  
 
Binary cellular automata, which are one of the simplest classes of spatio-temporal 
systems, have been extensively studied in recent years. Several cellular automata 
identification methods were introduced (Adamatzky, 1994, Maeda and Sakama, 2003, 
Richards et al., 1990). These studies were all based on the simple rule table model and 
none gave a clear neighbourhood structure or a parsimonious expression of the rule. 
Hence the detection processes can become complicated especially when the 
neighbourhood becomes large. The identification of the Boolean rule was studied by 
Yang and Billings (2000a). Yang and Billings (2000b) divided the identification 
procedure into two stages: neighbourhood detection and rule determination for the 
first time. The CA-OLS method and several neighbourhood detection approaches 
were later proposed (Billings and Yang, 2003, Mei et al., 2005, Zhao and Billings, 
2006).  
 
Binary cellular automata however can only be applied to systems with two states o 
and 1. But there are many processes that exhibit more than two states one famous 
example is excitable media in which any cell can take on three states: quiescent, 
excited and refractory. However there are very few studies on the identification of n-
state spatio-temporal systems. In this paper a polynomial model of n-state spatio-
temporal system is given for the first time, and a completely new approach for the 
identification of n-state spatio-temporal systems is proposed including neighbourhood 
detection and rule determination. 
 
The paper is organized as follows. After a short discussion of the necessary 
preliminaries of n-state spatio-temporal systems in section2, a new polynomial model 



 

is introduced in section 3 and it is proved that this model can be used to describe this 
class of spatio-temporal systems exactly. A neighbourhood detection approach using 
the polynomial model is given in section 4. To show the validity of the new methods, 
an example is provided in section 5 and two kinds of noise are considered. Finally, 
conclusions are given in section 6. 
 
2. N-state Spatio-Temporal Systems 

 

An n-state spatio-temporal system is specified by a triple , ,S R f< >  of cell state set S, 

neighbourhood R and cell-state transition function : d
f S S→ , where n denotes the 

size of the state set S and d is the size of the neighbourhood R. The states of the n-
state spatio-temporal system come from a finite state set S, which is represented 
by{ }0,1,2, , 1n −L . All cells change states synchronously at discrete time steps. The 

next state of each cell depends on the states of the neighbouring cells at a past time 
according to an update rule. The neighbourhood of a cell is the set of cells in both the 
spatial and temporal dimensions that are directly involved in the evolution of the cell. 
The neighbourhood, denoted as R, is a d-tuple ( )1 1, , , dξ ξ ξL . The transition rules are a 

function : d
f S S→ . The state ( )f R  is the state of a cell whose d neighbours were at 

states ( )1 1, , , dR ξ ξ ξ= L  at a past time. The function : m
f S S→  expresses the 

deterministic dependence between a cell and its neighbourhood. 
 

The state set of the neighbourhood is the Cartesian product d
S S S S= × × ×L  of states 

of all the neighbours that gives all the state combinations of these neighbours.  The 
function values at set d

S , ( )d
f S , uniquely determine the transition rules of the spatio-

temporal system. Because the domain d
S  is finite, the function may be expressed by 

simply tabulating all the arguments d
R S∈  and their corresponding function 

values ( )c f R= . Each pair ( , )c R  is named as a case and there are d
n  cases for an n-

state d-neighbourhood spatio-temporal system.  
 
For a spatio-temporal pattern, the collection of all cell states in the grid at some time 
step is called a configuration. A sequence of configurations of a spatio-temporal 
pattern is denoted as 0 , , ,tC CL L , in which each configuration includes all cell states. 

Here, 0C  is the initial configuration of the spatiotemporal system and 
t

C  represents 

the configuration of the spatiotemporal system at time t (Maeda and Sakama, 2003).  
 
This paper focuses on the identification of patterns in which all cells change 
synchronously in discrete time steps according to local and identical transition rules. 
In other words, all cells use the same rules, and the rules are applied to all cells at the 
same time. The underlying lattice is an infinite rectangular grid throughout this paper. 
 
3. Model for an N-state Spatio-Temporal System 
 
3.1 Table form model 
Local transition rules express the deterministic dependence between the cell and its 

neighbourhood. For each case of a neighbourhood, d
R S∈ , there must be one unique 

cell state ( )c f R=  corresponding to this case. There are many ways to represent a 



 

local transition rule: by a formula, by a plot, by an algorithm and so on. The most 
intuitive approach is where the transition table is simply tabulating for all possible 

cases, that is, all cases of neighbourhood d
S  and the corresponding cell values ( )d

f S .  

 
An example of a table model of an n-state, d-neighbourhood spatio-temporal system 
with a local transition rule is given as Table 1. Each row represents an evolution case. 
Columns 1ξ  ~ 

d
ξ  show all state combinations of the neighbourhood, and the values in 

columns c  determine the transition rules. 
 

Table 1 Transition table 

1ξ  2ξ  … d
ξ  c  

0 0 … 0 * 
0 0 … 1 * 
M M M M M 
n-1 n-1 … n-1 * 

 
 
3.2 Polynomial form model 
 
The transition table is a basic representation of the local transition rules and it is 
widely used. However it is tedious especially when the number of cases is very large. 
In this part a new parsimonious polynomial form model is presented to replace the 
table form expression.  
 
Yang and Billings (2000b) showed that 2-state spatio-temporal systems, binary 
cellular automata systems, can be exactly expressed by a polynomial. This conclusion 
will now be extended to n-state spatio-temporal systems to show that n-state spatio-
temporal systems can be exactly expressed by a polynomial. This development will in 
turn enable the introduction of a new class of neighbourhood detection and rule 
identification procedures for n-state spatio-temporal systems. 
 
Denote the count of the finite state of cells as n and the size of the neighbourhood as d, 
let c represent a cell in this spatio-temporal system and 1 2( , , )

d
R ξ ξ ξ= L  represent the 

neighbourhood of c . For ( )1 2, , , , 1i i i id ij nα α α α α= ≤ −L , construct 

monomials 1 2

1 2
i i i id

i d
P R

α α α αξ ξ ξ= = L , 1, 2, , d
i n= L  and polynomial

1

dn

i i

i

P Pθ
=

= ∑ , where 

iθ  are the parameters of this polynomial. It will be shown that an n-state, d-

neighbourhood spatio-temporal system can be exactly represented by the polynomial 

model
1

dn

i i

i

P Pθ
=

= ∑ . Such a polynomial will be constructed in this section.  

 
It has been shown in subsection 3.1 that transition rules can be described as a table. 
Each row in the transition table is a case, which is a d+1-tuple 1 2( , , , , )d cξ ξ ξL  and 

can be considered as a point in the d+1-dimentional space. For an n-state, d-
neighbourhood spatio-temporal system, the transition table is a point set in the d+1-
dimentional space. Next, it will be shown that this table model can be represented by 



 

a multivariate polynomial model at the case set d
S . In other words, there is a 

polynomial which has the same values at all cases listed in the table. Hence, the aim is 
to find a polynomial which goes exactly through these points. To find a polynomial 
equivalent to the transition table at set d

S  is a problem of multivariate polynomial 
interpolation. A multivariate interpolation polynomial in Lagrange form will be 
constructed as follows. 
 
To illustrate the simple idea behind normal form interpolation, univariate Lagrange 
interpolation will be briefly considered. Polynomial interpolation is the interpolation 
of a given data set by a polynomial. In other words, given some data points, the aim is 
to find a polynomial which goes exactly through these points. A Lagrange polynomial 
is a linear combination of Lagrange fundamental polynomials. Given a set of data 

points 0 0( , ), , ( , )
k k

x y x yL , the Lagrange polynomial is
0

( ) ( )
k

j j

j

L x y l x
=

= ∑ , here 

0,

( )
k

i
j

i i j j i

x x
l x

x x= ≠

−=
−∏  are the Lagrange fundamental polynomials. As can easily be seen, 

( )il x  is a polynomial and has degree k and ( )i j ijl x δ= . Thus function ( )L x  is a 

polynomial with degree k and
0

( ) ( )
k

i j j i

j

L x y l x y
=

= =∑ .  

 
The univariate Lagrange polynomial interpolation can be easily extended to a 
multivariate polynomial by the tensor product of univariate interpolation polynomials.  
 
It was noted above that the state set of the neighbourhood is the Cartesian product 

d
S S S S= × × ×L  of states of the neighbours. For every neighbour, the state can be 
any one of the states ranging from 0 to n-1. Rearranging the transition table in the d+1 
dimensional space, every dimension of 1ξ  ~ 

d
ξ  has n points. For example, when d=2, 

Table 1 can be rearranged as shown in Table 2. 
 

Table 2 Transition table for m=2 

1ξ      

2ξ  
0 1 … n-1 

0 * * … * 
1 * * … * 
M M M O  M 

n-1 * * … * 
 
For each dimension

i
ξ , a 1 dimensional Lagrange fundamental polynomial set 

{ }1 2( ), ( ) ( )i i i i i in iL l l lξ ξ ξ= L can be constructed as 
1

0, 1

( )

( )

n
i

ij

k k j

k
l

j k

ξ−

= ≠ −

−=
−∏ , that is, 1ijl =  

if i jξ =  and 0ijl =  elsewhere.  

 

Denote the indexes 1 2( , , , ) d

d Sγ γ γ γ= ∈L . Computing the tensor product of these 

univariate Lagrange fundamental polynomial sets as 1 2 dL L L L= ⊗ ⊗ ⊗L , that 



 

is { }
1 21, 2, ,|

ddL h h l l lγ γ γ γ= = L , yields the multivariate Lagrange fundamental 

polynomials, which give a 1-1 mapping with the cases in the transition table.  
 

1 2

1 2

1 : ( , , , )

0 : ( , , , )
d

d

if
h

if
γ

ξ ξ ξ γ
ξ ξ ξ γ

=
=  ≠

L

L
                                                                       (1) 

 

Define the interpolation polynomial as ( ) ( )1 2 1 2, , ( ) , ,
d

d d

S

g f hγ
γ

ξ ξ ξ γ ξ ξ ξ
∈

= ∑L L . 

Obviously, ( )g R c=  holds for ( , )R c∀ in the transition table. Equally, ( )1 2, , dg ξ ξ ξL  

can be expressed as 1 2
1 1

1

d

d

n

i d

i

αα αθ ξ ξ ξ
=
∑ L , where 

i
θ  are parameters of the polynomial 

and 0 1i nα≤ ≤ − . Then the n-state d-neighbourhood spatio-temporal system is 

described by the polynomial model ( )1 2, , dg ξ ξ ξL  exactly. Define a monomial term 

set { }1 2

1 2
d

d
T

αα αξ ξ ξ= L , where 0 1i nα≤ ≤ − . Arrange all the terms in set T in an 

increasing order, that is, the terms of lower degree come before the terms of higher 

degree, into a monomial term vector 1 21
,d d in n

P p p p p T
×

 = ∈ L . Hence the 

polynomial model can now be described in compact form as c P= Θ , where 
1dn

P
×

 is 

the monomial term vector and 1 21 d d

T

n n
θ θ θ

×
 Θ =  L  is the parameter vector. 

 
Based on the results above, the polynomial model as a representation of n-state, d-
neighbourhood spatio-temporal systems has the following advantages: 
1) Provides an accurate description of n-state spatio-temporal systems; 2) the model is 
linear-in-the-parameter and these parameters can be estimated using least squares 
based estimation methods; 3) the number of terms in the polynomial is d

n which only 
depends on the number of states (n) and the size of neighbourhood (d), but does not 
rely to the lattice structure or the dimension of the spatio-temporal system. 
 
4. Neighbourhood Detection 

 
Neighbourhood detection is a core problem in the identification of spatio-temporal 
systems because once the neighbourhood and the model terms are known it is really 
easy to identify the model. In this section, a new neighbourhood detection method 
based on the new polynomial model is introduced.  
 

4.1 Candidate transition table 

 
Assume that a candidate neighbourhood denoted as { }1 2 1, , ,d d dW ξ ξ ξ ξ += L L , which 

is large enough to cover the potential neighbourhood denoted as R , is given. Without 
loss of generality, let { }1 2, , , dR ξ ξ ξ= L  be the true neighbourhood of the d-

neighbourhood spatio-temporal system. That is, W  is a proper superset of R  and 

{ }1 2 1, , ,d d d d W Rξ ξ ξ+ + + = −L  is the relative complement of R  in W . For an n-state 

spatio-temporal system whose state set of all cells is S , the state set of the candidate 

neighbourhood is 1d d
S

+ . Define a function 1: d d
v S S

+ →  and let 



 

1 2 1 1 2( , , , ) ( , , )d d d dv fξ ξ ξ ξ ξ ξ ξ+ =L L L . Hence, function v  with 1d d+  neighbours as 

inputs can describe the d-neighbourhood system as the transition function f  does. 

Obviously, the values of function v  do not rely on the states of 
neighbours 1 1, ,d d dξ ξ+ +L . That is the value of function v  does not change with the 

difference of the states of combination of 1 2 1( , , , )
d d d d

ξ ξ ξ+ + +L  if the states of 

1 2( , , , )dξ ξ ξL  are fixed. Tabulate all the cases 1 2 1( , , , , , , )d d d cξ ξ ξ ξ +L L  to give 

another transition table, namely the candidate transition table, which is different from 
the transition table consisted of 1 2( , , , , )d cξ ξ ξL . 

 
Spatio-temporal systems are autonomous systems and there are no external inputs 
which influence the evolution. An identification procedure can therefore only be 
established based on the data from the observed spatio-temporal patterns. Hence, the 
transition table has to be obtained by extracting all cases from a spatio-temporal 
pattern one by one, which can be extremely tedious. In addition, because of the 
unknown exact neighbourhood, an initial candidate neighbourhood should be used, 
which makes the condition worse. Fortunately, a terse polynomial model was 
proposed in section 3. This model is equivalent to the candidate transition table and 
can describe the pattern exactly. Construct all the monomial terms 

11 2

1 2 1 ,0 1d d

d d i n
αα αξ ξ ξ α+

+ ≤ ≤ −L  arranging all the terms in an increasing order as a term 

vector, namely, 1 1 1 1 1
1 2 1 2 11 n n n

d d
P ξ ξ ξ ξ ξ− − −

+ =  L L . Hence the polynomial model 

v can be expressed as 
 

1

1

21 1 1 1 1
1 2 1 1 2 1 2 1( , , ) 1

d d

n n n

d d d d

n

v

θ
θ

ξ ξ ξ ξ ξ ξ ξ ξ

θ +

− − −
+ +

 
 
  =    
 
  

L L L
M

                        (2) 

 

Once data has been collected from the patterns the parameters 11 2 d d

T

n
θ θ θ +  L  

can be estimated using a least squares based method. 
 
Then based on the polynomial model above, construct a candidate transition table as 
in Table 3, which describes the pattern exactly, where the columns 1ξ  ~ 1d dξ +  give all 

the state combinations of the neighbourhood and column c  gives the corresponding 
values of function v . 
 

Table 3 Candidate transition table  

1ξ  2ξ  … d
ξ  … 1d d

ξ +  c  
0 0 … 0 … 0 (0,0, ,0)v L  

0 0 … 0 … 1 (0,0, ,1)v L  

M M M M M M M 
n-1 n-1 … n-1 … n-1 ( 1, 1, , 1)v n n n− − −L  

 
 
4.2 Cyclic symmetry 



 

 
Denote a cell in a spatio-temporal pattern as c , and the associated neighbourhood as 
R  and a candidate neighbourhood as W , where W R⊃ . Let E W R= − , which 
consists of cells that are in the candidate neighbourhood but not in the true 
neighbourhood. Denote the state set of this spatio-temporal pattern 

as { }0,1, , 1S n= −L . Define the operator ⊕  as the modulo n addition operator. 

Define a function ( )f x , whose domain is the cell state set S , as cyclic symmetric 

about variable x if ( ) ( 1)f x f x= ⊕  for x S∀ ∈ , in other words, 

(0) (1) ( 1)f f f n= = = +L .  From the above discussion, the evolution of cell c  does 

not depend on the cells in set E , that is, function 1 2 1( , , , )
d d d

v ξ ξ ξ ξ +L L  is cyclic 

symmetric about the cells in set E . Contrarily, function 1 2 1( , , , )d d dv ξ ξ ξ ξ +L L  is 

cyclic asymmetric about cells in neighbourhood R . This property can be used to 
eliminate the cells of E  from the candidate neighbourhood W  to determinate the 
exact neighbourhood R . For convenience, a normalised cyclic asymmetric loss 

function ( )n

ca iJ ξ  is introduced to evaluate the cyclic asymmetry with respect to
iξ . 

This loss function can be defined as 
 

( )( )( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1( ) ( , , , , ) ( , , 1, , )n k k k k k k

ca i i d d i d d

k

J sign w v vξ ξ ξ ξ ξ ξ ξ+ += − ⊕∑ L L L L    (3) 

 
where k  is the index of the data from the pattern and the function ( )w x is defined 

as ( ) 1w x =  if | |x ε≤  and ( ) 0w x = , otherwise. This means that for the data 
( ) ( ) ( ) ( )

1 1( , , , , , )k k k k

i d d
cξ ξ ξ +L L  from the spatio-temporal pattern, the loss function of 

i
ξ  

increases by 1, if the function ( ) ( ) ( )
1 1( , , , , )k k k

i d dv ξ ξ ξ +L L  is cyclic asymmetry about
i

ξ , 

otherwise, the value of the loss function will not change. Hence, if the initial values of 
the loss function about 1 1~

d d
ξ ξ +  are set to zeros, those loss functions about the cells 

in set E  will still be zero after all the data has been considered. For a noisy pattern a 
threshold 

cutoff
J  should be selected. The neighbour

j
ξ  in the candidate neighbourhood 

should be eliminated if ( )n

ca j cutoffJ Jξ < . In practice the state set 1d d
S

+  and values 
1( )d d

v S
+ are used as the data set to evaluate the loss function in order to reduce the 

computational expense. 
 
In practice, another problem must be considered. For a spatio-temporal system with n 
states and 1d d+  candidate neighbours, the number of cases should be 1d d

n
+ . This 

number will be enormous when n  and 1d d+  are very large. Because the data 
available will always be finite, the pattern may not include all these cases and this 
destroys the cyclic symmetry of the function. Hence a mask function is introduced to 
deal with the problem by differentiating the cases that are not included in the pattern 
and those that are included. The mask function can be constructed as follows. From 
the conclusion in section 3, 1d d

n
+  Lagrange fundamental polynomials can be 

constructed with respect to an n-state, 1d d+ -neighbourhood spatio-temporal system. 
These Lagrange fundamental polynomials represent a 1-1 mapping to the cases of the 
spatio-temporal system. That is there is only one case which can make the value of the 
corresponding Lagrange fundamental polynomial equal to 1, while all the other cases 
make the values of the fundamental polynomials become zero. So these Lagrange 



 

fundamental polynomials can be used as the mask function. Considering the values of 
a Lagrange fundamental polynomial based on all the data from a pattern, if the values 
are zero for all the conditions, the corresponding case is not included in this pattern. 
 
4.3 Identification of n-state spatio-temporal patterns 

 
The procedure for the identification of n-state spatio-temporal patterns can now be 
summarised as: 
 
(1) Select a candidate neighbourhoodW , which is larger enough to cover the potential 

neighbourhood. 

(2) Construct the polynomial terms 1 21d dn n
P p p p

×
 =  L  and give the structure 

of the polynomial model 1 2 1( , , , )
d d

v Pξ ξ ξ + = ΘL . 

(3) Collect data from the spatio-temporal pattern and estimate the parameters Θ  in 
the polynomial model. 

(4) Eliminate the cases not included in the pattern from the candidate transition table 
using the mask function. 

(5) Select the threshold value as
1

1

1
( )

2( 1)

d d
n

cutoff ca j

j

J J
d d

ξ
+

=

=
+ ∑  and calculate the loss 

function of cyclic asymmetric ( )n

ca iJ ξ  about all the iξ ’s based on the candidate 

pseudo transition table. Eliminate the neighbour
i

ξ  from the candidate 

neighbourhood, if ( )ca i cutoffJ s J< . 

(6) Repeat step (5) until the correct neighbourhood is obtained. 
(7) Using the correct neighbourhood from step (5), repeat step (2) and (3), to get the 

final polynomial model of the spatio-temporal pattern.  
 
After obtaining the polynomial model, two kinds of prediction methods can then be 
used to predict the behaviours of the spatio-temporal system: one step ahead 
prediction and model predicted output or many steps ahead prediction. Model 
predicted output is a more strict criteria for evaluation the performance of the 
estimator than the one step ahead prediction and is used to validate the identified 
model in this paper. 
 
5. Simulation Analysis 

 
For simplicity, in this section only one example of a 3-state, 3-neighourhood 1- 
dimensional spatio-temporal noise free pattern and two kinds of noisy patterns will be 
considered. But lots of simulations have been done to illustrate the validity of these 
new methods, including examples with more states and more neighbours, including 
examples of 2-dimensional patterns. 
 
5.1 Effects of noise 

 
Noise in spatio-temporal systems is different from that in traditional dynamical 
systems. The difference is that the magnitude of the noise in a spatio-temporal system 
is equal to the magnitude of the signal, that is, the signal-to-noise ratio is always 1. 
Hence, the proportion of cells whose states become flipped due to noise is used to 
quantify the spatio-temporal noise instead of the traditional signal-to-noise-ratio. 



 

There are two kinds of noise in spatio-temporal systems due to different origins: static 
noise and dynamical noise. Static noise, introduced by external factors, does not 
involve the evolution of the spatio-temporal pattern. It can be added after the 
evolution has finished. Unlike static noise, dynamical noise is introduced by internal 
factors and involves the evolution of the spatio-temporal pattern. Dynamical noise is 
added into the patterns as part of the evolution of the patterns and is a complex effect.  
 

original pattern

 

 

0 1 2

pattern with 5% static noise

 

 

0 1 2

pattern with 5% dynamic noise

 

 

0 1 2  
(a)                                           (b)                                          (c) 

Figure. 1. The effects of static and dynamic noise.   
(a) noise free pattern  (b) pattern with 5% static noise  (c) pattern with 5% dynamic 
noise 

 
Figure 1 shows the effect of static noise and dynamic noise on a spatio-temporal 
pattern. The pattern disturbed by 5% dynamic noise in Figure 1 (c) looks significantly 
different from the original pattern Figure 1 (a) than the pattern disturbed by 5% static 
noise in Figure 1 (b). However simulation results shows that, compared with 
dynamical noise, static noise is more challenging for the identification of spatio-
temporal patterns since the cells corrupted by dynamic noise continue to comply with 
the transition rules, while the patterns corrupted with  static noise do not.  
 
5.2 Simulation examples 
 
Three examples are presented in this section. The first example, the identification of a 
1-D, 3-state, 3-neighbourhood pattern, is described in more detail to show all the steps 
in the identification. For the other two examples, only the identification results are 
given for simplicity.  
 
5.2.1 Identification of a 1-dimensional, 3-state, 3-neighbourhood pattern 

 
A 1-dimentional, 3-state, 3-neighbourhood pattern with a von Neumann 
neighbourhood structure on a 100×100 lattice is shown in Figure 2 (a). Half the 
pattern in Figure 2 (a) was taken as the data set used for model identification. Denote 

a cell in this 1 dimensional pattern at position j  and time step t  as t

jc . Select a 

candidate neighbourhood { }1 1 1 1 1
2 1 1 2

t t t t t

j j j j j
W c c c c c

− − − − −
− − + +=  denoted 

as { }1 2 3 4 5, , , ,ξ ξ ξ ξ ξ . Construct the 51 3×  term 

vector 2 2 2 2 2
1 2 1 2 3 4 51P ξ ξ ξ ξ ξ ξ ξ =  L  and express the candidate transition 



 

function ( )1 2 3 4 5, , , ,v ξ ξ ξ ξ ξ  as a linear combination of these terms that 

is ( )1 2 3 4 5, , , ,v Pξ ξ ξ ξ ξ = Θ . Collect data from the pattern and estimate the parameter 

vector Θ . For simplicity, the results are not given here. The candidate transition table 

can then be constructed using the function v . There are 53  cases in this table. All 
these cases are then checked with the mask function. Seven cases of 243 are not 
included in this pattern and were eliminated from the candidate transition table. 
Calculating the cyclic asymmetry loss function about each cell in the candidate 
neighbourhood, gave the results in Table 4. Selecting half of the average value of all 

the ( )n

ca jJ ξ ’s as the threshold value, that is 
5

1

1
( )

2 5
n

cutoff ca j

j

J J ξ
=

=
× ∑ =67.62.  1ξ  and 5ξ  

were eliminated from the candidate neighbourhood because  1 5( ), ( )n n

ca caJ Jξ ξ  were less 

than
cutoffJ . The detected neighbourhood R  is{ }2 3 4, ,ξ ξ ξ , that is, the left shifted von 

Neumann structure. The polynomial model can then be built using the detected 
neighbourhood as 
 

( )2 3 4, ,f ξ ξ ξ = 2ξ  - 2 3ξ ξ  +0.5 2
2 3ξ ξ + 2

2 3ξ ξ -0.5 2 2
2 3ξ ξ - 4ξ +7 2 4ξ ξ -4 2

2 4ξ ξ +7.5 3 4ξ ξ  

-21.375 2 3 4ξ ξ ξ +9.375 2
2 3 4ξ ξ ξ -3 2

3 4ξ ξ +8.875 2
2 3 4ξ ξ ξ -3.875 2 2

2 3 4ξ ξ ξ  

+ 2
4ξ -4 2

2 4ξ ξ +2 2 2
2 4ξ ξ -4 2

3 4ξ ξ +12.375 2
2 3 4ξ ξ ξ -5.375 2 2

2 3 4ξ ξ ξ +1.5 2 2
3 4ξ ξ  

-5.375 2 2
2 3 4ξ ξ ξ +2.375 2 2 2

2 3 4ξ ξ ξ                                                                (4) 

  
Using the initial condition of the pattern in Figure 2 (a) as the initial condition with 
the polynomial model as the rule, the model predicted output pattern is shown in 
Figure 2 (b). 

 
Table 4 Value of cyclic asymmetry loss function ( cutoffJ   =   67.62) 

1( )n

ca
J ξ  2( )n

ca
J ξ  3( )n

ca
J ξ  4( )n

ca
J ξ  5( )n

ca
J ξ  

0 177 148 158 0 
 

original pattern

 

 

0 1 2

noised pattern (dynamic 0%)

 

 

0 1 2

predicted pattern

 

 

0 1 2

 
(a)                                                                                          (b) 

Figure 2 1-dimensional, 3-state, 3-neighbourhood spatio-temporal pattern 
(a) the data set used in the identification; (b) the predicted pattern using the 

identified model 
 



 

5.2.2 Identification of noisy patterns 
 
In Figure 3 (a), a 1-dimensional, 3-state, 3-neighbourhood spatio-temporal is shown. 
Then 5% static noise was added to the pattern in Figure 3 (a) and the noisy pattern is 
shown in figure 3 (b). Half the pattern in figure 3 (b) was used as the data set for 
model identification. The values of loss functions about every cell in the candidate 
neighbourhood are given in Table 5. It is shown in Table 5 that cells 1ξ  and 5ξ  should 

be eliminated from the candidate neighbourhood to give the true neighbourhood with 
a von Neumann structure. The model predicted output pattern based on the identified 
model is shown in figure 3 (c). 

original pattern

 

 

0 1 2

noised pattern (static 5%)

 

 

0 1 2

predicted pattern

 

 

0 1 2  
(a)                                        (b)                                         (c) 

Figure 3 1-dimentional, 3-state, 3-neighbourhood spatio-temporal pattern 
(a) the original pattern; (b) 5% static noisy pattern; (c) the predicted pattern  

 
Table 5 Value of cyclic asymmetry loss function ( cutoffJ   =   68.88) 

1( )n

caJ ξ  2( )n

caJ ξ  3( )n

caJ ξ  4( )n

caJ ξ  5( )n

caJ ξ  

22 152 147 147 24 
 

The same pattern as in Figure 3 (a) is given in Figure 4 (a), but now the pattern was 
corrupted by 10% dynamic noise to give the pattern in Figure 4 (b). This noisy pattern 
was then used as the data set to identify the model.  Table 6 shows that this pattern 
was a von Neumann structure. The model predicted output pattern based on the 
identified model is given as Figure 4 (c). 
 

original pattern

 

 

0 1 2

noised pattern (dynamic 10%)

 

 

0 1 2

predicted pattern

 

 

0 1 2  
(a)                                        (b)                                         (c) 



 

Figure 4 1-dimensional, 3-state (0-red, 1-green, 2-blue), 3-neighbourhood pattern 
(a) the original pattern; (b) the 10% dynamical noisy pattern; (c) the predicted pattern  

 
Table 6 Value of cyclic asymmetry loss function (

cutoffJ   =   72.66) 

1( )n

caJ ξ  2( )n

caJ ξ  3( )n

caJ ξ  4( )n

caJ ξ  5( )n

caJ ξ  

0 186 170 160 3 
 
 

6. Conclusions 

 
A complete solution to the identification of n-state spatio-temporal systems has been 
introduced in this paper including algorithms for neighbourhood detection and the 
determination of the transition rules. The linear-in-the-parameters polynomial model 
provides a simple and accurate representation of n-state spatio-temporal systems.  
 
The simulation results show that the neighbourhood detection method is effective and 
is not sensitive to less than 10% dynamic noise (evolutionary noise), and 5% static 
noise (measurement noise). However this does not mean the polynomial model 
extracted based on the correct neighbourhood is accurate enough to exactly predict the 
pattern, because some transition rules may be more sensitive to noise than others and 
an exact estimation may only be extracted at lower noise levels.  It has also been 
shown that the neighbourhood detection method in this paper is effective for spatio-
temporal patterns which are incomplete.  
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