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Abstract: Starting from the basic concept of coupled map lattices, a new family of adaptive wavelet 

neural networks, called lattice dynamical wavelet neural networks (LDWNN), is introduced for spatio-

temporal system identification, by combining an efficient wavelet representation with a coupled map 

lattice model. A new orthogonal projection pursuit (OPP) method, coupled with a particle swarm 

optimisation (PSO) algorithm, is proposed for augmenting the proposed network. A novel two-stage 

hybrid training scheme is developed for constructing a parsimonious network model. In the first stage, 

by applying the orthogonal projection pursuit algorithm, significant wavelet-neurons are adaptively 

and successively recruited into the network, where adjustable parameters of the associated wavelet-

neurons are optimised using a particle swarm optimiser. The resultant network model, obtained in the 

first stage, may however be redundant. In the second stage, an orthogonal least squares (OLS) 

algorithm is then applied to refine and improve the initially trained network by removing redundant 

wavelet-neurons from the network. The proposed two-stage hybrid training procedure can generally 

produce a parsimonious network model, where a ranked list of wavelet-neurons, according to the 

capability of each neuron to represent the total variance in the system output signal is produced. Two 

spatio-temporal system identification examples are presented to demonstrate the performance of the 

proposed new modelling framework. 

Keywords: Coupled map lattices, evolutionary algorithms, lattice dynamical systems, neural networks, 

orthogonal least squares, parameter estimation, particle swarm optimisation, spatio-

temporal images, wavelets. 
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1.  Introduction 

Spatio-temporal systems are complex systems where the system states evolve spatially as well as 

temporally. Unlike classical control systems where the current output is a function of previous inputs 

and outputs only in time, the output of a spatio-temporal system depends not only on past values in 

time but also values at different spatial locations. Spatio-temporal phenomena are widely found in 

biology, chemistry, ecology, geography, medicine, physics, and sociology (Kaneko 1993, Jahne 1993, 

Silva and Principe 1997, Astic et al. 1998, Bascompte and Sole 1998, Czaran 1998, Spors and  

Grinvald 2002, Dimitrova and Berezney 2002, Berezney et al. 2005, Dolak and Schmeiser 2005). In 

order to analyse, control or predict the dynamics of spatio-temporal systems, several efficient 

mathematical representations, including the well known cellular automata (CA) (Wolfram 1994), 

coupled map lattices (CML’s) (Kaneko 1989, 1993), and cellular neural networks (CNN’s) (Chua and 

Yang 1988a, 1988b, Chua and Roska 2001), have been proposed in the past decades. These lattice 

dynamical systems (LDS’s) (Chow and Mallet-Paret 1995) have successfully been applied in various 

areas of science and engineering, see for example Albano et al. (1995), Raabe (2002), Ohtaki et al. 

(2002), Aydogan et al. (2005) and the references therein.  

Whilst the forward problem of spatio-temporal systems has been extensively studied in the 

literature, with an assumption that the associated models are known and are used to describe some 

specific dynamics, the inverse problem, which is concerned with finding models based on given 

observations for structure-unknown spatio-temporal images, has received relatively little attention and 

relatively few results have been achieved. Identification plays an important role for solving the inverse 

problem relative to spatio-temporal systems, where the structure of analytical models is not available. 

Recently, efforts have been made to seek to solve the identification problem of spatio-temporal 

systems, and several efficient identification methods and algorithms have been proposed; these include 

local state reconstruction and partitioned filtering methods (Parlitz and Merkwirth 2000, Sitz et al. 

2003), radial basis function neural networks (Leung et al. 2000), statistical methods (Mandelj et al. 

2001, Xia and Leung 2005), polynomial models (Coca and Billings 2001, Billings and Coca 2002, 

Billings and Yang, 2003), wavelet models (Guo and Billings 2004, Billings et al. 2005), and other 

approaches (Marcos-Nikolaus and Martin-Gonzalez 2002, Chen and Ji 2005).  

The key point in the identification of a spatio-temporal system, where the true evolution law is 

totally unknown and where only observed data are available, is to exploit some effective elementary 

building blocks, which can be used to construct efficient nonlinear lattice dynamical models that 

sufficiently reveal and depict the underlying dynamics of the system. Wavelet transforms (Daubechies 

1992), due to their inherent property and excellent capability for the time-frequency domain 

representation of arbitrary signals, may be one of the best candidates to form the most powerful 

elementary building blocks. Wavelets have now been applied in almost all areas of science and 

engineering in recent years. A popular representation form among the existing wavelet models, for 
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dynamical systems, is the wavelet neural network (WNN). The primary motivation of combining well 

defined wavelets with conventional neural networks is to construct powerful wavelet based modelling 

frameworks (Zhang and Benveniste 1992, Bakshi and Stephanopoulos 1993, Pati and Krishnaprasad 

1993), by exploiting the theoretical rigor of wavelets and the adaptive learning capability of 

conventional neural networks (Delyon et al. 1995, Juditsky et al. 1995, Unser 1996). Indeed, the 

introduction of wavelet network modelling frameworks have not only significantly enriched the 

storehouse of existing artificial neural networks and related model classes, but also more importantly 

enhanced the capability of conventional neural networks for nonlinear signal representation (Zhang 

and Benveniste 1992, Lin and Chin 2004). Wavelet network models provide powerful alternatives, to 

traditional artificial neural networks, for function learning (Zhang et al. 1995, Rying et al. 2002), 

dynamical modelling (Zhang 1997, Coca and Billings 1997, Oussar et al. 1998, Billings and Coca 

1999, Wei and Billings 2004a, 2004b, Billings and Wei 2005a, Chen et al. 2006, Huang and Su 2007) 

and systems control (Sanner and Slotine 1998, Liu 2001, Wai and Chang 2003, Ho et al. 2005, Lin et 

al. 2006, Hsu et al. 2006, Xu and Tan 2007).  

The central objective of this study is to introduce a new family of adaptive wavelet neural 

networks, where wavelet transforms will be incorporated into a specific type of CML model. This 

wavelet-based coupled map lattice model will be referred to as the lattice dynamical wavelet neural 

network (LDWNN). The construction procedure of the new network model is composed of two stages. 

At the first stage, linear combinations of a number of wavelet functions are chosen as the building 

blocks to form the initial candidate wavelet neurons. A variation of the conventional projection pursuit 

regression (PPR) method, called the orthogonal projection pursuit (OPP), implemented by a particle 

swarm optimisation (PSO) algorithm, is used to augment the network by recruiting a number of 

optimised wavelet neurons in a stepwise manner. Compared with other nonlinear least squares 

algorithms, including the back-propagation and Gaussian-Newton algorithms, the PSO algorithm, as a 

population-based evolutionary method, possesses several desirable attractive properties, for example, 

this kind of algorithm is easy to implement but quite efficient in dealing with a wide class of nonlinear 

optimisation problems (Eberhart and Kennedy 1995, Kennedy and Eberhart 1995). As a stochastic 

algorithm, PSO does not need any information on the gradients of the relevant object functions, this 

ensures that the PSO is very suitable for nonlinear optimisation problems where the relevant object 

functions are not differentiable or the gradients are computationally expensive or very difficult to 

obtain (Kennedy et al. 2001, van den Bergh 2002). The OPP learning algorithm, similar to the 

conventional projection pursuit regression (Friedman and Stuetzle 1981), may produce a redundant 

model. Thus, the objective of the second stage is to remove redundancy from the initially trained 

network, to produce a parsimonious representation. To achieve this aim, an orthogonal least squares 

(OLS) learning algorithm (Billings 1989, Chen et al. 1989, 1991) is applied to refine and improve the 

initially obtained network by removing potential redundant wavelet neurons from the network. 

As will be noted from the proposed learning algorithm, the training procedure for the new network 
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model does not need any pre-specified dictionary, as required by existing wavelet-based CML models 

(Guo and Billings 2004, Billings et al. 2005). Also, as will be seen later from the illustrative examples, 

by combining the PSO based nonlinear OPP training scheme with an effective linear forward 

orthogonal regression algorithm, the resultant wavelet network model can provide good generalisation 

performance for a wide range of dynamical nonlinear modelling problems. Moreover, one feature of 

the new wavelet network, produced by the above two-stage hybrid learning algorithm, is that now the 

resultant model is transparent to model users; involved wavelet neurons are ranked according to the 

capability of each neuron in representing the total variance in the system output signal. This is 

desirable for many application cases where physical insight on the individual variables and associated 

wavelet neurons are of interest. In summary, the main contributions of this work include two aspects: 

the introduction of a new type of adaptive wavelet network that can lead to transparent models where 

the significance of both model variables and the associated wavelet neurons can easily be interpreted; 

the development of a hybrid learning scheme that combines a nonlinear optimisation (OPP+PSO) 

method with a linear least squares algorithm. Moreover, the proposed wavelet network is nearly self-

implemented, that is, all within-network parameters can automatically be adjusted by the proposed 

algorithms. This is desirable for any structure-unknown or black-box modelling problems. 

The rest of the paper is organised as below. In section 2, the architecture of the new lattice 

dynamical wavelet neural network is presented. In section 3, a two-stage hybrid training scheme, 

involving both the OPP+PSO approach and a forward orthogonal regression algorithm, is addressed in 

detail. In section 4, two examples are presented to demonstrate the effectiveness and performance of 

the new modelling framework. Finally, the work is summarised in section 5. 

2.  The Architecture of the New LDWNN 

The new lattice dynamical wavelet neural network (LDWNN) model is constructed using wavelet 

frames, which are sets of non-independent vectors and thus form redundant bases for vectors defined 

in a given space. Starting with the discretisation of the wavelet transform, this section represents the 

architecture of the new LDWNN.  

2.1 Wavelet frames and wavelet series 

Consider a wavelet family below 






 −= −

a
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such that the family )()( 2/1
, nmmnm bxaax −= − ψψ , with Gba nm ∈),( , constitute a frame for )(2 RL (the 

space of all square integrable functions), with frame bounds A, B; that is, for all )(2 RLf ∈  

∑ ≤><≤
nm

nm fBffA
,

22
,

2 |||||,||||| ψ                                                                                       (2) 

where the symbols ‘<, >’ and ‘|| ||’ denote the inner product and the norm, respectively, following the 

ordinary definitions. The fact that 
nm ,ψ , whose parameters are restricted to a grid G, constitute a frame 

for )(2 RL can guarantee that for any )(2 RLf ∈ , there exits a sequence )(},:{
22

, ZZ l∈∈nmc nm (the 

set of all double square summable sequences of complex numbers indexed by integers) such that 
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A special choice of the grid G is to let m
m aa 0= , m

n anbb 00= , with 10 >a , 00 >b . Daubechies (1992) 

gave a theoretical approach for calculating the wavelet coefficients nmc ,  in (3). For some very special 

choices of ψ  and G , the family 
nm,ψ  can constitute an orthogonal basis for )(2 RL . The most popular 

choice is 20 =a , 10 =b , for which there exists ψ , with good time-frequency localisation properties, 

such that )2(2)(
2/

, nxx
mm

nm −= −− ψψ  constitute an orthogonal basis for )(2 RL . Orthogonal wavelet 

bases play an important role in wavelet multiresolution analysis (MRA) (Mallat 1989), because now 

any )(2 RLf ∈  can be perfectly represented as  

∑ ∑∑
≥
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0
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n
nmnm xcxaxf ψφ                                                                               (4) 

where 0m can be any integer number. The wavelet ψ , along the associated scale functionφ , form an 

MRA. An important property of orthonormal decompositions is that the well known Pareval’s theorem 

holds, that is, the energy of the signal f is conserved, without any loss, in the wavelet coefficients. 

This study pivots on nonlinear dynamical modeling problems, where relative observations are 

often sparse and where the independent (input) variables involved in the dynamical model are often 

formed by some variables representing the past states in time and at different spatial locations; this is 

different from a typical signal decomposition, where a given signal is represented using a static model 

formed by some wavelet-based elementary building blocks. When trying to construct dynamical 

models for nonlinear dynamical systems, using wavelet frames or orthogonal wavelet bases, the 

following issues arise: 

•    How to choose the primary parameters 0a and 0b  to form a wavelet frame model? Is the choice 

20 =a and 10 =b  usually optimal for constructing dynamical wavelet frame models? Clearly, the 

choices of optimal values for 0a and 0b are still an open problem when wavelet decompositions are 

used for nonlinear dynamical modelling. 
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•    It is in general impossible to form a wavelet model that contains an infinite or a large number of 

wavelet functions; a truncated wavelet model is thus often considered. Then, how to determine the 

effective range of the dilation and translation parameter indices m and n?  

Clearly, there are no unique solutions to the above issues because the choices of these parameters 

are indeed problem specific. One best alternative is perhaps to let the data speak for themselves, that is, 

to let the relevant observed data themselves adaptively and automatically choose these parameters. 

This motivates the introduction of adaptive wavelet network models for nonlinear dynamical system 

modeling. 

2.2 Adaptive versus fixed grid wavelet models 

In practical applications, both continuous and discrete wavelet transforms have been introduced to 

construct wavelet models for function learning or dynamical modelling, and these models can be 

catalogued into two types: adaptive wavelet models and fixed grid wavelet (network) models  (Billings 

and Wei 2005b). In adaptive wavelet networks, unknown parameters of the relevant wavelet functions 

are allowed to vary continuously within some specified space. To adaptively estimate these unknown 

parameters, efficient nonlinear least squares algorithms, for example the most commonly used back-

propagation and Gaussian-Newton algorithms (Haykin 1999), often need to be involved for network 

training (Zhang and Benveniste 1992, Oussar et al. 1998). It has been proved that the convergence and 

the performance of the back-propagation algorithm strongly depends on the initialisation of relevant 

networks (Zhang and Benveniste 1992). Most existing adaptive wavelet networks are in structure 

similar to classical single-hidden-layer neural networks, and thus may lack physical interpretabilities 

for either model variables or relevant wavelet-neurons. This may be undesirable for some application 

cases where physical insight for both the model variables and the relative neurons are required. 

Another issue relative to adaptive wavelet networks is the determination of the size or complexity of 

the associated network models. 

In fixed grid wavelet models, elementary building blocks, derived from some dyadic wavelets, are 

usually used to form relevant model terms (wavelet-neurons), and the dilation (scale) and translation 

(position) parameters of relevant wavelets are often predetermined and allowed to vary only in a fixed 

lattice; only the weights have to be optimised by training the network. Fixed grid wavelet models are 

in general easy to train without involving any nonlinear least squares problems (Zhang 1997, Coca and 

Billings 1997, Billings and Wei 2005b, Wei and Billings 2006a). An alternative solution for training 

this kind of network is to convert the networks into a linear-in-the-parameters problem, which can then 

be solved by using linear least squares type algorithms (Billings and Coca 1999, Xu and Ho 2002, 

Billings and Wei 2005a, Wei et al. 2006). Compared to nonlinear least squares algorithms, for 

example the well-known back-propagation algorithm for classical neural network training, methods 

involved in most fixed grid wavelet models are more constructive in that they often can automatically 

determine the network size and estimate the network coefficients in a reasonable number of iterations 
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(Zhang 1997). However, to train such a wavelet model, a specific dictionary, which contains a large 

number of candidate dyadic wavelets and which is often over-redundant, needs to be pre-determined. 

To construct such a dictionary, one needs to estimate the values for both the coarsest and the finest 

(scale) resolution levels, along with the corresponding shift parameters (these parameters are restricted 

to be integers). Although some rules of thumb are available (Zhang 1997, Wei and Billings 2004b), 

these values are still problem-specific and need to be pre-determined for each application. For some 

complex nonlinear dynamical modelling problems, the relative dictionary may involve a large number 

of candidate wavelet basis functions providing that the finest resolution level is chosen to be a large 

value; this may not be desirable for data arranging and storing, and for model subset selection. 

2.3  The new LDWNN for spatio-temporal system modelling 

CML’s are a class of dynamical models, with discrete time and discrete space, but with continuous 

state variables (Kaneko 1993). Take the 2-D CML model, involving the nearest-neighbour cell 

coupling on a squared lattice with Moore neighbourhoods, as an example, this can be expressed as 

∑
≤≤−

++ −Φ=
rqpr

qjpiqpqpji tsts
,

,
)1(
,

)1(
,, ))1(()( α L+−Φ+ ∑

≤≤−
++

rqpr

qjpiqpqp ts
,

,
)2(

,
)2(

, ))2((α  

∑
≤≤−

++ −Φ+
rqpr

qjpiqpqp ts
,

,
)(

,
)(

, ))(( τα ττ                                                                                     (5) 

where t=1,2, …, i=1,2, …, I, j=1,2, …, J, R∈jis , is the state representing the cell C(i,j), τ is the time 

lag, 
)(
,

τ
qpΦ are some linear or nonlinear functions, 

)(
,

τα qp are connecting coefficients, and 0≥r  is referred 

to as neighborhood radius indicating how many neighborhood cells are involved in the evolution 

procedure for generating each centre cell )(, ts ji from the past state space. Clearly, if r=0, model (5) 

will become a pure temporal process. The evolution law for boundary cells often needs to be pre-

specified. If both I and J are very large, boundary conditions may not affect the resultant patterns; if, 

however, one of the two numbers is small, boundary conditions may significantly distort the original 

patterns. For details about how to set boundary conditions, see Chua and Roska (2001). 

A typical case of the model (5) is that the time lagτ is assumed to be unity, that is, τ =1, and all the 

functions )(
,

τ
qpΦ  , with rpr ≤≤− and rqr ≤≤− , are assumed to be the same. This simple space-

invariant CML model is given below: 

∑
≤≤−

++ −Φ=
rqpr

qjpiqpji tsts
,

,,, ))1(()( α                                                                                         (6) 

The evolution function Φ  in the CML model (6) is often assumed to be known as some deterministic 

functions (Kaneko 1993). However, for real-word complex evolutionary images, a pre-determined 

function Φ  may not sufficiently characterise the underlying dynamics; it may be better to learn, from 

avalable real observed data, an appropriate model structure for a given spatio-temporal system. 
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Table 1   Variables xk, with k=1, 2, …, 2
)12( +r , represent 

2
)12( +r different cells 

C(i-r, j-r) 
x1 

… C(i-r, j) 
xr  

… C(i-r,j+r) 
x2r+1 

… … … … … 

C(i, j-r) 

xr(2r+1)+1 

… C(i,j) 

xr(2r+1)+(r+1) 

… C(i,j+r) 

x(r+1)(2r+1) 

 …  … … 

C(i+r,j-r) 
x2r(2r+1)+1 

… C(i+r,j) 
x2r(2r+1)+(r+1) 

… C(i+r,j+r) 
x(2r+1) (2r+1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, assume that the true evolution functions 
)(

,
k

qpΦ in (5) and Φ  in (6) are unknown, but some 

relevant observations are available. The task of spatio-temporal system identification is to construct a 

model that can represent, as close as possible, the observed evolution procedure. Unlike constructing 

static models for typical data fitting, the objective of dynamical modelling is not merely to seek a 

model that fits the given data well, it also requires, at the same time, that the model should be capable 

of capturing the underlying system dynamics carried by the observed data, so that the resultant model 

can be used in simulation, analysis, and control studies.  

Note that a total of 2)12( += rd state variables are involved in the CML model given by (6). For 

convenience of description, introduce d single-indexed variables kx , with k=1,2, …, d, to represent the 

d involved cells in the neighborhood, see Table 1. Also, let y represent the central cell C(i, j). Then, 

the objective is to identify, from available data, a d-dimensional model 

))(,),(),(())(()( 21 txtxtxftfty dL== x                                                                                  (7a) 

or, in an explicit form, with respect to the state variables 

,),1(,),1(,),1(())(()( ,,,, LLL −−−== +−−−− tststsftfts rjrijrirjriji s  

,),1(,),1(,),1( ,,, LLL −−− +− tststs rjijirji  

))1(,),1(,),1( ,,, −−− +++−+ tststs rjrijrirjri LL                                        (7b) 

where )(tx and )(ts are state vectors formed by the relative state variables.  

One of the most commonly used approaches for constructing the high dimensional model (7) is to 

approximate the multivariate function f using a set of functions of fewer variables (often univariate) 

∑=
j

jjj tgwtf ));(())(( θxx                                                                                                       (8) 

where jg are called the construction functions (hidden units), jθ are the associated parameter vectors, 
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and jw are coefficients (weights).  

Wavelets, due to their inherent property and excellent capability in time-frequency domain 

representation and approximation of arbitrary signals, can be used as the elementary building blocks to 

represent these construction functions jg  in (8). In practice, three types of wavelet models are often 

involved: single-hidden-layer wavelet networks (Zhang and Benveniste 1992), radial wavelet 

networks (Zhang 1997, Billings and Wei 2005b), and tensor product wavelet networks (Oussar et al. 

1998, Billings and Wei 2005a, Wei and Billings 2004a, 2006). Taking the classical single-hidden-

layer wavelet neural network as an example, the construction functions jg in (8) are often expressed as 

)();( j
T
jjj bg −= xaθx ψ , where ψ is some wavelet, 

d
j

+∈Rax, , R∈jb , 
T

j
T
jj b ],[aθ = . This is a kind 

of ‘linear-interaction and then nonlinear-transform’ process. 

Inspired by the CML models (5) and (6), the construction functions jg in (8) are chosen as below:  

),;(),;(),;();( ,,,,2,22,2,1,11,1 jdjddjdjjjjjjjj baxcbaxcbaxcg ψψψ +++= Lθx                          (9) 

where )(),;( ,,,, jkkjkjkjkk bxabax −=ψψ , with k=1,2, …, d,  are wavelet basis functions, and 

T
jdjdjdjjjj cbacba ],,,,,,[ ,,,,1,1,1 L=θ are the parameter vectors that need to be optimised. Clearly, the 

construction functions jg  in (9) are of the form ‘nonlinear-transform and then linear-interaction’, 

which is totally different from the cases of typical single-hidden-layer wavelet neural networks. 

Assume that a total of m construction functions, mggg ,,, 21 L , are involved in the network, then 

equation (8) can be expressed as  

∑
=

=
m

j
jjj tgwtf

1

));(())(( θxx ∑ ∑
= =

=
m

j

d

k
jkjkkjk baxc

1 1
,,, ),;(~ ψ                                                            (10) 

where jkjjk cwc ,,
~ = . Now, the remaining key problem is how to construct the wavelet network model 

(10), where the elementary building block is ∑ == d

k kkkk baxcg
1

),;();( ψθx , where 

T
ddd cbacba ],,,,,,[ 111 L=θ is unknown and needs to be optimised. Some points need to be considered:  

•  Which training strategy should be used to construct such a network?  

•  With a chosen waveletψ , the parameters T
ddd cbacba ],,,,,,[ 111 L=θ are unknown and need to be 

optimised. How to calculate these parameters?  

•  How to determine the size of the network, or the number of construction functions? 

•  How to measure the significance of each model variable and the involved wavelet neurons?  

Unlike in fixed grid wavelet network models, where a dictionary of candidate basis functions 

needs to be initially provided, based on which some search and pruning algorithms are applied to find 

a set of significant basis functions (Zhang 1997, Xu and Ho 2002, Billings and Wei 2005b), this study 

will consider a type of growing wavelet neural network, where a constructive learning algorithm that 
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can be used to automatically and adaptively augment such a network will be provided.  

3.  Training the New LDWNN 

Many constructive learning algorithms, applicable to constructing typical neural networks (Haykin 

1999), can be found in the literature (Fahlman and Lebiere 1990, Jones 1992, Kwok and Yeung 1997a, 

Reed and Marks 1999). The projection pursuit regression (PPR) (Friedman and Stuetzle 1981) and 

some variations (Hwang et al. 1994, Kwok and Yeung 1997b) are among the class of the most 

commonly used approaches for augmenting single-hidden-layer neural networks. The basic idea of 

these kind of algorithms is to successively approximate the function f by progressively minimising 

approximation errors. It generally starts from 00 =f (the initial approximation function is set to be 

zero), evolves in a stepwise manner by searching through steps j=1,2, …,m; at the jth step, the 

approximation jf  is augmented by including the jth construction function );( jjg θx that produces the 

largest decrease in the approximation error, that is, it minimises the objective function: 

2
1

,
||);((||min θx

θ
gff j α

α
+− − . 

Inspired by the successful applications of these popular constructive learning algorithms, this study 

proposes a practical orthogonal projection pursuit (OPP) learning scheme, assisted by a particle swarm 

optimisation (PSO) algorithm. Similar to other popular constructive algorithms, networks produced by 

the OPP algorithm may be redundant. To remove or reduce redundancy, an orthogonal least squares 

(OLS) type learning algorithm (Billings 1989, Chen et al. 1989, 1991) is applied to refine and improve 

the initially generated network by the OPP+PSO algorithm. Detailed discussions on the network 

training procedure are given below. 

3.1  The OPP algorithm aided by PSO for first stage network training 

Let NTNyyy R∈= )](),...,2(),1([y be the vector of given observations of the output signal, 

T
kkkk Nxxx )](,),2(),1([ L=x   the vector of the observations for the kth input variable, with k=1,2, …, 

d. For any given T
ddd cbacba ],,,,,,[ 111 L=θ , let T

kkkkkkk baNxbax )],);((,),,);1(([ ψψ L=ψ  and 

∑ == d

k kkc
1

);( ψθXg ,  where ],,,[ 21 dxxxX L= .  

The OPP algorithm is implemented in a stepwise fashion; at each step a construction vector that 

minimises the projection error will be determined. Starting with yr =0 , find a construction function 

);( 11 θXgg =  such that }||);({||minarg 2
01 θgrθ

θ
X−= . The associated residual vector may be defined 

as 101 grr −= , which can be used as the “fake desired target signal” to produce the second construction 

vector 2g . However, it should be noted that the coefficient 1θ is not always identical to the true 

(theoretical) optimal value *
1θ , no matter what optimisation algorithms are applied. As a consequence, 
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101 grr −=  may not be orthogonal with the construction vector 1g . To make the associated residual 

orthogonal with the relevant construction vector, the residual is then defined as 1101 grr α−= , where 

2
1111 ||||/, ggr >=<α . Note that from now on the inner product is for sampled vectors in N-

dimensional Euclidian space, for example, the inner product of the two vectors 

T
Nuuu )](,),2(),1([ L=u and T

Nvvv )](,),2(),1([ L=v is defined as ∑ ==>=< N

k

T
kvku

1
)()(, vuvu ; 

this is different from that previously defined in (2), where the inner product is imposed to functions 

in )(2 RL . 

Assume that at the (n-1)th step, a total of (n-1) construction vectors );( jj θXgg = , with j=1,2, …, 

n-1, have been obtained. Let 1−nr be the residual vector associated with these (n-1) obtained vectors 

when they are used to approximate the desired signal y . The nth construction vector can be obtained 

by choosing }||);({||minarg 2
1 θgrθ

θ
Xnn −= −  and );( nn θXgg = . The associated residual vector can be 

defined as  

);( 1 nnnn θXgrr α−= −                                                                                                              (11) 

where 

2

1

2

1

||);(||

);( ,

||||

 ,

n

nn

n

nn
n

θXg

θXgr

g

gr ><=><= −−α                                                                                       (12) 

Inserting (12) into (11), yields, 

n

n

nn
nn g

g

gr
rr

2

1
1

||||

 , ><−= −
−                                                                                                         (13) 

From (13),  

2

2
12

1
2

|| ||

 ,
||||||||

n

nn
nn

g

gr
rr

><−= −
− ><−= −− nnnn grr  ,|||| 1

2
1 α                                                        (14) 

By respectively summing (13) and (14) for n from 2 to m+1, yields 

m

m

n
n

n

nn rg
g

gr
y ∑

=

− +><=
1

2

1

||||

,
m

m

n
nn rg∑

=
+=

1

α                                                                                  (15) 

∑
=

− ><−=
m

n n

nn
m

1
2

2
122

||||

,
||||||||

g

gr
yr ∑

=
− ><−=

m

n

nnn

1

1
2 ,|||| gry α                                                     (16) 

The residual sum of squares, also called the sum of squares error, 2|||| nr , can be used to form a 

criterion to stop the growing procedure. For example, the criterion can be chosen as error-to-signal 
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ratio: 22 ||||||||ESR yrn= ; when ESR becomes smaller than a pre-specified threshold value, the 

growing procedure can then be terminated.  

Now the OPP algorithm can briefly be summarised as follows. 

The OPP algorithm: 

Initialisation: yr =0 ; 00 =f ; ESR=0; 

while { η≥ESR or PEMmn ≤ };        //{η  is a pre-specified very small threshold value.}// 

//{mOPP is the maximum number of construction functions 

// permitted to be included in the network} // 
for n=1 to mOPP  

                  //{Starting from some random (but reasonable) value for the parameter vector θ , optimise 

the following function using the PSO algorithm.}// 

{ }2
1 ||);(|| minarg θXgrθ

θ
−= −nn  ;   

2

1

||||

 ,

n

nn
n

g

gr ><= −α ; 

nnnn grr α−= −1 ;    

22
||||||||ESR yrn= ; 

end for 

end while 

      It is clear from (14) that the sequence 2
|||| nr  is strictly decreasing and positive; thus, by following 

the method given in Zhang (1993), Kwok and Yeung (1997b) and Huang et al. (2006), it can easily be 

proved that the residual nr is a Cauchy sequence, and as a consequence, the residual nr converges to 

zero. The algorithm is thus convergent. The above OPP algorithm is in structure similar to the 

projection pursuit regression (Friedman and Stuetzle 1981) and other constructive learning algorithms 

(Mallat and Zhang 1993, Hwang et al. 1994, Kwok and Yeung 1997a, 1997b), but the implementation 

of the OPP algorithm is totally different from these existing algorithms. For example, in the projection 

pursuit regression method, the construction functions are nonparametric and in general unknown 

before hand; in the OPP algorithm, however, the construction functions are formed by a linear 

combination of d individual parametric functions. In the matching pursuit method, the construction 

functions are restricted to a specified dictionary, where relevant adjustable parameters of individual 

candidates are permitted to vary in a given grid, while in the OPP algorithm no such limits are 

imposed on construction functions. Moreover, in the OPP algorithm, the elementary building blocks 

are linear combinations of some wavelets, where unknown parameters are optimised by using some 

PSO algorithm that does not need any information on the gradients of the object functions, this enables 

the PSO to be very suitable for nonlinear optimisation problems where the relevant object functions 

are not differentiable or the gradients are computationally expensive to obtain (Kennedy et al. 2001). 

However, like the projection pursuit regression and the matching pursuit algorithms, the OPP 

algorithm may produce redundant models. To refine and improve the OPP produced network models, 

the orthogonal least squares (OLS) learning algorithm (Billings 1989, Chen et al. 1989, 1991) is then 

applied to remove any severe redundancy. 
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3.2  The PSO algorithm for parameter estimation 

Particle swarm optimisation (PSO), originally inspired by some sociological behaviour associated 

with, for example, bird flocking (Kennedy and Eberhart 2001), is a population-based stochastic 

optimisation algorithm that was first proposed by Kennedy and Eberhart in 1995 (Kennedy and 

Eberhart 1995, Eberhart and Kennedy 1995). In PSO, the population is referred to as a swarm, while 

the individuals are referred to as particles; each particle moves, in the search space, with some random 

velocity, and remembers and retains the best position it has ever been. The mechanism of PSO can 

succinctly be explained as follows. The position of each particle can be viewed as a possible solution 

to a given optimization problem. In each iteration (one step move), each particle accelerates its move 

toward a new potential position, by adaptively using information about its own personal best position 

obtained so far, as well as the information of the global best position achieved so far by any other 

particles in the swarm. Thus, if any promising new position is discovered by any individual particle, 

then all the other particles will move closer towards it (Parsopoulos and Vrahatis 2004). In this way, 

PSO will finally find, in an iterative manner, a best solution to the given optimisation problem. 

Now consider an s dimensional optimisation problem, where the relevant parameter vector to be 

optimised is denoted by sT
s R⊂Θ∈= ],,,[ 21 θθθ Lθ . Assume that a total of L particles are involved in 

the relevant swarm. Denote the position of the ith particle at the present time t by )(tiθ , the relative 

velocity by )(tiv , the personal best position by )(tip , and the global best position obtained so far by 

)(tgp . Following Kennedy et al. (2001), Shi and Eberhart (1998a, 1998b), Clerc and Kennedy (2002), 

PSO can be implemented using the iterative equations below 

)]()([)()()1( 11 ttrcttwt iiii θpvv −+=+ )]()([22 ttrc ig θp −+                                                    (17a) 

)1()()1( ++=+ ttt iii vθθ χ                                                                                                      (17b) 

where i=1,2, …, L; w(t) are the inertia weights, 1c  and 2c are the acceleration coefficients, also 

referred to as the cognitive and social parameters; |42|/2 2 φφφχ −−−= , with 421 >+= ccφ , is a 

constriction factor used to obtain good convergence performance by controlling explosive particle 

movements; 1r  and 2r are random numbers that are uniformly distributed in [0,1]. Typical choices for 

1c  and 2c  are to set 221 == cc  (Kennedy and Eberhart 1995, Eberhart and Kennedy 1995). Also, 

values initially starting from unity and then gradually declining to zero are considered as a good 

choice for w (Eberhart and Shi 1998, Shi and Eberhart 1998a, 1998b, van den Bergh and Engelbrecht 

2004). 

Let )(θπ be the function that needs to be minimised, then the personal best position of each particle 

can be updated as below (van den Bergh and Engelbrecht 2004)   
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<++
≥+

=+
))(())1(( if     ),1(

))(())1(( if          ),(
)1(

ttt

ttt
t

iii

iii

i
pθθ

pθp
p

ππ
ππ

                                                                     (18) 

While the global best position achieved by any particle during all previous iterations is defined as 

))1((minarg)1( +=+ tt ig
i

pp
p

π ,      Li ≤≤1 .                                                                          (19) 

In the OPP algorithm discussed in the previous section, the objective function is defined as 

∑
=

−−− −=−=
N

t

nnn tgtr
1

2
1

2
11 )]);(()([||);(||)( θxθXgrθπ                                                               (20) 

where N is the number of training samples, X and θ  are defined as in the previous section, 

T
d txtxtxt )](,),(),([)( 21 L=x is defined as in section 2, and ∑ =

=
d

k kkkk batxctg
1

),);(());(( ψθx .  

With regard to the termination of the optimisation procedure, the criterion can be chosen as below. 

Let ‘mPSO’ be the maximum number of permitted iterations. The optimization procedure can then be 

terminated when either the iteration index exceeds ‘mPSO’, or when the parameter to be optimized 

becomes stable, that is, when δ≤−+ 2||)()1(|| tt θθ , where δ is a pre-specified small number, say 

510−≤δ .  

3.3  Refine the network using the forward orthogonal regression algorithm 

Assume that a total of m construction functions );( jjg θx , where T
d txtxtxt )](,),(),([)( 21 L=x  and 

j=1,2, …, m, are involved in the network produced at the first stage. It is known that each jg involves 

d individual wavelets, thus a total of mdM ×= elementary wavelet neurons are involved in the 

network. Denote the set of these M wavelets by  

}),(),,;()(:{ ,,,, Γ∈==Ω jkbaxx jkjkkkjkjk ψψψ                                                                      (21) 

where },,2,1;,,2,1:),{( mjdkjk LL ===Γ . Note that all the parameters jka , and jkb , have already 

been estimated at the first stage. 

The objective of this refinement stage is to reselect the most significant wavelet functions from the 

set Ω , to form a more compact model for given nonlinear identification problems. Let y and kx be 

defined as in the previous section, and let 
T

jkjkkjkjkkjk baNxbax )],:)((,),,);1(([ ,,,,, ψψ L=ψ , where 

Γ∈),( jk . Also, let  

}),(,:{ ,)1()1( Γ∈== +−+− jkD jkjmkjmk ψφφ },,,{ 21 Mφφφ L=                                                  (22) 

The network refinement problem amounts to finding, from the dictionary D, a full dimensional 
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subset },,{ 1 nnD pp L=  },,{
1 nii φφ L= , where

kik φα = , },,2,1{ Mik L∈  and k=1,2, …, n (generally 

Mn << ), so that y can be satisfactorily approximated using a linear combination of nppp ,,, 21 L  as 

below 

eppy +++= nnββ L11                                                                                                           (23) 

or in a compact matrix form 

ePβy +=                                                                                                                                (24) 

where the matrix ],,[ 1 nppP L=  is assumed to be of full column rank, T
n ],,[ 1 ββ L=β  is a parameter 

vector, and e  is the approximation error vector. The regression matrix P in (24) is full rank in columns 

and thus can be orthogonally decomposed as 

QRP =                                                                                                                                   (25) 

where Q  is an nN × matrix with orthogonal columns nqqq ,,, 21 L , and R  is an nn× unit upper 

triangular matrix whose entries )1( njirij ≤≤≤  are calculated during the orthogonalization procedure. 

Inserting (25) into (24), yields,  

eQγeRβQy +=+= )(                                                                                                          (26) 

where T
n],,,[ 21 γγγ L=γ , with 2||||/, iii qqy >=<γ  and i=1,2, …, n. From (26),  

2

1

222 |||||||||||| eqy += ∑
=

n

i
iiγ                                                                                                      (27) 

Thus, the output variance consists of two parts: the desired output, ∑ =
n

i ii1

22
|||| qγ , which can be 

explained by the selected regressors (wavelet functions); and the residual part, 2|||| e , representing the 

unexplained variance. Note that each term iiqγ in (27) makes an individual contribution to the 

designed signal y, by giving an increment to the desired output variance. The significance, of the ith 

vector iq , caused by including the ith vector ip , can be measured by introducing the concept of the 

error reduction ratio (ERR) (Billings 1989, Chen et al. 1989, 1991), which is defined as 

2

22

||||

||||
ERR

y

qii
i

γ=                                                                                                                (28) 

The ERR criterion provides a useful index to indicate which candidate vectors are important and 

should be included in the model. As in the OPP algorithm, the error-to-signal ratio (ESR) can be used 

to form a criterion to stop the search procedure. Following the suggestion in Billings and Wei (2007a), 

the penalised ESR criterion 
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)ERR1()/1(PESR
1

2 ∑ =
−−=

n

i in Nnλ                                                                                (29)  

will be used to monitor the regressor search procedure; the number of regressors (wavelet functions) 

will be chosen as the value where PESR arrives it minimum. Billings and Wei (2007a) suggest that the 

adjustable parameter λ  be chosen between 5 and 10. 

The forward orthogonal regression (FOR) algorithm used in this study is briefly summarised 

below. Some recently improved versions or variants of the OLS algorithm can be found in Chen et al. 

(2003, 2004), Billings and Wei (2007b), and the references therein. 

The FOR algorithm: 

Step 1: Set },,2,1{1 MU L= ;  

               for j=1 to M 

jj φq =)1(
;                                 //{if ,||||

2)1( ε≤jq set 0][err )1( =j }// 

  
2)1(

)1(

)1(

||||

,

j

j

j
q

qy ><
=γ ;   

2

2)1(2)1(

)1(

||||

||||)(
][err

y

q jj
j

γ
= ;   

                   end for 

                  ]}[{errmaxarg )1(
1

1

i
Ui∈

=l ;  

)}||(||arg{}{ 2)1(
11

1

ε<=
∈

j
Uj

V qUl ; 

                  
11 lφp = ;   11 pq = ;    

)1(
1

1lγγ = ;   

][err]1err[ 1
)1( l= ;  ]1err[]1serr[ = ;  ]1serr[1]1esr[ −= ; 

]1esr[)/1(]1pesr[
2

Nλ−= ; 

     Step n, 2≥n : 

                   For n=2 to M 

                     11 \ −−= nnn VUU ; 

                          for nUj ∈  

∑
−

=

><
−=

1

1
2

)(

||||

,n

k
k

k

kj

j
n
j q

q

qφ
φq ;      //{if ,||||

2)( ε≤n
jq set 0][err )( =jn }// 

        
2)(

)(

)(

||||

,
n
j

n
jn

j
q

qy ><
=γ ;   

2

2)(2)(

)(

||||

||||)(
][err

y

q n
j

n
jn

j
γ

= ;  

end for ( end loop for j )  

]}[{errmaxarg )( jn

Uj
n

n∈
=l ;  

      )}||(||arg{}{
2)( ε<=

∈

n
j

Uj
nn

n

V qUl ; 

nn lφp = ;   )(n
n

nlqq = ;  )(n
n

nlγγ = ; 

][err]err[ )(
n

nn l= ;  ∑ == n

k
kn

1
]err[]serr[ ;  ]serr[1]esr[ nn −= ; 

]esr[)/1(]pesr[
2

nNnn λ−= ; 



 18 

                      for k=1 to n 

                                   
2,

||||

,

k

kn
nkr

q

qp ><= , for nk < ; 1, =nkr , for nk = ; 

                          end for (end loop for k ) 

                   end for (end loop for n ) 

The FOR algorithm provides an effective tool for successively selecting significant model terms 

(hidden units) in supervised learning problems. Terms are selected step by step, one term at a time. 

The inclusion of redundant bases, which are linearly dependent on the previous selected bases, can be 

efficiently excluded by eliminating the candidate basis vectors for which 
2)(

||||
n
jq  are less than a 

predetermined threshold ε , say 1010−≤ε . Assume that a total of m significant vectors are selected, 

then the unknown parameter T
m],,,[ 21 βββ L=β can easily be calculated from the triangular 

equation γRβ= , where R is an upper triangular matrix and T
m],,,[ 21 γγγ L=γ with 2||||/, iii qqy >=<γ  

for i=1,2,…, m. 

Let },,2,1),()(:{ ,,,, kjkkjkkjkjk mjbxax L=−=ψψψ  be the OLS produced set of the wavelet 

functions that are relevant to the kth input (independent) variable kx , with k=1,2, …, d. The wavelet 

network model obtained at the OPP stage will then reduce to 

∑
=

=
1

1
,1,11,1 ),;())((

m

j
jjj baxtf ψθx ∑

=
+

2

1
,2,22,2 ),;(

m

j
jjj baxψθ ∑

=
++

dm

j
jdjddjd bax

1
,,, ),;(ψθL  

)()()( 2211 dd xfxfxf +++= L                                                                                    (30) 

where ∑ == km

j jkjkkjkkk baxxf
1 ,,, ),;()( ψθ . The network (30) can be viewed as a wavelet-based 

implementation of the well known and widely applied generalised additive model (Hastie and 

Tibshirani 1990), which can not only avoid the curse of dimensionality, but also provides the ability to 

detect nonlinear dynamics and nonlinear patterns, without sacrificing interpretability of the relevant 

component functions. Generalised additive models, combined with other modelling techniques, have 

recently become extremely popular and been widely applied in diverse areas (Aerts et al. 2002, 

Ruppert et al. 2003, Wood 2004, Brezger and Lang 2006, Lado et al. 2006).  

Note that the wavelet neural network (30), as a generalised additive model, is in structure different 

from that given by (10). 

4.  Numerical Examples 

This section presents two examples, one for artificial data and another for real data, to illustrate the 

application procedure of the new network modelling procedure. 
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4.1  Kaneko’s 2-D CML model 

    The well known 2-D CML model (Kaneko 1989), involving five nearest-neighbour cells coupled on 

a squared lattice with von Neumann neighbourhoods, is given below 

                ))1(()1()( ,, −Φ−= tscts jiji  

))1(())1(([
4

1,1, −Φ+−Φ+ +− tsts
c

jiji ))]1(())1(( ,1,1 −Φ+−Φ+ +− tsts jiji                      (31) 

where the function Φ  was chosen as the logistic map 2
1)( axx −=Φ . It has been shown that this 

model can produce rich spatio-temporal patterns. In the example here the coefficients a and c were 

chosen to be 1.5 and 0.4, respectively. Starting with some given initial and boundary conditions that 

are shown in Table 2, the model was simulated and a set of snapshot patterns were obtained; some of 

these patterns are presented in Fig. 1. 

A total of N=4000 simulated data pairs, Nkkyk ,...,2,1)}(),({ =x , were used for the network training. 

Note that y(k) represents the value of the relevant central cell at the present time instant, and 

T
kxkxkxk )](,),(),([)( 521 L=x represent the values of the five involved cells in the neighbourhood at 

the previous time instant. These 4000 data pairs were formed as follows. Firstly, 10 adjacent pattern 

pairs were randomly chosen; pattern pairs here are referred to two patterns that are with abutting time 

instants, for example, patterns at the abutting time instants 11 and 12 form an adjacent pattern pair. 

Secondly, 400 data pairs were randomly chosen in each of these 10 pattern pairs. To make the training 

data more ‘realistic’, an additive Gaussian noise ξ , with zero mean and a standard deviation ξσ = 

0.02, was added to the ‘output’ y(k) for k=1,2, …, N. 

The Mexican hat wavelet function, defined as 2/2 2

)1()(
x

exx
−−=ψ , was used as the elementary 

building block for constructing the wavelet network model. All the experiment conditions involved in 

the modelling procedure for this example are shown in Table 2. The error-to-signal ratio, ESR, 

calculated by the OPP algorithm, is shown in Fig. 2, and the penalised error-to-signal ratio, PESR, 

produced by the FOR algorithm, is shown in Fig. 3. It is clear, from the PESR index, that the most 

appropriate number of wavelets is 11, where the PESR index arrives at its minimum; thus a total of 11 

wavelets were included in the final network model below: 

∑
=

−=
4

1

,1,1,,1, ),);1(()(
k

kkjikji batscts ψ ∑
=

− −+
2

1

,2,21,,2 ),);1((
k

kkjik batsc ψ  

),);1(( 1,31,31,1,3 batsc ji −+ +ψ ∑
=

− −+
2

1

,4,4,1,4 ),);1((
k

kkjik batsc ψ  

∑
=

+ −+
2

1

,5,5,1,5 ),);1((
k

kkjik batsc ψ                                                                                 (32) 
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Table 2   Some conditions involved in the LDWNN modelling for 

Kaneko’s 2-D CML system 

Size of the arrays of cells 100100×  

Initial condition for si,j(0),  

with i,j =1,2, …, 100.  

Uniformly distributed on [0,1] 

Boundary conditions Periodic 

Neighbourhood cells involved in 

the state vectors of the model 

x1=C(i,j), x2=C(i,j-1), x3=C(i,j+1), 

x4=C(i-1,j), x5=C(i+1, j).  

mOPP in the OPP algorithm 100 

η  in the OPP algorithm 10-4 

Swarm’s size in the PSO algorithm 50 

w in the PSO algorithm Linearly declines from 1 to 0.1 

c1, c2 in the PSO algorithm c1= c2=2.05 

χ  in the PSO algorithm 0.7298 

mPSO in the PSO algorithm 200 

δ in the PSO algorithm 10-5 

ε in the FOR algorithm 10-10 

λ  in the FOR algorithm 10 

Wavelet functions Mexican hat 
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(b) 
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Fig. 1   Snapshot patterns at different time instants for Kaneko’s 2-D CML system. (a) t=0; (b) t=25; (c) t=75; (d) 

t=100.   
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Fig. 2   The error-to-signal ratio (ESR) index calculated by the OPP algorithm for the LDWNN modeling of 

Kaneko’s 2-D CML system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3  The penalised error-to-signal ratio (PESR) index calculated by the FOR algorithm for the LDWNN 

modeling of Kaneko’s 2-D CML system.  
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Table 3   Model parameters and the associated ERR values for the LDWNN modeling of 

Kaneko’s 2-D CML system. 

 Parameter ERR (%) 
Cell 

c a b Individual Sum 

0.779377353142 1.176540901604 0.077788826608 94.7250 
0.333764225837 0.215927012031 -0.931464740048 3.9008 
0.099949271090 3.149905378383 2.039778682928 0.5156 

 

C(i, j) 

si ,j 
-0.363719053503 3.307204181260 4.289126530991 0.0339 

 

99.1753 

0.097154040977 1.645410684733 -0.185214031788 0.2047 C(i, j-1) 

si,j-1 0.054706585000 1.909477838374 0.849633019892 0.0583 
0.2631 

C(i, j+1) 

si,j+1 
-0.113301597742 2.151296601341 2.079671488586 0.2153 0.2153 

0.093035314725 1.070816173200 -0.217875930508 0.1149 C(i-1, j) 

si-1,j -0.085864916016 4.057608672508 4.201270159626 0.0351 
0.1499 

0.020620174266 2.140464718671 0.213686362585 0.0856 C(i+1, j) 

si+1,j -0.118901535729 0.784322249023 1.403515386813 0.0620 
0.1476 

— — — — 99.9513 99.9513 

 

 

 

The associated model parameters, along with the error reduction ratio (ERR) of individual wavelets, 

are given in Table 3. The total run time to produce the model (32), using Matlab (R14) on a Sun-500 

workstation (1.28 GHz), was 37.24 minutes. The ERR index shows that the wavelet functions relative 

to the state variable jis , , corresponding to the cell(i,j), dominates the ‘output’ of the wavelet network 

model, meaning that the state variable jis , plays, via relevant wavelet functions, a dominant role, 

among all the five involved variables, in the associated spatio-temporal evolution. This conclusion is 

coincident with the original model (31), where the weight coefficient assigned to the function of the 

state variable jis , is much larger compared with the others. 

To evaluate the performance of the proposed wavelet neural network modelling framework, both 

the wavelet network model (32) and the original model (31) were simulated, using the same initial 

condition for si,j(0), with i, j =1,2, …, 100, which was randomly distributed on [0,1]. But note that the 

individual initial values for si ,j(0) here were totally different from those used for producing the training 

data set from the original model (31) (see Fig. 1a), even though they follow, in a statistical sense, the 

same distribution. The simulation results from the model (32) are referred to as the model predicted 

output (MPO), which means that, starting from given initial conditions (the initial pattern), the model 

will produce values to form the next pattern; using the newly produced pattern as the new initial 

values (no other information is needed), the model will evolve forward a further step in time; 

subsequent patterns are thus generated step by step. Notice that MPO is a much more sevewre test tan 

the often used one step ahead (OSA) predicted output since the later can look good even for very poor 

models. The boundary condition adopted here is the same as described in Table 2. A comparison of 

the model predicted output from the identified network model (32), with patterns produced by the 
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original model (31), at time instances t=25, 50, 75, 100, are shown in Fig. 4. It is clear from Fig. 4 that 

the identified wavelet network model (32) perfectly represents the original model (31). 

For a comparison, a wavelet series model of the form (3), where the Mexican hat wavelet was used 

as the elementary building blocks, was also used to identify the 2-D CML model (31), based on the 

same training data Nkkyk ,...,2,1)}(),({ =x  . The initial wavelet series model involves an over-complete 

dictionary containing 1000 candidate wavelet basis functions. The finally identified wavelet series 

model includes 16 dyadic wavelets. 

To measure the performance of the identified wavelet models, the local 2-D mean-square-error 

(LMSE), defined as below, was considered 

∑∑
= =

−=
I

i

J

j

jiji tsts
IJ

t
1 1

2
,, |)(ˆ)(|

1
)LMSE(                                                                                 (33) 

where )(, ts ji  represent the observations at the time instant t, )(ˆ
, ts ji  represent the corresponding 

predicted values from a given model, and I and J define the size of the associated pattern. The local 

mean-square-errors, for the model predicted outputs of both the identified LDWNN model (32) and 

the wavelet series model, are shown in Fig. 5, where the range of the time instants are from 1 to 100. It 

is clear from Fig.7 that the LDWNN model (32) is superior to the wavelet series model for 

representing the 2-D Kaneko’s CML model (31). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4   A compassion of some patterns produced by the original model (31) [(a)-(d)] and the identified LDWNN 

model (32) [(e)-(h)]. (a)-(d):  t=25, 50, 75, 100; (e)-(h) t=25, 50, 75, 100. Note that the values of the initial 

patterns here are different from those used in Fig. 3.   
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Fig. 5   A compassion of the local mean-square-errors, for model predicted outputs of both the identified 

LDWNN model (32) and the wavelet series model for Kaneko’s 2-D CML system.  Solid line is for the LDWNN 

model and the dashed line is for the wavelet series model.  

 

4.2  Identification of the Belousov-Zhabotinsky (BZ) Reaction 

The Belousov-Zhabotinsky (Belousov 1959, Zhabotinsky 1964, Winfree 1972, Kuramoto 1984) 

reaction, or BZ reaction, as an excitable medium, is an important class of chemical reactions 

exhibiting a spatio-temporal oscillatory behaviour. As a classical example of nonequilibrium 

thermodynamics, the BZ reaction provides an interesting chemical model of nonequilibrium biological 

phenomena, and the modelling and identification of these type of reactions is of extreme interest for 

theoretical analysis of relevant phenomena. 

By adopting the recipe given by Winfree (1972), an experiment resulting in a thin layer BZ 

reaction was carried out, and a set of images were captured with equal time intervals during the 

experiment, using a digital video camera that is connected to a PC via a USB socket. The sampled 

images were pre-processed and saved as patterns with a resolution of 480 by 640 pixels. Some of these 

patterns are shown in Fig. 6. In this example, the LDWNN modelling framework was applied to these 

sampled images, and the objective is to demonstrate the applicability and effectiveness of the new 

network model for the identification of the BZ reaction. 
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Fig. 6   Some snapshots for the BZ reaction at different time instants. (a) t=10; (b) t=20; (c) t=30; (d) t=40; (e) 

t=50; (f) t=60; (g) t=70; (h) t=80.  

 

A total of N=2500 data pairs, Nkkyk ,...,2,1)}(),({ =x , were used for the network training, where y(k) 

represents the value of the relevant central cell at the present time instant, and 

Tkxkxkxk )](,),(),([)( 921 L=x  represent the values of the nine involved cells at a squared lattice with 

the Moore neighbourhoods, at the previous time instant (see Table 4). These 2500 data pairs were 

formed as follows. Firstly, 5 adjacent pattern pairs were randomly chosen from the first 50 sampled 

patterns. Secondly, 500 data pairs were randomly chosen in each of these 5 pattern pairs.  

The Mexican hat wavelet was used as the elementary building blocks for constructing the wavelet 

network model. All the experiment conditions involved in the modelling procedure for this example 

are shown in Table 4. A total of 100 construction functions of the form (9) were optimised during the 

optimisation procedure using the OPP+PSO algorithm. Significant individual wavelets were then 

selected from the pool of the form (21), which contains 900 individual candidate wavelets of the form 

),;( ,,, jkjkkjk baxψψ =  , with k=1,2, …, 9 and j=1,2, …, 100, and where both the dilation and 

translation parameters have already been optimised. The penalised error-to-signal ratio, PESR, 

produced by the FOR algorithm and shown in Fig. 7, suggests that a total of 15 wavelets should be 

included in the wavelet network model. The structure of the wavelet neural network model is of the 

form (30), and the associated parameters of the identified LDWNN model are shown in Table 5. The 

total run time to produce such a LDWNN model, using Matlab (R14) on a Sun-500 workstation (1.28 

GHz), was 49.33 minutes. 

To evaluate the performance of the identified LDWNN model, the short-term predictive capability 

of the model was inspected. Denote the observation of the image (pattern) measured at the present 

time instant t by X(t). The s-step-ahead prediction, denoted by ))(,;|(ˆ tXftstX + , where f  represents 
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Table 4   Some conditions involved in the LDWNN modelling for the 

identification of the BZ reaction. 

Size of the arrays of cells 640480×  

Neighbourhood cells involved in 

the state vectors of the model 

x1=C(i-1, j-1),  x2=C(i-1, j),   x3=C(i-1, j+1),  

x4=C(i,    j-1),  x5=C(i,    j),   x6=C(i,    j+1),  
x7=C(i+1,j-1),  x8=C(i+1,j),   x9=C(i+1,j+1). 

mOPP in the OPP algorithm 100 

η  in the OPP algorithm 10-4 

Swarm’s size in the PSO algorithm 50 

w in the PSO algorithm Linearly declines from 1 to 0.1 

c1, c2 in the PSO algorithm c1= c2=2.05 

χ  in the PSO algorithm 0.7298 

mPSO in the PSO algorithm 300 

δ in the PSO algorithm 10-5 

ε in the FOR algorithm 10-10 

λ  in the FOR algorithm 10 

Wavelet functions Mexican hat 

 

Table 5   Model parameters and the associated ERR values for the LDWNN modeling of the 

BZ reaction. 

 Parameter ERR (%) 
Cell 

c a b Individual Sum 

C(i-1, j-1) 

si-1,j-1 

-0.713603169209 1.258349616681 -0.503348315305 1.5022 1.5022 

-0.486569276355 35.612505232244 20.463158789644 0.0164 

-1.075032700406 133.933972890732 89.387255141179 0.0147 

C(i-1, j) 

si-1,j 
1.632422695371 29.859288386832 11.764047566000 0.0125 

0.0436 

-0.758816360524 0.789781622826 -0.887347297004 0.0372 C(i-1, j+1) 

si-1,j+1 0.270962699699 24.353507058447 12.543692700367 0.0136 

0.0508 

C(i, j-1) 

si ,j-1 
— — — — — 

-0.223970914586 10.886848715425 7.741959531790 0.0186 C(i, j) 

si,j -0.416193555114 44.526215096110 25.171768052370 0.0136 

0.0322 

C(i, j+1) 

si ,j+1 

0.026906263378 0.233652027575 0.909961362936 96.2540 96.2540 

1.084267775435 59.731312786112 31.308369474603 0.2079 

0.179508477989 24.814788778609 18.812945138697 0.0043 

C(i+1, j-1) 

si+1,j-1 
-0.436716328775 51.648192913951 32.364962790656 0.0046 

0.2168 

C(i+1, j) 

si+1,j 
-0.413383510157 1.027215053431 -0.503348315305 1.4022 1.4022 

-0.373501561261 21.173951646665 17.652079735464 0.0171 C(i+1, j+1) 

si+1,j+1 0.195440741994 0.885029752728 1.098194085103 0.0129 

0.0300 

— — — — 99.5390 99.5390 

 

the given identified model, is the iteratively produced result by the model, on the basis of X(t) but 

without using information on observations for patterns at any other time instants. As an example, the 

1-, 2-, 3- and 4-step-ahead predictions, on the basis of the measurements at the time instants t=20, t=60 

and t=90 were considered respectively, and these are shown in Figs. 8, 9, and 10. Clearly, the 

identified model provides good short-term predictions in the sense that these predictions capture the 

main features of the observed images. 
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Fig.7 The penalised error-to-signal ratio (PESR) index calculated by the FOR algorithm for the LDWNN 

modeling of the BZ reaction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8   The 1-, 2-, 3- and 4-step-ahead predictions, on the basis of the observation at the time instant t=20, for 

the BZ reaction. (a) 1-step; (b) 2-step; (c) 3-step; (d) 4-step ; (e) true measurement for (a); (f) true measurement 

for (b); (g) true measurement for (c); (h) true measurement for (d).  
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Fig. 9   The 1-, 2-, 3- and 4-step-ahead predictions, on the basis of the observation at the time instant t=60, for 

the BZ reaction. (a) 1-step; (b) 2-step; (c) 3-step; (d) 4-step ; (e) true measurement for (a); (f) true measurement 

for (b); (g) true measurement for (c); (h) true measurement for (d).  

 

 

 

 

Fig. 10   The 1-, 2-, 3- and 4-step-ahead predictions, on the basis of the observation at the time instant t=90, for 

the BZ reaction. (a) 1-step; (b) 2-step; (c) 3-step; (d) 4-step ; (e) true measurement for (a); (f) true measurement 

for (b); (g) true measurement for (c); (h) true measurement for (d).  
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5.  Conclusions 

A novel two-stage training scheme has been proposed for constructing a new class of lattice 

dynamical wavelet neural networks (LDWNN). It has been demonstrated, using both artificial and real 

data, that the proposed LDWNN model is effective for spatio-temporal system identification. The 

proposed network possesses a few desirable features, for example, the network is almost self-

implemented, meaning that by starting with some given conditions (initial, boundary and termination), 

all within-network parameters can be estimated and calculated by the proposed algorithms; the 

network provides a transparent model, where individual wavelet-neurons are explicitly available. 

The main drawback of the new network is perhaps the computation time, which is mainly spent on 

the nonlinear optimisation procedure using the PSO algorithm. However, by introducing the PSO 

algorithm, which is easy to implement, the calculation of gradients required by classical nonlinear 

optimisation algorithms can now be avoided; this makes the LDWNN very suitable for complex 

identification problems where relevant object functions may not be differentiable or relevant gradients 

are very difficult to obtain. This means that wavelets, which are not smooth or even not differentiable, 

may also be chosen as the elementary building blocks. In fact, many other functions, even though they 

themselves are not ‘wavelets’ in the strict sense, can also be used as elementary building blocks, if 

there is strong evidence that these functions possess desirable properties and can lead to a good model 

for a given modelling problem. 
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