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Abstract

The identification problem for spatiotemporal patterns which are
generated by autonomous Cellular Neural Networks (CNN) is inves-
tigated in this paper. The application of traditional identification
algorithms to these special spatiotemporal systems can produce poor
models due to the inherent piecewise nonlinear structure of CNN.
To solve this problem, a new type of Coupled Map Lattice model
with output constraints and corresponding identification algorithms
are proposed in the present study. Numerical examples show that the
identified CML models have good prediction capabilities even over the
long term and the main dynamics of the original patterns appears to
be well represented.

1 Introduction

Spatiotemporal pattern formation is common in many disciplines of science
and engineering including chemistry, physics and biology. For example, pe-
riodic, chaotic, oscillatory and Turing patterns have been observed in con-
centrations of chemically reacting and diffusing systems [17] [21] [10]. The
reaction-diffusion dynamics of spatial pattern formation have also been used
to model the development of patterns in fish, seashells and animal coats [3]
[19] [20]. Similar structures such as travelling waves and Turing patterns
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have been observed in biological systems [18]. As a consequence of the com-
mon occurrence of spatial patterns, the discovery of new pattern formation
phenomenon is potentially of great research interest. Several authors have
therefore studied the analysis and simulation of a variety of spatiotempo-
ral models which produce various interesting spatial patterns. The Partial
Differential Equation (PDE) models where the variables evolve continuously
over the continuous space and time domain have been used to describe a
wide class of spatiotemporal behaviours, including the Gray-Scott model [11],
Fitz-Hugh-Nagumo model and Belousov-Zhabotinsky model.

Cellular Neural Networks (CNN) [7] which are defined by the coupling of
cells continuously evolving over a discrete spatial lattice have also been widely
applied to model complex spatiotemporal patterns. Because of the simplicity
and easy implementation in hardware, CNN’s have found numerous applica-
tions in image and video signal processing, and in pattern recognition. Apart
from providing an alternative paradigm for simulating nonlinear Partial dif-
ferential Equations, CNN models have been shown to generate propagating
waves, patches, checkerboard patterns, stripes and reaction-diffusion type
patterns [2] [23] [13]. Further research on the emergence and complexity of
spatiotemporal systems has revealed that CNN can give rise to many inter-
esting patterns by tuning the parameters in the CNN templates. Hence, the
problem of deriving the corresponding CNN templates for specific spatiotem-
poral behaviours has also been recently investigated [13].

The Coupled Map Lattice model which was initially introduced in the
1980s by Kaneko [14][15] has been widely used to model spatiotemporal sys-
tems. The CML model is discrete in time and space and has a continuous
state value. A CML is a d-dimension lattice where each site evolves in time
through a discrete map which describes the influence of the past state and
neighboring sites. It has been shown that CML models can exhibit complex
spatiotemporal behaviors, including chaos, intermittency, travelling waves
and Turing patterns [16]. Compared with PDE models, CML models are
computationally more efficient and have been used to study spatiotemporal
systems in a wide class of scientific subjects.

Given the various patterns produced by CNN models, the inverse problem
of how to model these spatiotemporal behaviours from observed data will be
considered in this paper. As a subset of CNN patterns, the identification
problem of autonomous CNN patterns using CML models is the main focus
of the present study. Due to the special nonlinear structure of CNN, it is
not easy to obtain CML models for these patterns using general identification
algorithms. In the present study, an identification algorithm based on a CML
model is introduced based on an amended Orthogonal Forward Regression
(OFR) algorithms for these special classes of spatiotemporal behaviours. The
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coefficients of the identified model are adjusted by using an amended error
sequence from the model prediction to enhance the prediction performance
of the final model.

The paper is arranged as follows. Section 2 gives a general description of
autonomous Cellular Neural Networks and Coupled Map Lattice models for
spatiotemporal systems. Section 3 introduces a correlation based method to
select the sampling interval for the identification data. Then, the new iden-
tification method which is based on a modified OFR algorithm is proposed.
Some numerical examples of CNN patterns are included in Section 4 to illus-
trate the application of the new identification methods and to demonstrate
the performance of the identified CML models to identify these systems.

2 Autonomous Cellular Neural Networks and

Coupled Map Lattice Models

2.1 Coupled Map Lattice models

Consider the input-output CML model for time and spatially invariant spa-
tiotemporal systems[8] [9]

yi(k) = f(qnyyi(k), qnuui(k), qnysmyyi(k), qnusmuui(k)) + εi(k) (1)

where i ∈ Id is the spatial index of a d-dimensional space and k = 1, 2, . . . ,
is the temporal index; yi(k), ui(k) and εi(k) are the output, input, model
residual sequences respectively, and qn(k) is a temporal backward shift oper-
ator

qn = (q−1, q−2, ..., q−n) (2)

so that

qnyyi(k) = (yi(k − 1), yi(k − 2), ..., yi(k − ny))
qnuui(k) = (ui(k − 1), ui(k − 2), ..., ui(k − nu))

(3)

In (1), sm is a multi valued spatial shift operator

sm = (sp1

, sp2

, ..., spm

) (4)

where pj ∈ Id is the spatial translation multi index, such that

smyyi = (yi−p1 , yi−p2 , ..., yi−pmy )
smuui = (ui−p1 , ui−p2 , ..., ui−pmu )

(5)

The parameters my, mu denote the maximum spatial radius associated with
the output y and input u.
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2.2 Autonomous Cellular Neural Networks

A CNN is said to be autonomous if the cells do not have external inputs.
The standard form of an autonomous CNN defined over a two dimensional
N × N array can be expressed by the following equation,

ẋi,j = −xi,j + zi,j +
∑

n,l∈Si,j

an,lyn,l (6a)

yi,j = g(xi,j) (6b)

where (i, j) ∈ N × N denotes the spatial site and xi,j, yi,j are state space
variables and output variables respectively. The output function g(·) here is
defined as the three segment piecewise linear saturation function.

g(xi,j) =
1

2
(|xi,j + 1| − |xi,j − 1|) (7)

The CNN dynamics are usually restricted to be inside the boundary of the
array N × N . Consequently, additional boundary conditions need to be
specified for model (6). Three kinds of boundary conditions are most com-
monly used, Dirichlet (fixed), Neumann (zero flux) and Toroidal (periodic)
boundary conditions. With specific boundary conditions, the dynamics of
the standard CNN (6) is then only determined by the CNN template which
is composed of the threshold zi,j and the neighbourhood coupling matrix
A = {an,l}. If the neighbourhood radius of every cell is set to be r = 1, the
feedback template A of a two dimensional CNN can be described as follows.

A =





a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1

a1,−1 a1,0 a1,1



 (8)

The behaviours of different pattern formations of standard autonomous CNN
models have been extensively studied with various A-templates using state
space stability theory. Perturbing the unstable equilibrium state with small
and random disturbances, the symmetry of the unstable equilibrium is broken
and complex patterns will be formed. As can be seen from the piecewise func-
tion g(·), the output trajectories of all cells can be divided into three regions:
a linear region and two saturation regions. Because the output function g(·)
is continuous and bounded, all trajectories defined by the standard CNN
model (6) will converge to an equilibrium state when certain conditions are
satisfied [7].

The identification task considered in this paper is to determine the un-
known discrete CML model f(·) in (1) using the observed input/output data
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of sampled continuous time CNN patterns. Generally, the form of the CML
model f(·) is unknown, so it is necessary to expand f using a known set of
possible candidate model terms. Equation (1) can also be written in a regres-
sion format which is constructed as a linear combination of a finite number
of model terms.

yi(k) =
∑

k

θi,mϕi,m(k) + εi(k) (9)

Here, model terms ϕi,m(k) are composed of qnyyi(k), qnuui(k), qnysmyyi(k),
qnusmuui(k) which represent the influence of past inputs and outputs from
both the local and neighboring lattices.

3 A CML Identification Algorithm for Cellu-

lar Neural Network Patterns

3.1 The selection of the sampling interval for the iden-

tification data

The selection of the sampling interval of the original continuous data in sys-
tem identification could have a great influence on the term structure selection
and parameter estimation of the identified model. For example, if the iden-
tification data is over-sampled, the regression matrix will become ill-posed
due to the high correlation between successive measurements. On the other
hand, if the data for identification is under-sampled, important dynamic in-
formation will be lost. In these situations, the final derived model is more
likely to be ill-posed and sensitive to new training data or to noise.

The sampling time of the identification data from the CNN patterns which
are continuously evolving over a discrete lattice needs to be appropriately
determined to ensure the regression matrix is well defined. In this section,
a correlation function based method [4] [6] [22] will be used to select an
appropriate sampling procedure. Compared with other methods which are
mostly based on information theoretical tools, the correlation method is quite
simple and robust to noise. The main concept behind this method is to select
proper time intervals so that the dynamic information in the patterns are
retained in the identification data.

The selection procedure for the sampling time is based on the linear and
nonlinear functions defined as follows.

Φyy(τ) =

∑S(Ns−1)
(i,k)=S(0)(yi(k) − y)(yi(k − τ) − y)

∑S(Ns−1)
(i,k)=S(0)(yi(k) − y)2

(10a)
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Φy2y2(τ) =

∑S(Ns−1)
(i,k)=S(0)(y

2
i (k) − y2)(y2

i (k − τ) − y2)
∑S(Ns−1)

(i,k)=S(0)(y
2
i (k) − y2)2

(10b)

In (10), Ns samples of the original spatiotemporal data is collected from
outputs that are randomly selected over both the space and time domain,
and · denotes the averaging operation over the specific domain defined by
the selection vector S. On the basis of the above equations, both the linear
and nonlinear correlation relationships of the data can therefore be measured.
The minimum time values associated with the correlation functions can be
defined.

τm = min{τy, τy2} (11)

where τy and τy2 are time values of the first minimum of φyy(τ) and φy2y2(τ)
respectively. In practice, the 95% confidence limits which are equal to
±1.96/

√
Ns are usually used to replace the minimum values of the above

correlation functions
The sampling intervals T for the spatiotemporal data in the time domain [1]
can be chosen by following the rule of thumb.

τm

20
≤ T ≤ τm

10
(12)

In practical applications, this simple but effective empirical method appears
to work well.

3.2 The identification algorithm

The identification problem for spatiotemporal systems is composed of two
parts: model term selection and parameter estimation. The Orthogonal
Forward Regression (OFR) algorithm which involves a stepwise orthogonali-
sation of the regressors and a forward selection of the significant terms based
on the Error Reduction Ratio (ERR) criterion [5] has been successfully ap-
plied to identify a wide class of spatiotemporal systems [8] [9] [12]. Using
this method, the model structure is selected step by step by comparing the
ERRs of all possible model terms from a set of candidate regressors {ϕm}M

m=1

which are defined in (9). The term coefficients are computed afterwards ac-
cording to the orthogonalisation matrix. As a typical feature of the CNN
model structure, the nonlinear piecewise function in (7) plays an important
role in triggering the formation of self organized spatiotemporal patterns.
Apart from the importance of ensuring the stability of the CNN model, the
output function also defines the range of the output variable. However, from
the viewpoint of model identification, it is not easy to approximate this sim-
ple nonlinear function using available nonlinear basis functions (Radial Basis
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Functions, Kernel Basis Functions, Polynomials and Wavelets) which are
currently widely used in model identification.

In this section, a new identification method for autonomous CNN patterns
is proposed to solve this problem. The format of the revised CML model for
CNN pattern identification is defined as follows.

yi(k) = g(f ′(qnyyi(k), qnysmyyi(k))) + εi(k) (13)

The function g(·) is the same as defined in (7). The incorporation of the
function g(·) ensures that the output of the identified CML model will evolve
within a certain region. The main aim of identifying the CML model for
CNN patterns is then to determine the unknown function f ′(·) in (13).

The two corresponding One-Step-Ahead (OSA) prediction errors associ-
ated with function f ′(·) in (13) can be expressed as

ε
(osa)
i (k) = yi(k) − y

(osa)
i (k) = yi(k) − g(f ′(qnyyi(k), qnysmyyi(k)))(14)

ε
′(osa)
i (k) = yi(k) − y

′(osa)
i (k) = yi(k) − f ′(qnyyi(k), qnysmyyi(k)) (15)

where εi(k) is the actual OSA prediction error and ε′i(k) is the original OSA
prediction error without considering the impact of the output function g(·).

It is well known that the OFR identification method is a least squares
based algorithm and the aim of traditional CML identification algorithm is
to obtain a final CML model based on the sum of the squared OSA prediction
error

∑

i,k ε2
i (k). The ERR can be expressed as

ERRm =
g2

mwT
mwm

Y T Y
, gm =

wT
mY

wT
mwm

(16)

where wm is the orthogonalised regressor associated with term ϕm and gm is
the corresponding estimated coefficient. However, when the standard OFR
algorithm is applied to obtain the model f ′(·) in (13), it can be easily seen
from (16) that the influence of the nonlinear output function g(·) is not taken
into account during the ERR computation. For example, when yi(k) = 1

and y
′(osa)
i = f ′(qnyyi(k), qnysmyyi(k)) > 1, the actual OSA prediction error

εi(k) in (14) should be 0 but ε′i(k) will not be equal to 0 when the output
function g(·) is not taken into account. In this situation, ERR which is used
to measure the proportional contribution of each term to the variance of
the overall dependent variables may provide incorrect information for term
selection. Similar problems would also arise during the computation of the
associated coefficients.

To solve this problem, a new identification method based on the OFR
algorithm is proposed to obtain a CML model in (13) by taking into ac-
count the impact of the nonlinear output function. The model terms are

7



selected step by step by comparing the sum of the squared OSA prediction
error

∑

i,k ε2
i (k) during every orthogonalisation stage. The estimates of the

corresponding coefficients are then adjusted using the updated output vector
according to the nonlinear function g(·).

In summary, the amended OFR algorithm for identifying this class of
CNN patterns is outlined as below.
Step j=1 : Select the first model term with the smallest prediction error

I1 = IM = {1, 2, ..., M}, Y1 = Y (17)

wi(k) = ϕi(k), b̂i =
[wi, Yi]

[wi, wi]
(18)

Find the term with the smallest prediction error.

l1 = arg min
i∈I1

(

Y T
1 Y1 − b̂2

i w
T
i wi

)

(19)

Compute the coefficient of the selected term.

p1 = wl1 , c1 =
[p1, Y1]

[p1, p1]
, a1,1 = 1 (20)

Update the output vector Y2 according to the first model prediction.

y
(osa)
1 (k) = c1 ∗ p1(k)

If |y(osa)
1 (k)| > 1,then

y2(k) = y
(osa)
1 (k),

else
y2(k) = y1(k), k = 1, 2, . . . , N

Stepj,j = 2, 3, ...: Iteratively orthogonalise the remaining regressors one by
one to select the next model term with the smallest prediction error among
the remaining candidate terms.

Ij = Ij−1 \ lj − 1 (21)

Orthogonalise the model regressors.

wi(k) = ϕi(k) −
j−1
∑

m=1

[pm, Yj]pm

[pm, pm]
, b̂i =

[wi, Yj]

[wi, wi]
(22)

Find the model term with the smallest prediction error.

lj = arg min
i∈Ij

(

Y T
j Yj −

j−1
∑

m=1

c2
mpT

mpm − wT
i wi

)

(23)
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Compute the coefficient of the selected term.

pj = wlj , cj =
[pj, Yj]

[pj, pj]
, am,j =

[pm, ϕlj ]

[pm, pm]
,m = 1, 2, ..., j − 1 (24)

Update the output vector Yj+1 according to the model prediction at stage j.

y
(osa)
j (k) =

j
∑

m=1

cm ∗ pm(k)

If |y(osa)
j (k)| > 1, then

yj+1(k) = y
(osa)
j (k),

else if yj(k) > 1,
yj+1(k) = 1

else
yj+1(k) = yj(k), k = 1, 2, . . . , N

This procedure is terminated at the Ms-th step when a required number
of terms has been selected in the final model. The estimated coefficients
Θ = {θm}m=Ms

m=1 associated with the selected terms{ϕlm}m=Ms

m=1 are computed
using

Θ = A−1C, (25)

where A = {am,j} is an upper-triangular matrix which is defined above and
C = (c1, c2, ..., cMs

) is the coefficient vector associated with the orthogo-
nalised terms {pm}Ms

m=1.
In this new model identification algorithm, the summation of squared one-
step-ahead prediction errors associated with every term selection is employed
as a criterion for model term selection. The values of the one-step-ahead pre-
diction error and term coefficients at each step are adjusted by updating the
output vector when the output prediction falls within the saturation region
associated with the definitions of the CNN models. Using this approach, the
prediction performance of the identified model can be greatly improved.

4 Numerical Examples

In this section, three different kinds of spatiotemporal patterns, Checker-

boards, Stripes and Squiggles, which are generated by autonomous CNN
models with zero-threshold are investigated. The input/output data for iden-
tification was randomly sampled from the initial random state to the final
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stable equilibrium state. The proposed CML model (13) and the identifica-
tion algorithm described above were then applied. In these examples, the
model predicted output was simulated to test the prediction performance
and dynamical characteristics of the new identified CML model. The model
predicted output y

(mpo)
i,j (k) is defined as follows,

y
(mpo)
i,j (k) = g(f ′(qnyy

(mpo)
i,j (k), qnysmyy

(mpo)
i,j (k))) (26)

where g(·) is the output function defined in (7) and f ′(·) is the new identified
CML model.

4.1 Example 1: Checkerboard Patterns

In the first example, the checkerboard like patterns which evolve over a two
dimensional space are considered. The A-template of the CNN model (13)
to generate the checkerboard patterns was set as

A =





0.125 −0.25 0.125
−0.25 0 −0.25
0.125 −0.25 0.125



 (27)

where the radius of the coupling neighborhood was 1. The initial simulation
state xi,j(0) for the checkerboard patterns was randomly distributed between
−0.1 and 0.1. The zero-flux conditions where the state-variable is reflected
across the boundary was chosen as the boundary conditions. The CNN model
with the above settings was then numerically simulated with a time step
∆k = 0.1 over the space domain 100 × 100. To determine the appropriate
sampling time for the identification data, the correlation tests which were
proposed in Section 3.1 were computed. From the results given in Figure (1),
it can be seen that the sampling time T should be chosen between τm/10 =
64/10 = 6.4 and τm/20 = 64/20 = 3.2. Following the empirical selection
procedure, the sampling time in this example was chosen to be 5. The
patterns of the system output at different times are plotted in Figure (2).

The new identification procedure proposed in Section 3.2 was performed
with N = 3600 data randomly sampled from the space and time domain.
The traditional CML identification algorithm [8] [9] was applied to provide
a comparison with the new methods introduced above. The identified model
terms and the corresponding coefficients are given in Table(1), where the
terms y1,i,j(k − 1) and y2,i,j(k − 1) represent the combined output variables
of the neighbouring sites around the lattice (i, j), which are defined below to
ensure a symmetric topology of coupling variables.

y1,i,j(k) = yi−1,j(k) + yi+1,j(k) + yi,j−1(k) + yi,j+1(k) (28)

y2,i,j(k) = yi+1,j−1(k) + yi+1,j+1(k) + yi−1,j−1(k) + yi−1,j+1(k) (29)
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Figure 1: Correlation functions φyy(τ) (left) and φy2y2(τ) (right) from (10)
calculated from Ns = 1000 random data samples of the checkerboard patterns
in Example 1. It can be seen that the minimum time value is τm = τy2 ≈ 64.
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Figure 2: Snap shots of the CNN system simulation output for the checker-
board patterns at the times k = 1, 20, 40 for Example 1, .
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Figure 3: Snap shots of the model predicted output of the identified model
using the new algorithm at the times k = 1, 20, 40 for Example 1.

The model predicted outputs (26) were simulated using the identification
results in Table (1). Some snap shots of the model predicted outputs of the
two identified models are shown in Figure (3),(4). It can be seen from Figure
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Figure 4: Snap shots of the model predicted output of the identified model
using the standard algorithm at the times k = 1, 20, 40 for Example 1.

(3) that using the new identification algorithm, the dynamics of the original
CNN patterns are well approximated by the identified CML model at every
time step. However, as can be seen from the simulation results of the model
identified using the standard CML method, the model predicted output at
time t = 20 is quite different from the system output at that time.

4.2 Example 2: Stripe Patterns

Consider the CNN model with the A-template for the stripe patterns.

A =





−0.2 0 −0.2
0 0.8 0

−0.2 0 −0.2



 (30)

The initial state xi,j(0) for the stripe patterns was randomly distributed
between −0.1 and 0.1. Zero-flux boundary conditions were chosen. The
above CNN model was numerically simulated with a time step ∆k = 0.1
over the space domain 100 × 100.

The correlation based tests of the original data were applied to determine
an appropriate sampling interval for the identification data. According to
the simulation results in Figure (5) and the empirical selection method, the
sampling time T can be chosen between τm/10 = 44/10 = 4.4 and τm/20 =
44/20 = 2.2. Here, the sample time for the identification data was chosen to
be 3. Figure (6) shows snap shots of the system output at different times.

Both the proposed identification method and the standard OFR based
CML identification algorithm were applied to obtain CML models for the
stripe patterns in this example. Table (2) gives the identified results obtained

from the two different algorithms. The terms y
(1)
i,j (k−1) and y

(2)
i,j (k−1) denote

the same combined variables of the neighbouring outputs as defined in the
first example (28).
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Table 1: Terms and parameters of the identified CML models for the checker-
board pattern in Example 1

Term order Model terms Estimated parameters using the new algorithm

1 yi,j(k − 1) 0.4660

2 y1,i,j(k − 1) -0.1348

3 y2
2,i,j(k − 1) 0.0017

4 y2
1,i,j(k − 1) -0.0023

5 y2
i,j(k − 1) 0.0108

6 y2,i,j(k − 1) 0.0752

7 y3
i,j(k − 1) 0.0384

8 y3
1,i,j(k − 1) 0.0033

9 y3
2,i,j(k − 1) -0.0019

Term order Model terms Estimated parameters using the standard algorithm

1 yi,j(k − 1) 0.3814

2 y3
i,j(k − 1) 0.0154

3 y1,i,j(k − 1) -0.1479

4 y3
1,i,j(k − 1) 0.0025

5 y2,i,j(k − 1) 0.1009

6 y3
2,i,j(k − 1) -0.0036

7 y2
i,j(k − 1) 0.0024

8 y2
2,i,j(k − 1) 0.0008

9 y2
1,i,j(k − 1) -0.0010

To test the prediction performance, model predicted outputs as defined
in (26) were simulated using the different identification results given in Table
(2). Some snap shots of the model predicted outputs of two identified models
are shown in Figure (7), (8). It can be seen from Figure (7) that the final CML
model identified using the new algorithm shows better prediction capabilities
than the second identified CML model and the pattern formation of stripes
is repeated by the identified model over a long term simulation.
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Figure 5: Correlation functions φyy(τ) (left) and φy2y2(τ) (right) from (10)
calculated from Ns = 1000 random data samples of the stripe patterns in
Example 2. It can be seen that the minimum time value is τm = τy2 ≈ 44.
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Figure 6: Snap shots of the CNN system simulated output for the stripe
patterns at the times k = 1, 30, 60 for Example 2.
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Figure 7: Snap shots of the model predicted output of the identified model
using the new algorithm at the times k = 1, 30, 60 for Example 2.

4.3 Example 3: Squiggle Patterns

The squiggle like patterns are considered in this example. The CNN pat-
terns are generated with the following A-template of CNN model in a two
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Figure 8: Snap shots of the model predicted output of the identified model
using the standard algorithm at the times k = 1, 30, 60 for Example 2.

dimensional space.

A =













−0.25 −1.0 −1.5 −1.0 −0.25
−1.0 2.5 7.0 2.5 −1.0
−1.5 7.0 −23.25 7.0 −1.5
−1.0 2.5 7.0 2.5 −1.0
−0.25 −1.0 −1.5 −1.0 −0.25













(31)

In this example, the radius of the coupling neighborhood was set to be 2. The
random initial state xi,j(0) for the squiggle patterns was uniformly distributed
between −0.1 and 0.1. Zero-flux boundary conditions were chosen. The CNN
model with the above settings was numerically simulated with a time step
∆k = 0.1 over the space domain 60 × 60.

Initially, the correlation based tests were applied to determine a sampling
interval for the identification data. According to the simulation results in
Figure (9), the sampling time T can be chosen between τm/10 = 160/10 =
16 and τm/20 = 160/20 = 8. In this example, the sample time for the
identification data was chosen to be 10. Figure (10) shows some snap shots
of the system output of the squiggle patterns at different times.

Two CML models were identified using both the new proposed algorithm
and the standard algorithm. Table (3) gives the identified results from the
two algorithms. The terms y1,i,j(k − 1) and y2,i,j(k − 1) denote the same
combined variables as defined in the first example (28). Other terms in
Table (3) are defined as follows

y3,i,j(k) = yi,j−2(k) + yi,j+2(k) + yi−2,j(k) + yi+2,j(k)

y4,i,j(k) = yi−1,j−2(k) + yi−1,j+2(k) + yi+1,j−2(k) +

yi+1,j+2(k) + yi−2,j−1(k) + yi−2,j+1(k) + yi+2,j−1(k) + yi+2,j+1(k)

y5,i,j(k) = yi−2,j−2(k) + yi−2,j+2(k) + yi+2,j−2(k) + yi+2,j+2(k)
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Table 2: Terms and parameters of the identified CML models for the stripe
pattern formation in Example 2

Term order Model terms Estimated parameters using the new algorithm

1 yi,j(k − 1) 0.9239

2 y3
1,i,j(k − 1) -0.0015

3 y2
1,i,j(k − 1) -0.0018

4 y1,i,j(k − 1) 0.0039

5 y2
2,i,j(k − 1) 0.0001

6 y2
i,j(k − 1) -0.0010

7 y2,i,j(k − 1) -0.0711

8 y3
1,i,j(k − 1) -0.0529

9 y3
2,i,j(k − 1) 0.0024

Term order Model terms Estimated parameters using the standard algorithm

1 yi,j(k − 1) 0.9729

2 y3
i,j(k − 1) -0.1123

3 y2,i,j(k − 1) -0.0711

4 y3
2,i,j(k − 1) 0.0023

5 y2
i,j(k − 1) -0.0030

6 y3
1,i,j(k − 1) -0.0044

7 y2
2,i,j(k − 1) 0.0002

8 y1,i,j(k − 1) 0.0023

9 y2
1,i,j(k − 1) -0.0014

Some snap shots of the model predicted outputs of two identified models in
Table (3) are shown in Figure (11),(12). According to comparisons between
Figure (11) and Figure (12), it can be seen that the CML models which were
identified using the two different algorithms produce good approximations
of the squiggle patterns. Both two identification algorithms show similar
performance for the squiggle patterns.
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Figure 9: Correlation functions φyy(τ) (left) and φy2y2(τ) (right) form (10)
calculated from Ns = 1000 random data samples of the squiggle patterns in
Example 3. It can be seen that the minimum time value is τm = τy2 ≈ 44.
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Figure 10: Snap shots of the CNN system simulation output of the squiggle
patterns at the times k = 1, 12, 24 for Example 3.
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Figure 11: Snap shots of the model predicted output of the identified model
using the new algorithm at the times k = 1, 12, 24 for Example 3.

5 Conclusions

The identification of models to represent the patterns formed from CNN sim-
ulations has been investigated in this paper. The CNN patterns represent
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Figure 12: Snap shots of the model predicted output of the identified model
using the standard algorithm at the times k = 1, 12, 24 for Example 3.

Table 3: Terms and parameters of the identified CML models for the squiggle
pattern formation in Example 3

Term order Model terms Estimated parameters using the new algorithm

1 y1,i,j(k − 1) 0.2074

2 yi,j(k − 1) 0.3034

3 y5,i,j(k − 1) -0.0484

4 y3,i,j(k − 1) -0.0809

5 y2,i,j(k − 1) 0.1265

6 y4,i,j(k − 1) -0.0062

Term order Model terms Estimated parameters using the standard algorithm

1 yi,j(k − 1) 0.7508

2 y1,i,j(k − 1) 0.1065

3 y3,i,j(k − 1) -0.0264

4 y5,i,j(k − 1) -0.0044

5 y2,i,j(k − 1) -0.0067

6 y4,i,j(k − 1) -0.0007

a subset of spatiotemporal systems which produce interesting phenomena in
many areas. A special type of CML model with output constraints and a
new identification algorithm has been proposed to yield models with good
prediction performance. The main difference of the proposed algorithm is
the adjustment of the term coefficients based on a modified prediction er-
ror sequence during the orthogonalisation process. The numerical examples
demonstrate that the identified model can well predict and reproduce the
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dynamics of the CNN patterns over the long term.
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