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Robot Programming by Demonstration through System Identification

U. Nehmzow1, O. Akanyeti1, Christoph Weinrich1, Theocharis Kyriacou1 and S.A. Billings2

Abstract— Increasingly, personalised robots — robots espe-
cially designed and programmed for an individual’s needs
and preferences — are being used to support humans in
their daily lives, most notably in the area of service robotics.
Arguably, the closer the robot is programmed to the individual’s
needs, the more useful it is, and we believe that giving people
the opportunity to program their own robots, rather than
programming robots for them, will push robotics research one
step further in the personalised robotics field.

However, traditional robot programming techniques require
specialised technical skills from different disciplines and it is not
reasonable to expect end-users to have these skills. In this paper,
we therefore present a new method of obtaining robot control
code — programming by demonstration through system iden-
tification — which algorithmically and automatically transfers
human behaviours into robot control code, using transparent,
analysable mathematical functions. Besides providing a simple
means of generating perception-action mappings, they have the
additional advantage that can also be used to form hypotheses
and theoretical analysis of robot behaviour.

We demonstrate the viability of this approach by teaching a
Scitos G5 mobile robot to achieve wall following and corridor
passing behaviours.

I. INTRODUCTION

Interest in the field of programming mobile robots by

demonstration — teaching the robot to achieve a certain

behaviour by simply demonstrating it — has been growing

steadily in the last few years. Significant advantages of this

approach are:

• Efficiency in generating robot controllers: Tradi-

tional robot programming techniques are costly, time-

consuming and error prone [Iglesias et al., 2005].

• Little or no need for programming skills: The program-

mer does not have to have any specialised programming

skills, end-users can “program” their robots individually

according to their own preferences and needs by demon-

stration.

• Implicit communication: No explicit communication is

needed between the robot and the programmer. The

programmer communicates with the robot through the

environment by demonstrating the desired behaviour.

Many researchers have shown the viability of this

approach by teaching robots different tasks such as for

example maze navigation [Demiris and Hayes, 1996],

[Hayes and Demiris, 1994] and arm movement

[Schaal, 1997].

In this paper, we present a method to transfer human

behaviours to robot control code algorithmically and au-

tomatically, using system identification techniques such as
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ARMAX (Auto-Regressive Moving Average models with

eXogenous inputs) [Eykhoff, 1974] and NARMAX (Non-

linear ARMAX) [Billings and Chen, 1998]. These system

identification techniques produce linear or nonlinear poly-

nomial functions that model the relationship between user-

defined input and output, both pertaining to the robot’s

behaviour.

The representation of the task as a transparent, analysable

model furthermore enables us to investigate the various

factors that affect robot behaviour for the task at hand. For

instance, we can identify input-output relationships such as

the sensitivity of a robot’s behaviour to particular sensors

[Roberto Iglesias and Billings, 2005], or make predictions

of behaviour when a particular input is presented to the robot

[Akanyeti et al., 2007] — these aspects are relevant to safety

analyses.

II. METHODOLOGY AND EXPERIMENTAL SETUP

Before we discuss the experimental setup and results

obtained, we briefly explain the Narmax system identification

method, which was used throughout our experiments.

A. The NARMAX Modelling Methodology

The NARMAX modelling approach is a parameter estima-

tion methodology for identifying both the important model

terms and the parameters of unknown nonlinear dynamic

systems. For multiple input, single output noiseless systems

this model takes the form:

y(n) = f (u1(n),u1(n−1),u1(n−2), · · · ,u1(n−Nu),

u1(n)2,u1(n−1)2,u1(n−2)2, · · · ,u1(n−Nu)
2,

· · · ,

u1(n)l ,u1(n−1)l ,u1(n−2)l , · · · ,u1(n−Nu)
l ,

u2(n),u2(n−1),u2(n−2), · · · ,u2(n−Nu),

u2(n)2,u2(n−1)2,u2(n−2)2, · · · ,u2(n−Nu)
2,

· · · ,

u2(n)l ,u2(n−1)l ,u2(n−2)l , · · · ,u2(n−Nu)
l ,

· · · ,

· · · ,

ud(n),ud(n−1),ud(n−2), · · · ,ud(n−Nu),

ud(n)2,ud(n−1)2,ud(n−2)2, · · · ,ud(n−Nu)
2,

· · · ,

ud(n)l ,ud(n−1)l ,ud(n−2)l , · · · ,ud(n−Nu)
l ,

y(n−1),y(n−2), · · · ,y(n−Ny),

y(n−1)2,y(n−2)2, · · · ,y(n−Ny)
2,

· · · ,

y(n−1)l ,y(n−2)l , · · · ,y(n−Ny)
l)

were y(n) and u(n) are the sampled output and input

signals at time n respectively, Ny and Nu are the regression

orders of the output and input respectively, d is the dimension



of the input vector and l is the degree of the polynomial. f ()
is a non-linear function and here taken to be a polynomial

multi-resolution expansion of its arguments. Expansions such

as multi-resolution wavelets or Bernstein coefficients can

be used as an alternative to the polynomial expansions

considered in this study.

The first step towards modelling a particular system using

a NARMAX model structure is to select appropriate inputs

u(n) and the output y(n). The general rule in choosing

suitable inputs and outputs is that there must be a causal re-

lationship between the input signals and the output response.

After the choice of suitable inputs and outputs, the NAR-

MAX methodology breaks the modelling problem into the

following steps: i) polynomial model structure detection, ii)

model parameter estimation and iii)model validation. The

last two steps are performed iteratively (until the model

estimation error is minimised) using two sets of collected

data: (a) the estimation and (b) the validation data set.

Usually a single set that is collected in one long session

is split in half and used for this purpose.

The model estimation methodology described above forms

an estimation toolkit that allows the user to build a con-

cise mathematical description of the input-output system

under investigation. These procedures are now well estab-

lished and have been used in many modelling domains

[Billings and Chen, 1998].

A more detailed discussion of how structure

detection, parameter estimation and model validation

are done is presented in [Korenberg et al., 1988],

[Billings and Voon, 1986].

B. Experimental Setup

The experiments described in this paper were conducted in

the 100 square meter circular robotics arena of the University

of Essex. The arena is equipped with a Vicon motion tracking

system which can deliver position data (x,y and z) for the

full range of targets using reflective markers and high speed,

high resolution cameras. The tracking system is capable

of sampling the motion upto 100Hz within a 10mm range

accuracy.

We used a Scitos G5 mobile robot called DAX (figure 1).

The robot is equipped with a ring of 24 sonar and 24 infra-red

sensors, both uniformly distributed. A Hokuyo laser range

finder is also present on the front part of the robot. This range

sensor has a wide angular range (240 degree) with a radial

resolution of 0.36 degree and distance resolution of less than

1cm . The robot also incorporates a colour video camera with

640x480 pixels resolution which can deliver colour images

upto 60Hz .

robotangle 240 angle 0

laser

u4

u3

u2

u1

u5u6
u7

u8

u10

u9

av

lv

(a) (b)

Fig. 1. DAX (a). DAX has two degrees of freedom (translational and
rotational) and equipped with the laser range finder. The range finder has
a wide angular range (240 degree) with a radial resolution of 0.36 degree
and distance resolution of less than 1 (cm). During experiments, in order
to decrease the dimensionality of the input space to Narmax model, we
coarse coded the laser readings into 10 sectors (u1 to u10) by averaging 62
readings for each 24 degree intervals (b).

C. Programming by Demonstration

While teaching a particular task to a robot, it is difficult

to establish a proper information flow from the programmer

to the robot, because humans and robots have different

sensor modalities — we simply perceive the world differently

to robots. We have therefore chosen the mobile robot’s

trajectory of the desired behaviour as the most suitable

communication channel between the human and the robot

in question. We therefore take the trajectory of a human as a

reference, and translate it algorithmically and automatically

into robot control code.

Our approach has three stages: i) first extracting the tra-

jectory of the desired behaviour by observing the human, ii)

making the robot follow the human trajectory blindly to log

the robot’s own perception perceived along that trajectory,

and finally iii) linking the robot’s perception to the desired

behaviour to obtain a generalised, sensor-based model.

Human Demonstration: First, the human user demon-

strates the desired behaviour. In this work, we confined our

experiments to two-dimensional navigation problems (two

degrees of freedom, translational and rotational speed, see

figure 1). During this demonstration, we log the x and y

position of the human by using a motion tracking system

with a sampling rate of 50Hz.

Once the trajectory is logged, we filter out noise in the

logged data, using a low pass filter. We then subsample the

filtered data in such a way that the resulting signal has 10

samples per the shortest period Ts of the filtered data. Ts is

computed by equation 1.



Ts =
Ns

fc ∗ fs

(1)

where Ns is the number of samples logged, fc is the cut off

frequency of low pass filter and fs is the sampling rate of

the motion tracking system.

The translational and rotational velocities lv and av resp.

of the demonstrator are determined by taking into account of

the consecutive x,y samples along the trajectory (equation 3).

lv(n) =
distance(n)

timedi f f (n)
(2)

av(n) =
theta(n)

timedi f f (n)

where

distance(n) =
√

(xn+1 − xn)2+(yn+1 − yn)2, (3)

theta(n) = arctan(
yn+1 − yn)

(xn+1 − xn)
), (4)

and

timedi f f (n) = tn+1 − tn. (5)

Obtaining the sensor-free time series: At this point

we have extracted the translational and rotational velocities

of the human demonstrator along his trajectory. We now

need to transfer these velocities to the robot while taking

the dynamics of the robot into consideration. Therefore two

sensor free polynomial models are obtained: i) expressing

rotational velocity commands as a function of time and

past rotational velocity commands and ii.) expressing linear

velocity commands as a function of time and past linear

velocity commands.

lv(t)

av controller

lv controller

av(t)[av(t−1), av(t−2), ..., av(t−N)]
time

[lv(t−1), lv(t−2), ..., lv(t−N)]
time

sensor free

sensor free

Fig. 2. The sensor-free polynomial models. Sensor-free models don’t use
any perceptual information, they follow the trajectory of human blindly.
Positive lv and negative lv indicate that robot goes forward and backward
respectively. Positive av and negative av indicate that robot turns left and
right respectively.

Obtaining the sensor-based controllers: Having ob-

tained the sensor-free models, we use them to drive the

robot along the trajectory of the human, blindly, so to speak.

During this run the sensor perceptions of the robot are

logged every 100ms, together with the robot’s translational

and rotational velocities.

Using this sensor-based data, we then obtain two sensor-

based control models, one for translational velocity and one

for rotational velocity (see figure 3).

(sonar, laser, etc)
sensor readings

(sonar, laser, etc)
sensor readings lv(t)

av controller

lv controller

av(t)sensor based

sensor based

Fig. 3. Sensor based models. Sensor based models are the mathematical
descriptions that define the relationship between the perception and action
of the robot. Because they take sensor information into account, they are
capably of controlling the robot in a wider range of situations, and to deal
with noise and variation.

III. EXPERIMENTS AND RESULTS

A. Left Wall Following

In our first experiment, we demonstrated to the robot how

to follow left-hand walls. The demonstrator walked inside

a square environment of 9m2 in clockwise direction for

approximately two minutes (see figure 4). During this time,

the position of human was logged every 20ms.

Fig. 4. The desired convex wall following behaviour demonstrated by
the human in a square environment. When we look at the trajectory, we
see that there is a constant oscillation in the motion, which originates
from the swinging motion of the demonstrator perpendicular to heading
direction. This is a general characteristic of two legged locomotion, and
was subsequently removed from the data by low pass filtering.

Analysis of the observed trajectory reveals that the human

demonstrator slowed down at corners, and speeded up while



walking along the sides of the square. After filtering out noise

(by using dominant frequencies in the power spectrum), we

model the translational and rotational velocities as sine waves

(see figure 5), as this is a suitable model for a circular motion

such as the one observed here.
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Fig. 5. The demonstrator’s translational and rotational velocities (solid
lines), and their filtered counterparts (dashed lines).

We then used the Narmax system identification procedure

to obtain two sensor free polynomials, one expressing the

linear velocity commands to the robot as a function of past

linear velocity commands another expressing the rotational

velocity commands to the robot as a function of past ro-

tational velocity commands. Both models were chosen to

be first degree with regression order 2 in the output (i.e.

l = 1, Nu = 0, Ny = 2) resulting in linear ARMAX structures.

Both resulting time series contained 3 terms, and are given

in table I.

Having obtained these sensor-free polynomial models, we

used them to drive the robot in the square environment (figure

6). During this first robot interaction with the environment,

lv(n) = av(n) =
+0.0141 −0.017
+1.966∗ lv(n−1) +1.966∗av(n−1)
−1.000∗ lv(n−2) −1.000∗av(n−2)

TABLE I

MODELS OF TRANSLATIONAL VELOCITY lv(n) IN m/s AND STEERING

SPEED av(n) IN rad/s AT TIME INSTANT n.

laser readings and the robot’s translational and rotational

velocities were logged every 100ms (see also figure 6).

Fig. 6. The trajectory of robot driven by the sensor-free model in the
square environment.

a) Sensor signal encoding: In order to decrease the

dimensionality of the input space to the Narmax model,

we coarse coded the laser readings into 10 sectors by

averaging 62 readings for each 24degree interval. We then

used the Narmax identification procedure to estimate the

robot’s translational and rotational velocities as a function

of the last three coarse coded laser readings (u8, u9 and u10)

found on the left side of the robot (figure 1).

Both models were chosen to be first degree, and no

regression was used in the inputs and output (i.e. l = 1,

Nu = 0, Ny = 0), resulting in linear ARMAX structures. Both

resulting models contained 4 terms and are given in table II.

lv(n) = av(n) =
+0.036 −0.284
+0.246∗u(n,1) +0.685∗u(n,1)
−0.106∗u(n,2) −0.440∗u(n,2)
−0.062∗u(n,3) −0.131∗u(n,3)

TABLE II

SENSOR BASED MODELS OF TRANSLATIONAL VELOCITY lv(n) IN m/s

AND ROTATIONAL VELOCITY av(n) IN rad/s AT TIME INSTANT n. u1 TO

u3 ARE THE LAST THREE THREE COARSE CODED LASER READINGS

STARTING FROM THE LEFT EXTREME OF THE ROBOT.



b) Model validation: Finally, having obtained the

sensor-based models, we tested the robot in the square envi-

ronment (figure 7), as well as in different test environments.

The results, given in figure 8, show that the sensor-based

models indeed captured the essential relationship between

the robot’s perception and its velocity commands to obtain

left-hand wall following behaviour.

Fig. 7. The trajectory of robot, driven by the sensor-based models in the
square environment.

B. Corridor Passing

In the second experiment, we demonstrated to the robot

how to follow a U-shaped a corridor of 150cm width (see

figure 9).

We then again obtained two auto regressive models, one

expressing the translational velocity as a function of time,

another expressing the rotational velocity commands as a

function of time and past output commands. The translational

speed model was chosen to be second degree with no

regression in the input and output ((i.e. l = 2, Nu = 0, Ny = 0).

The resulting model contained 3 terms. The steering speed

model was chosen to be second degree with regression order

1 in output ((i.e. l = 2, Nu = 0, Ny = 1), and contained 9

terms. Both models are given in table III.

As before, we used the sensor-less models to drive the

robot in the U corridor environment. During this time, laser

readings and the robot’s translational and rotational velocities

were logged every 100ms. This data was then used to obtain

the sensor-based models of translational and steering speeds.

c) Sensor signal encoding: Again, in order to decrease

the dimensionality of the input space to the Narmax model,

we coarse coded the laser readings into 10 sectors by

averaging 62 readings for each 24 degree intervals. This

time we used all the coarse coded laser readings in Narmax

models.

Fig. 8. The trajectories of robot driven by sensor based models in i) 5mx3m

rectangle environment and ii)the environment containing wide and narrow
angle corners.

Fig. 9. The trajectory of the human in the U corridor environment. Again
we see a sideways oscillation in the human’s motion, which is later filtered
out.



lv(n) = av(n) =
+0.347 −0.005
+0.004∗u(n,1) +0.001∗u(n,1)
−0.001∗u(n,1)2 +0.001∗u(n,1)2

−0.001∗u(n,1)3

+0.818∗ y(n−1)
+0.158∗ y(n−1)2

−0.276∗ y(n−1)3

+0.001∗u(n,1)∗ y(n−1)
−0.001∗u(n,1)2

∗ y(n−1)

TABLE III

SENSOR-LESS CORRIDOR FOLLOWING MODELS OF TRANSLATIONAL

VELOCITY lv(n) (IN m/s) AND STEERING SPEED av(n) (IN rad/s) AT

TIME INSTANT n.

Both models were chosen to be first degree and no

regression was used in the inputs and output (i.e. l = 1,

Nu = 0, Ny = 0) resulting in linear ARMAX structures. The

lv model contained 10 terms and the av model contained 9,

both models are given in table IV.

lv(n) = av(n) =
+1.011 +0.570
−0.037∗u(n,1) +0.002∗u(n,1)
+0.164∗u(n,2) +0.069∗u(n,2)
+0.147∗u(n,3) +0.052∗u(n,3)
−0.128∗u(n,4) −0.181∗u(n,4)
−0.116∗u(n,5) −0.046∗u(n,5)
−0.051∗u(n,6) −0.049∗u(n,6)
−0.075∗u(n,7) −0.038∗u(n,7)
−0.051∗u(n,8) −0.020∗u(n,9)
−0.074∗u(n,9) −0.050∗u(n,10)
−0.131∗u(n,10)

TABLE IV

SENSOR-BASED SPEED MODELS OF TRANSLATIONAL VELOCITY lv(n)

(IN m/s) AND ROTATIONAL VELOCITY av(n) (IN rad/s) AT TIME INSTANT

n. u1 TO u3 ARE THE FIRST THREE COARSE CODED LASER READINGS

STARTING FROM THE LEFT EXTREME OF THE ROBOT.

d) Model validation: We then validated the sensor-

based models by testing the robot in U corridor environment.

The results show that the sensor based models captured the

essential relation between the robot’s laser perception and its

velocity commands well (see figure 10).

C. Transparent models allow hypothesis postulation and

testing

Having transparent models like the one given in table IV

has a number of advantages, for example the possibility to

analyse robot behaviour formally, or to optimise an existing

model in a principled way.

Fig. 10. The trajectories of the robot driven by sensor-based models in the
U corridor environment. The robot started from 10 different locations, and
in each run it managed to pass the corridor successfully.

e) Behaviour analysis: Transparent mathematical mod-

els of behaviour provide an understanding how each robot

sensor affects the overall behaviour of the robot. For instance,

by looking at the rotational velocity model in table IV, we

see that the model has a bias (DC component in the model)

of turning to the left. The counterweight terms which balance

the bias in the model are terms 5, 6 and 7, which use laser

readings u4, u5 and u6 respectively.

When the robot is near the right tip of the U corridor

(Region A, figure 10), the sensor readings u4, u5 and u6

have high values. Therefore model terms 5, 6 and 7 produce

high negative values, which counteract the effect of the DC

component so that robot actually moves straight. As the robot

approaches the circular part of the corridor (Region B, figure

10) however, these sensor readings become smaller and the

DC component begins to dominate the computation of the

rotational velocity, making the robot turn left. Once the robot

finishes the circular part of the corridor (region A), again

sensor readings u4, u5 and u6 have high values and make

the robot go straight until the end of the corridor. Figure 11

illustrates this distribution of steering speeds.

Optimising the model: Further analysis reveals that the

rest of the terms, terms 2, 3, 4, 8, 9 and 10, smooth the

effects of the terms mentioned above. Once we identified

the major terms and therefore the important sensor readings

in the model, we were able to used the NARMAX system

identification method again to obtain a new, optimised model,

expressing the rotational velocity of the robot as a function

of only these three major inputs u4, u5 and u6. The new

model was chosen to be degree 1 with no regression in the
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Fig. 11. The rotational velocity of the robot along the U corridor. When
the robot is in region A, it has almost no rotational velocity, and therefore
moves straight. On the other hand, it has high negative turning velocity,
when it is in region B, and turns left.

inputs and the output (i.e. l = 1, Nu = 0, Ny = 0).

We then validated the new model in the test environment.

The results show that the performance of the new model is

as good as the previous model (see figure 12), but, of course,

far more parsimonious.

Fig. 12. The trajectories of robot driven by an optimised model of
rotational velocity, using only three inputs. The robot started from 10
different locations and managed to pass the corridor successfully each time.

IV. CONCLUSIONS AND FUTURE WORK

Conclusions: We have shown how the NARMAX mod-

elling approach can be used to translate human behaviours al-

gorithmically and automatically into robot control code. Ob-

taining robot controllers by transforming human behaviours

through system identification does not require any theoretical

knowledge in robot programming and is very efficient. Our

sensor based models were ready to run within a few hours.

The tasks investigated in this paper could have been

achieved using other machine learning approaches, such as

supervised artificial neural networks (e.g. MLP, RBF, LVQ or

support vector machines). However, these approaches can be

slow in learning, especially when using large input spaces

and, more importantly, generate opaque models that are

difficult (if not impossible) to visualise and analyse.

In contrast, our modelling approach produces transparent

mathematical functions that can be directly related to the

task. This allows an analysis of how each sensor effects the

overall behaviour of the robot. In the example presented here,

we demonstrated this fact by identifying the important model

terms (and therefore the important sensor signals) in the

corridor passing behaviour. We then used only the important

sensory inputs to obtain an optimised Narmax model, which

performed as well as the previous model, while being even

more parsimonious.

Future Work: Not using any sensor signals at all, the

initially obtained auto regressive models are sensitive to the

robot’s starting position within the environment. Also, they

are obviously unable to detect collisions, etc. during the

robot’s first run through the environment. We are therefore

currently investigating how to combine some basic collision

avoidance procedures with the described model identification

approach. In particular, we are interested to determine if the

obtained models are still fully functional, or if the imprinted,

low level collision avoidance behaviour affects the model

building process adversely.
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