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Approximation in reflexive Banach spaces and

applications to the invariant subspace problem

Isabelle Chalendar∗, Jonathan R. Partington† and Martin Smith‡

September 13, 2002; revised December 13, 2002

Abstract

We formulate a general approximation problem involving reflexive and smooth

Banach spaces, and give its explicit solution. Two applications are presented—

the first is to the Bounded Completion Problem involving approximation of

Hardy class functions, while the second involves the construction of minimal vec-

tors and hyperinvariant subspaces of linear operators, generalizing the Hilbert

space technique of Ansari and Enflo.

2000 Mathematics Subject Classification: 41A29, 47A15, 46B20, 46E15.
Keywords: Constrained approximation, Smoothness, Invariant subspaces, Hardy spaces,
Extremal problems.

1 Introduction

The construction of minimal vectors, corresponding to an operator on a Hilbert space
was introduced by Ansari and Enflo [3], who used it to give simpler proofs of the
existence of invariant subspaces for certain classes of operator, including compact op-
erators and normal operators. The minimal vectors are given as the solution of certain
constrained approximation problems, and in [9] a more general such problem was for-
mulated and solved, which has other applications, notably in the theories of systems
identification, signal processing and inverse problems (see [8] for a survey of this area).

It is possible to define minimal vectors in a more general Banach space context,
although the associated approximation problem is rather more difficult to resolve. An-
droulakis [2] generalized the techniques of Ansari and Enflo to produce a new suffi-
cient condition for the existence of hyperinvariant subspaces of certain operators on
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super-reflexive Banach spaces. Troitsky [18] extended the method of Androulakis and
obtained a similar result for arbitrary Banach spaces. In this paper we extend the
methods of [3] in a different way by solving an approximation problem in the class of
reflexive Banach spaces: it does not seem likely that such a construction is valid in the
class of non-reflexive spaces.

We shall employ the following notation.
For X a complex Banach space, L(X ) denotes the algebra of all bounded linear

operators on X . Suppose that T ∈ L(X ). We denote by σ(T ) the spectrum of T
and we say that T is quasinilpotent if its spectrum is equal to {0}. Equivalently,
T is quasinilpotent if and only if limn→∞ ‖T n‖1/n = 0. A nontrivial hyperinvariant
subspace of T is a closed subspace M such that {0} 6= M 6= X and AM ⊆ M for all
A ∈ {T}′ := {A ∈ L(X ) : AT = TA}.

A Banach space X is said to be smooth if for every vector x ∈ X \ {0} there is a
unique linear functional νX (x) in X ∗ such that ‖νX (x)‖ = 1 and νX (x)x = ‖x‖. When
there is no ambiguity, we shall write ν(x) for νX (x). Furthermore, X is said to be
strictly convex if, whenever x and y are linearly independent vectors in X we have
‖x + y‖ < ‖x‖ + ‖y‖.

We write T for the unit circle {z ∈ C : |z| = 1}, and Lp(T) and Hp(T) for the
classical Lebesgue and Hardy spaces.

The plan of the paper is the following. First, we formulate a general extremal
problem involving a reflexive Banach space X and smooth Banach spaces Y and Z; we
give an explicit solution, which is unique when in addition X is strictly convex.

Then, in Section 3, we give two kinds of application. The first is the resolution of
the so-called Bounded Completion problem (BCP) in a reflexive, smooth and strictly
convex Banach space. The second concerns the Invariant Subspace Problem. Indeed,
following the Hilbert space techniques introduced by Ansari and Enflo, and generaliz-
ing them to reflexive Banach spaces, we obtain sufficient conditions for the existence
of hyperinvariant subspaces for some operators that are not necessarily compact nor
quasinilpotent, as shown by explicit examples.

2 A general extremal problem

In order to formulate the extremal problem of which we shall later see applications,
let X , Y and Z be complex Banach spaces, such that X is reflexive and Y and Z are
smooth, and let A : X → Y and B : X → Z be bounded linear operators, such that A
and B are coprime, in the sense that there exists a constant η > 0 such that

‖Ax‖ + ‖Bx‖ ≥ η‖x‖ for all x ∈ X . (1)

Let t0 ∈ Z and t1 ∈ Y be fixed vectors. For ε > 0 we consider the closed convex set

Cε
t0 = {x ∈ X : ‖Bx − t0‖ ≤ ε},
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and we suppose that ε is chosen so large that Cε
t0

has nonempty interior. We suppose
also that Ax 6= t1 for all x ∈ Cε

t0 (to eliminate a degenerate case). In this situation the
associated extremal problem is to find x0 ∈ Cε

t0
such that

‖Ax0 − t1‖ = inf{‖Ax − t1‖ : x ∈ Cε
t0
} = β, say. (2)

In view of the applications that we shall discuss, we also assume that A has dense
range.

The above extremal problem provides a simultaneous generalization of the extremal
problems discussed in [9] and [17]. These in turn provided extensions in different
directions of a Hilbert space problem analysed in [12], where X was a closed subspace
of Y ⊕Z, and A and B were the restrictions to X of the orthogonal projections onto Y
and Z respectively. A simple example of this is the case X is the Hardy space H2(T),
Y = L2(I) and Z = L2(J), where I and J are complementary subsets of the unit circle,
each with strictly positive measure; this version of the problem has itself a long history,
having been studied in [11], and more recently in [1] and [4]. For further information,
see [8] for example.

Lemma 2.1 Under hypothesis (1), the extremal problem given by (2) has at least one
solution and every extremal vector x0 saturates the constraint, in the sense that ‖Bx0−
t0‖ = ε. If, in addition, Y and Z are strictly convex, then the vector x0 is unique.

Proof: The fact that the solution exists and saturates the constraint follows from
the reflexivity of X and the assumption that A has dense range, as in the proof of
Lemma 2.1 of [9]. The uniqueness of x0 in the case where X is strictly convex is not
difficult to check. Indeed, if x0, x′

0 are distinct points in Cε
t0

with ‖Ax0 − t1‖ = β
and ‖Ax′

0 − t1‖ = β, then the vector x = (x0 + x′
0)/2 also lies in Cε

t0 and the strict
convexity of the norm implies that ‖Ax − t1‖ < β unless Ax0 − t1 = Ax′

0 − t1, i.e.,
A(x0 − x′

0) = 0. But in that case Bx0 − t0 6= Bx′
0 − t0 by coprimeness, and the strict

convexity of the norm now implies that ‖Bx− t0‖ < ε, which is a contradiction to the
saturation condition. �

The solution to the constrained extremal problem is given by the following theorem.

Theorem 2.1 Let x0 be a solution to (2). Then there exists a negative constant µ
such that

B∗νZ(Bx0 − t0) = µA∗νY(Ax0 − t1). (3)

Conversely, if x0 satisfies (3) with µ < 0, and ε = ‖Bx0 − t0‖, then x0 satisfies (2).

Proof: Suppose that x0 is a solution of (2). Define the following subset of X :

Rβ
t1 = {x ∈ X : ‖Ax − t1‖ ≤ β}.

Our assumptions imply that int Cε
t0

and intRβ
t1 are open, disjoint, nonempty convex sets.

Hence by the Hahn–Banach theorem [16, Thm. 3.4] there is a functional Λ ∈ X ∗ \ {0}
and a real number γ, such that

ReΛ(x) < γ < Re Λ(y) for all x ∈ int Cε
t0 , y ∈ intRβ

t1 .
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Now x0 ∈ ∂Cε
t0
∩ ∂Rβ

t1 , and so ReΛ(x0) = γ.
Consider the following three hyperplanes in X :

H1 = {x ∈ X : Re ν(Bx0 − t0)(Bx − t0) = ε},

H2 = {x ∈ X : Re ν(Ax0 − t1)(Ax − t1) = β},

H3 = {x ∈ X : Re Λx = γ}.

Note that x0 ∈ H1 ∩ H2 ∩ H3. We want to prove that these hyperplanes coincide. To
do this we prove that H1 = H3; a similar argument shows that H2 = H3.
So suppose that H1 6= H3. Then there is a point z ∈ H3 \ H1, for otherwise H3 ⊆ H1,
and since both have real codimension 1 they must be equal. We may assume that

Re ν(Bx0 − t0)(Bz − t0) < ε and Re Λz = γ, (4)

for if Re ν(Bx0 − t0)(Bz − t0) > ε, then we may replace z by z′ = 2x0 − z ∈ H3, which
satisfies

Re ν(Bx0 − t0)(Bz′ − t0) = 2 Re ν(Bx0 − t0)(Bx0 − t0)−Re ν(Bx0 − t0)(Bz − t0) < ε.

We now recall the following result.

Proposition 2.1 [6, p. 183] Let X be a smooth Banach space, and let x ∈ X satisfy
‖x‖ = 1. Suppose that Re ν(x)y < 1 for some y ∈ X . Then there exists a λ ∈ (0, 1)
such that ‖λx + (1 − λ)y‖ < 1.

It follows from this result and (4) that there is a number λ ∈ (0, 1) such that

‖λ(Bx0 − t0) + (1 − λ)(Bz − t0)‖ < ε,

and so
‖B(λx0 + (1 − λ)z) − t0‖ < ε.

Let x1 = λx0 + (1 − λ)z; then x1 ∈ int Cε
t0

and

Re Λ(x1) = λ Re Λ(x0) + (1 − λ) ReΛ(z)

= λγ + (1 − λ)γ = γ,

which is a contradiction since Re Λ(x) < γ for all x ∈ int Cε
t0

.

Given that H1 = H2 = H3, we have constants ǫ′ and β ′ such that the equations of
H1 and H2 are, respectively,

Re B∗ν(Bx0 − t0)x = ε′ and ReA∗ν(Ax0 − t1)x = β ′.

Hence there is a nonzero constant µ such that

Re B∗ν(Bx0 − t0) = µ ReA∗ν(Ax0 − t1), (5)
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and thus B∗ν(Bx0 − t0) = µA∗ν(Ax0 − t1), since both functionals are complex-linear.
It remains to show that µ < 0.

Suppose, to the contrary, that µ > 0. Since A has dense range, there exists a
w0 ∈ X such that ‖Aw0 − t1‖ < β. In particular,

Re ν(Ax0 − t1)(Aw0 − t1) < β, and so

Re ν(Ax0 − t1)(Ax0 − Aw0) > 0,

since x0 ∈ H2.
Now since µ > 0 we see from (5) that

Re ν(Bx0 − t0)(Bx0 − Bw0) > 0, and so

Re ν(Bx0 − t0)(Bw0 − t0) < Re ν(Bx0 − t0)(Bx0 − t0).

Applying Proposition 2.1 once more, we see that there is a number η ∈ (0, 1) such that

‖η(Bx0 − t0) + (1 − η)(Bw0 − t0)‖ < ε, i.e.,

‖B(ηx0 + (1 − η)w0) − t0‖ < ε.

Since ‖Aw0 − t1‖ < β we have

‖A(ηx0 + (1 − η)w0) − t1‖ ≤ η‖Ax0 − t1‖ + (1 − η)‖Aw0 − t1‖ < β,

which is a contradiction, since ηx0 + (1 − η)w0 ∈ Cε
t0
. This ends the proof of the first

assertion of the theorem.

Conversely, suppose that x0 satisfies (3) with µ < 0 and ε = ‖Bx0 − t0‖. Let x ∈ X
satisfy ‖Bx − t0‖ ≤ ε. We have

Re ν(Bx0 − t0)(Bx − t0) ≤ ε = Re ν(Bx0 − t0)(Bx0 − t0),

and then

Re ν(Bx0 − t0)(B(x − x0)) ≤ 0, or, equivalently,

Re B∗ν(Bx0 − t0)(x − x0) ≤ 0.

Using (3) we obtain
Re A∗ν(Ax0 − t1)(x − x0) ≥ 0,

which implies that

Re ν(Ax0 − t1)(Ax − t1) ≥ Re ν(Ax0 − t1)(Ax0 − t1) = ‖Ax0 − t1‖.

Hence ‖Ax − t1‖ ≥ ‖Ax0 − t1‖, and so the second assertion of the theorem is proved.
�
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3 Applications

3.1 Bounded Completion Problem for Banach spaces

In this section we present the first application of the extremal problem analysed in
Section 2, namely the so-called Bounded Completion Problem (BCP ).

Let E be a Banach space, M a closed subspace of E , and suppose that E can be
written as a topological direct sum E = N+ ⊕N− of two closed subspaces. For h ∈ N−

and ε > 0, define
Cε

h = {g ∈ N− : ‖g − h‖ ≤ ε},

which is clearly a closed convex nonempty set. Moreover, let f ∈ N+. We seek g0 ∈ Cε
h

such that
dist(f + g0,M) = inf{dist(f + g,M) : g ∈ Cε

h}.

The original motivation of this problem was the special case E = Lp(T), M = Hp(T),
and N+ = Lp(I), N− = Lp(J) with I and J disjoint sets of positive Lebesgue measure
such that T = I ∪ J . This was studied in the context of systems identifications for
p = ∞ in [5] and for p = 2 in [12] (see also [8] for a survey of this and related problems).

We shall see that the case 1 < p < ∞ can be considered as a corollary of the
following result. Let π : E → E/M denote the quotient mapping.

We begin with two preliminary lemmas.

Lemma 3.1 If E is smooth and reflexive, then E/M is smooth.

Proof: It follows from the hypotheses that E∗ is strictly convex ([14], p. 481), and
so its subspace M⊥ is strictly convex. But M⊥ is isometrically isomorphic to (E/M)∗,
and hence E/M is smooth since its dual is strictly convex ([14], p. 481). �

Denote by PN+
the continuous projection of E onto N+ with kernel N−.

Lemma 3.2 The following conditions are equivalent:

(a) PN+
M is dense in N+;

(b) M⊥ ∩N⊥
− = {0};

(c) π|N
−

has dense range.

Proof: The equivalence of (a) and (b) is established in [17, Lem. 1.1] by means of
the Hahn–Banach theorem. It remains to prove that (b) is equivalent to (c). Condition
(c) is equivalent to the injectivity of (π|N

−

)∗ : (E/M)∗ → N ∗
−. Let Φ : M⊥ → (E/M)∗

denote the canonical isometric isomorphism. For x ∈ N− and Λ ∈ M⊥ we have

(π|N
−

)∗Φ(Λ)(x) = Φ(Λ)(x + M) = Λ(x).

So (π|N
−

)∗ is injective if and only if whenever Λ ∈ M⊥ and Λ(x) = 0 for all x ∈ N−,
we have Λ = 0. This is just Condition (b). �
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Theorem 3.1 Suppose that E is a reflexive, smooth and strictly convex Banach space,
and that the hypotheses of Lemma 3.2 are satisfied. Then the Bounded Completion
Problem has a unique solution g0 satisfying

νN
−

(g0 − h) = µ(π|N
−

)∗νE/M(π(g0 + f))

for some µ < 0 such that ‖g0 − h‖ = ε.

Proof: Take X = N−, Y = E/M, Z = N−, A = π|N
−

, B = Id on N−, t0 = h and
t1 = −πf . Then we see immediately that X is reflexive, smooth and strictly convex, Z
is smooth, and A and B are coprime. By Lemma 3.1, Y is smooth and by Lemma 3.2,
A has dense range. Then by Theorem 2.1, the result now follows (with g0 = x0). �

This translates into a more explicit condition in the case E = Lp(T) described
above, since, identifying Lp(T)∗ with Lq(T), where q = p/(p − 1), we have

νN
−

(g0 − h) = (g0 − h)|g0 − h|p−2‖g0 − h‖1−p.

3.2 Construction of hyperinvariant subspaces

We now present the second application of the extremal problem analysed in Section
2. From now on, let X denote a reflexive, smooth complex Banach space. (Note
that, indeed, any reflexive Banach space can be given an equivalent smooth norm, by
[10, p. 289], so that in searching for hyperinvariant subspaces we shall not lose any
additional generality by imposing the smoothness condition.) Suppose that T ∈ L(X )
has dense range, that ε > 0, that t0 ∈ X with ‖t0‖ > ε, and that n is a positive integer.
Consider Cε

n,t0 the subset of X defined by

Cε
n,t0

= {x ∈ X : ‖T nx − t0‖ ≤ ε}.

Since T n has dense range, Cε
n,t0

is a nonempty closed convex subset of X . A backward
minimal vector for T n is a vector xε

n,t0 ∈ Cε
n,t0 satisfying

‖xε
n,t0

‖ = inf{‖x‖ : x ∈ Cε
n,t0

}.

Note that the condition ‖t0‖ > ε implies that 0 6∈ Cε
n,t0

and thus xε
n,t0

6= 0.

Proposition 3.1 In the above situation, an optimal xn = xε
n,t0 exists and satisfies

‖T nxn − t0‖ = ε and T ∗nν(T nxn − t0) = µnν(xn) for some µn < 0. Thus if z ∈ X we
have

ν(xn)z = 0 ⇐⇒ ν(T nxn − t0)(T
nz) = 0. (6)

Further, if X is strictly convex, then the backward minimal vector xε
n,t0 is unique.

Proof: The existence of xn = xε
n,t0

and its two basic properties follow directly from
Theorem 2.1, on taking Y = Z = X , A = Id, B = T n and t1 = 0. Next,

ν(xn)z = µ−1

n T ∗nν(T nxn − t0)z

= µ−1

n ν(T nxn − t0)(T
nz),

7



which gives (6). Finally the uniqueness of xn in the case that X is strictly convex
follows from Lemma 2.1. �

Theorem 3.2 Let X be a reflexive smooth Banach space, and T ∈ L(X ) an operator
with dense range. Suppose that there exist ε > 0, and t0 ∈ X such that ‖t0‖ > ε for
which there exists a subsequence (nk)k≥1 of N satisfying

lim
k→∞

‖xnk−1‖

‖xnk
‖

= 0, (7)

and (T nkxnk−1)k≥1 converges in norm to a nonzero vector. Then T has a nontrivial
hyperinvariant subspace.

Proof: Let u denote the norm limit limk→∞ T nkxnk−1. Let A ∈ {T}′; then there
exist αnk

∈ C such that

Axnk−1 = αnk
xnk

+ wnk
, where ν(xnk

)wnk
= 0.

Therefore
Re ν(xnk

)(Axnk−1) = αnk
‖xnk

‖,

and so

|αnk
| =

|Re ν(xnk
)(Axnk−1)|

‖xnk
‖

≤ ‖A‖
‖xnk−1‖

‖xnk
‖

→ 0,

by assumption.

Now since AT = TA we have AT nkxnk−1 = αnk
T nkxnk

+ T nkwnk
, and so

ν(T nkxnk
− t0)(AT nkxnk−1) = αnk

ν(T nkxnk
− t0)T

nkxnk
+ ν(T nkxnk

− t0)T
nkwnk

,

and the second term is zero by (6). Hence

ν(T nkxnk
− t0)(AT nkxnk−1) = αnk

ν(T nkxnk
− t0)T

nkxnk
→ 0,

since αnk
→ 0 and (T nkxnk

)k≥1 is bounded. We conclude that ν(T nkxnk
− t0)(Au) → 0.

By passing to a subsequence and relabelling, we may suppose that (ν(T nkxnk
−

t0))k≥1 converges weakly to a functional Φ ∈ X ∗. Thus Φ(Au) = 0. Now

Re ν(T nkxnk
− t0)(T

nkxnk
) = µnk

Re ν(xnk
)xnk

= µnk
‖xnk

‖ < 0, (8)

and

Re ν(T nkxnk
− t0)(T

nkxnk
− t0) = ‖T nkxnk

− t0‖ = ε. (9)

Subtracting (9) from (8) we conclude that

Re ν(T nkxnk
− t0)t0 = −ε + µnk

‖xnk
‖ < −ε.
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Hence Re Φ(t0) ≤ −ε, and so Φ 6= 0. Moreover, Φ(Au) = 0 for all A ∈ {T}′.
Now let M = span{Au : A ∈ {T}′}, which is a closed hyperinvariant subspace for

T . Now u 6= 0, by hypothesis, so M 6= {0} and also M 6= X , since Φ(v) = 0 for all
v ∈ M. �

Recall Lemma 1 in [3].

Lemma 3.3 Let T ∈ L(X ) with dense range, ε > 0, and t0 ∈ X such that ‖t0‖ > ε.
Denote by (xn)n≥1 the sequence of backward minimal vectors. If T is quasinilpotent,
then there exists a subsequence (xnk

)k≥1 of (xn)n≥1 such that:

lim
k→∞

‖xnk−1‖

‖xnk
‖

= 0.

In conjunction with the above theorem, we obtain the following result which provides
an extension of the results of [3] and [9].

Corollary 3.1 Let X be a reflexive Banach space, and let T ∈ L(X ) be a quasinilpotent
operator with dense range. Suppose that there exist ε > 0, t0 ∈ X such that ‖t0‖ > ε
and (T nxn)n≥1 converges in norm. Then T has a nontrivial hyperinvariant subspace.

Proof: Without loss of generality, we may suppose that T is injective. Also
‖T nxn‖ ≥ ‖t0‖ − ε, which implies easily that limn→∞ T nxn−1 exists and is nonzero.
The result now follows from Theorem 3.2. �

Now we can deduce a well-known result due to Lomonosov [13]. See for example
the accounts in [15] and [7].

Corollary 3.2 Let X be a reflexive Banach space and let K ∈ L(X ) be a nonzero
compact operator. Then K has a nontrivial hyperinvariant subspace.

Proof: This follows easily by noting that we may without loss of generality assume
that K is quasinilpotent and injective with dense range, and hence the first hypothesis
of Theorem 3.2 is satisfied; the second hypothesis is an immediate consequence of
compactness. �

The following examples, which are closely related to a Hilbert space example pre-
sented in [9], involve operators that are neither compact nor quasinilpotent.

Example 3.1 Take 1 < p < ∞, and define T : ℓp(Z) → ℓp(Z) by Ten = λnen+1, where
(en)n∈Z is the standard basis of ℓp(Z) and (λn)n∈Z is a bounded complex sequence with
λn 6= 0 for all n. Then T ∗ : ℓq(Z) → ℓq(Z) satisfies T ∗en = λn−1en−1 for all n. Clearly

‖T n‖ = sup{|λk · · ·λk+n−1| : k ∈ Z}.

Using the notation above, let us take t0 = er for some r ∈ Z and 0 < ε < 1; it is then
easily verified that T nxn = (1 − ε)er, and

xn =
1 − ε

λr−1 · · ·λr−n
er−n.
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Thus T nxn−1 = λr(1 − ε)er+1, so provided that infj<0 |λj| = 0, the hypotheses of
Theorem 3.2 are satisfied, and T has a nontrivial hyperinvariant subspace, namely
M = span{Aer+1 : A ∈ {T}′}.

A similar argument applied to the adjoint shows that T ∗, and hence T , has a
nontrivial hyperinvariant subspace if infj≥0 |λj | = 0. Thus if infj∈Z |λj| = 0, i.e., if
T is non-invertible, then T always has a nontrivial hyperinvariant subspace. We are
grateful to Dr S.P. Eveson for this observation.

It is not difficult to write down sequences (λn)n∈Z for which T is neither quasinilpo-
tent nor compact (see, for example, (10) below).

An analogous construction can be performed in various other Banach spaces with
1-unconditional bases; we omit the details.

Example 3.2 Another example, which, in the case p = 2 coincides with the previous
one, can be obtained by taking X = Lp(T), and defining en ∈ X by en(z) = zn for
n ∈ Z and z ∈ T. We may define T : Lp(T) → Lp(T) by Ten = λnen+1, for each
n, where (λn)n∈Z is a sequence of nonzero complex numbers such that this operator
has a bounded extension to Lp(T) (clearly it will have dense range). For example, the
sequence

λn =

{

−1/n for n < 0,
1 for n ≥ 0,

(10)

is a suitable choice, and in this case the operator T is neither quasinilpotent nor
compact.

Let us take t0 = er, for a fixed r ∈ Z and take 0 < ε < 1. We claim that for every
n we have xn = aner−n for some constant an. To see this we apply the converse to
Theorem 2.1, noting that T ∗nν(T nxn−t0) = µnν(xn), for all n, because ν(es) = e−s for
every s. Note that µn < 0, and then the choice of an such that anλr−n · · ·λr−1 = 1− ε
ensures that ‖T nxn − t0‖ = ε and T nxn−1 = λr(1 − ε)er+1. Thus the hypotheses of
Theorem 3.2 are satisfied and T has a nontrivial hyperinvariant subspace.
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