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Abstract: New results for model order reduction, for weakly nonlinear systems in the 
frequency domain, are derived based on a parametric modelling approach. 

 
 

1. Introduction 
 

Model order reduction has long been a topic in linear system theory. It is desirable in 
many control and analysis problems. The basic idea of linear model reduction is to 
reduce the dynamic order of linear systems subject to certain performance criteria, so 
that the resulting reduced models have a similar behaviour to the original model under 
certain operating conditions. The performance criteria used are generally purely in the 
time domain.  

Nonlinear systems have much more diverse features than linear systems. For example, 
harmonic distortion, hysteresis, limit cycles, bifurcations and chaos, just to name a 
few. There is no universal theory for all types of nonlinearities. One classification of 
nonlinear systems is weakly (mildly) and severely nonlinear systems. The most 
significant feature separating these classes is that the former systems can be 
represented by Volterra series models, which are the topic of the current study.  

Nonlinear system modelling with Volterra series was first proposed in the 1930s and 
was enhanced by Wiener’s contribution to nonlinear system analysis. From the late 
1950s, there has been a continuous effort in the application of Volterra series to 
nonlinear systems theory. Summaries of major contributions in the application of 
Volterra series modelling for the representation, analysis and design of nonlinear 
systems can be found in Schetzen(1980), Rugh(1981) and Sandberg(1984).  

A big advantage of the Volterra based representations is that they can be readily 
transformed into the frequency domain using Generalised Frequency Response 
Functions (GFRF’s). The inherent features of the underlying nonlinear systems can 
then be studied using the GFRF’s(Bedrosian and Rice, 1971; Bussgang, et. al., 1974; 
Lang and Billings, 2000), and this provides an analogous theory to linear frequency 
response analysis, which is so important for linear systems.  Many nonlinear 
phenomena have been analysed and interpreted in terms of the GFRF’s, including 
gain compression, intermodulation effects, harmonics and desensitisation. 
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The GFRF’s are of practical use only when the representation and analysis of the 
underlying system can be done using a finite number and order of frequency functions. 
This is called Volterra/frequency truncation. Billings and Lang(1997) studied the 
order and terms of the Volterra series expansion in such a truncation in the frequency 
domain.  

In this paper, for the first time, the problem of model order reduction for weakly 
nonlinear systems in the Volterra/frequency domain is addressed. Unlike the linear 
model order reduction problem in which the term ‘order’ refers to the order of the 
dynamics, here in the nonlinear Volterra/frequency model order reduction, the ‘order’ 
of a frequency domain Volterra expansion refers to the order of the GFRF’s.  

 
2. Volterra series in the time and the frequency domain 
 
Volterra series modelling (Volterra, 1930) has been widely studied for the 
representation, analysis and design of nonlinear systems. The Volterra series is a 
nonlinear functional series that can be expanded as a polynomial functional series and 
is a direct generalisation of the linear convolution integral, therefore providing an 
intuitive representation in a simple and easy to apply way. For a SISO nonlinear 
system, with )(tu and )(ty the input and output respectively, the Volterra series can be 
expressed as 

                      ∑
∞

=

=
1

)()(
n

n tyty                                               (1.a) 

where  y tn ( )  is the ‘n-th order output’ of the system 
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hn n( , , )τ τ1 ⋅ ⋅ ⋅  is called the ‘nth-order Kernel’ or ‘nth-order impulse response function’. 
If n=1, this reduces to the familiar linear convolution integral. 

The discrete time domain counterpart of the continuous time domain SISO Volterra 
expression (1) is 
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In practical problems only a finite Volterra series can be used, on the assumption that 
the contribution of the higher order kernels falls off rapidly. This is called the 
truncated Volterra series. Systems that can be adequately represented by a truncated 
Volterra series with just a few terms are called weakly or mildly nonlinear systems.  
For discrete-time systems the truncated, discrete-time Volterra series is given as 

∏∑ ∑∑
== ==

−⋅⋅⋅=
n

i
in

K

n

k

nn kuhky
n 11 0

1
0

)(),,()(
1

τττ
ττ

            Ζ∈> kn  0,                 (3) 

A discrete time Volterra series is also called a NX (Nonlinear model with eXogenous 
inputs) model. 
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The multi-dimensional Fourier transform of )(⋅nh yields the ‘nth-order frequency 
response function’ or the Generalised Frequency Response Function (GFRF):  
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The generalised frequency response functions represent an inherent and invariant 
property of the underlying system, and have proved to be an important analysis and 
design tool for characterising nonlinear phenomena. In practice, the GFRF’s can be 
estimated using non-parametric or parametric methods. The parametric method 
involves mapping a nonlinear differential equation(Billings and Peyton Jones, 1990) 
or mapping a nonlinear difference equation(Peyton Jones and Billings, 1989) into the 
frequency domain using the probing method. The steady-state response of a mildly 
nonlinear system subject to sinusoidal inputs can be computed using the GFRF’s 
( )(' ⋅s

nH ) as  
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Like time-domain Volterra series truncation, the generalised frequency response 
functions are of practical use when the characteristics of the underlying nonlinear 
system can be efficiently explained by the first few orders of )(' ⋅s

nH . But in many 

nonlinear systems it is very common that higher order GFRF’s are necessary in order 
to obtain a satisfactory truncation error, especially around the resonance frequencies.. 
This sometimes makes the application of the GFRF’s quite complicated, tedious and 
computationally demanding. In this study a new method is presented to address the 
problem of order reduction of the Volterra/frequency domain representation. The 
method will be described using the example of a Duffing oscillator to demonstrate the 
approach in the simplest manner. 
 
3. Volterra series reduction in the frequency domain  
  

The example which will be analysed in detail in this section is the Duffing oscillator, 
which is described by 

                                   t)Acos(0.5yyy0.2y     3 ω=+++                                   (6) 

where the working amplitude of the driving input was A=0.12. The Duffing equation 
(6) has a resonant frequency at around sec/ 1rad=ω . The approach adopted for this 
specific example can be repeated for other model forms. Focusing on one specific 
example illustrates the idea in a much more transparent way than if the method was 
introduced for a general class of models. 

The first step in analysing a nonlinear system behaviour in the frequency domain can 
be taken by plotting the Response Spectrum Map(RSM), developed by Billings and 
Boaghe(2001). This is done by showing the FFT of the response with a varying 
system parameter(for example, driving input amplitude or frequency).  Here the RSM 
of system (6) against varying frequency ω is shown in Figure 1.  
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Figure 1. Response Spectrum Map of Duffing Oscillator (6) 

Figure 1 shows that for the input frequency range 0.34-1.46 rad/sec, only fundamental 
and odd order harmonic components are present in the response, suggesting that a 
Volterra representations over this whole frequency range exists.  

Because the Duffing equation (6) contains a cubic nonlinear term3y , the number of 
Volterra series terms in (1) or the number of the GFRF’s in (5) may become infinite. 
Also the even orders of GFRF’s are zero and make no contribution to the system 
response. Therefore the steady-state response using equation (5) with nonlinearities 
up to the 5th order truncation is 
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However, the orders of the GFRF’s needed for a required truncation error vary for 
different frequency ranges. To illustrate this, (6) was simulated at  60/T π= and the 
response (t) y  was compared for different levels of approximation using (7) and (8) in 

terms of the truncation error ie , defined by )max(/)(
)(

1

yyye
oddi

j
ji ∑

=

−=  as a percentage. 

The truncation errors for different input frequency values are presented in Table 1, 
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ω  
1 e  3 e  5 e  

2.0 =ω  0.8929 0.0286 0.0021 
6.0 =ω  1.8168 0.0920 0.0148 
9.0 =ω  22.2387 13.8128 10.7461 
0.1 =ω  27.4282 12.5687 6.1998 
3.1 =ω  1.3590 0.0249 0.0373 

Table 1. Truncation Error [%] ie for Duffing Equation (5) at Different 
Frequencies 

The Volterra representation of the Duffing equation (5) is convergent, as shown in 
Table 1. It is shown that in the lower frequency range (for example, ∈ω [0 0.6] 
rad/sec), and the higher frequency range (for example, ω >1.3 rad/sec), the truncation 
errors fall off rapidly, with the 3rd order GFRF’s being sufficient to describe the 
corresponding responses. While for 9.0 =ω , which is around the resonant frequency, 
the truncation error is relatively high, and a much higher order of GFRF’s will be 
required to obtain a satisfactory truncation error. These observations agree well with 
the RSM in Figure 1, where the response has a significant 5th order harmonic presence  
around the resonant frequency, while at other frequency ranges these effects are quite  
weak with negligible 5th order harmonic contributions.  

The Duffing system (6) was then excited at different frequencies and the excitation-
response pairs were collected accordingly. NX models can be built based on these 
excitation-response data sets at each frequency. For example, 

for ω =0.6 the corresponding NX model is 

)4()4()3(188010-             

)4()4()4(951220)3(6988.2)4(1945.4)(  

k- uk- uk-  u.

k- uk- uk- u.  k-  u -k-  uky +=
         (9) 

and for ω =0.9 

)4()4()3(56.217-             

)4()4()4( 57.086)2( 14.672)4(17.551)(  

k- uk- uk-  u

k- uk- uk- u  k-  u -k-  uky +=
        (10) 

By repeating the above NX modelling procedure throughout the whole frequency 
range a series of models can be obtained. These NX models can then be mapped into 
the frequency domain and the GFRF’s up to third order can be derived. 

By collecting the 1 H  data at each frequency point from each corresponding NX 

model in the above step, an )( 1 ωH over the whole frequency range can be constructed, 

as shown in Figure 2. The 1 H  from the original Duffing equation (6) is also plotted 

in Figure 2. From Figure 2 it can be seen that the new 1 H  constructed from the NX 
modelling shares similar frequency features as the original Duffing equation at low 
and high frequency ranges. This reflects the fact as explained before that in the low 
and high frequency ranges the Duffing equation already provides excellent 
Volterra/frequency truncation.  
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Figure 2. 1 H  from original Duffing equation (6) –Solid and 1 H  from NX 
modelling—Dot Dashed 

The )( 3 ⋅H  data at each frequency points from each corresponding NX model can also 

be collected. Once the )( 1 ⋅H and )( 3 ⋅H data sets are obtained, the approach of re-

constructing a nonlinear continuous time model proposed by Li and Billings(2001) 
can be applied. An important advantage of Li and Billings’s algorithm is that the non-
linear model can be constructed sequentially by building in the linear model terms, 
followed by the quadratic terms and so on. In current example, only linear and cubic 
nonlinear model terms are required. 

First, a continuous time linear differential model can be re-constructed from the 1 H  
data in Figure 2 in the NX modelling by using the method of Li and Billings(2001). 
The model is given as 
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Next, continuous time third order nonlinear terms can be re-construct from )(3 ⋅H  in 

the NX modelling using the method of Li and Billings(2001). The final re-constructed 
third order nonlinear differential model is given as 

0 )( 0.027329-   )0.16924(  )( 14.352  

 )(0.084502-   )4.7878y(  y 0.42462-  )1.7497y(  

0.58942y  y 0.08239-  y 0.0018994  00220749120

0010263070461000337780998450734640

1556604127235139067312204050 

322

322

223

3

3

3

3

2

2

2

2

2

2

2

2

2

2

5

5

4

4

3

3

2

2

6

6

5

5

4

4

3

3

2

2

=++

++

+++

+++

+++++

dt

yd

dt

yd

dt

yd

dt

yd
dt
dy

dt
dy

dt

yd

dt

yd
dt
dy

dt
dy

dt

yd
dt
dy

dt

yd

dt

yd

dt

yd

dt
ud

dt
du

dt

yd

dt

yd

dt

yd

dt

yd

dt

yd
dt
dy

 .  . -

  .  .  - .  u .  -.  

 .   .  .  .  . y 

      (12) 



 8 

The )(1 ωH  from the re-constructed nonlinear differential equation model (12) was 

compared with the )(1 ωH from the NX modelling in Figure 3, and shows a perfect 
match. This is also true for third order GFRF’s comparison. 

 
Figure 3. 1 H from NX modelling –Solid, and 1 H  from reconstructed linear 

model (12) 
 

This re-constructed nonlinear differential equation (12) will have the same time 
domain response as the original Duffing equation (6). Although generally the re-
constructed nonlinear differential equation model will have a more complicated time 
domain expression, it enjoys a much simpler expression in terms of the associated 
Volterra series expression, which means that the complexity of the frequency domain 
analysis can be expected to reduce significantly. In this example, the truncation errors 
for ω =0.9 using the first and third order GFRF’s from (12) are 1 e =0.5040% 

and 3 e =0.1957% respectively, a big reduction compared with the results in Table 1, 

which means that a third order Volterra representation, which can be obtained from 
(12),  is adequate in terms of the truncation error. This is true for the whole frequency 
range under (12). This means therefore that the entire frequency domain analysis of 
the original Duffing equation (6) can be performed based on the single re-constructed 
nonlinear differential equation (12). The proposed parametric approach illustrated 
using the specific Duffing oscillator can be effectively repeated on other nonlinear 
cases where the complexity of frequency domain analysis needs to be reduced.  

 
4. Conclusions 

For a linear system, the frequency response function, which is the Fourier transform 
of the first order convolution, will be naturally sufficient to represent the input-output 
relation for the whole frequency range, irrespective of the amplitude of the input 
signal. But for a nonlinear system, the behaviour of the system will depend heavily on 
the amplitude of the input. A nonlinear system can exhibit severely nonlinear 
phenomena, such as hysteresis, limit cycles, subharmonics and chaos, while the input 
excitation varies. It is a well known fact that the traditional Volterra series cannot 
represent the severe class of nonlinear systems, therefore the frequency domain 
transfer functions are not available for these cases. But even for weakly nonlinear 
systems where a convergent Volterra series exists, analysis may become impractical 
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because the order of the Volterra series might become very high in order to obtain the 
required truncation accuracy.   

It has been shown in this study that a new parametric modelling approach can provide 
the frequency features in a reduced Volterra model. Generally the resulting 
continuous time models which have a reduced Volterra expansion in the frequency 
domain will have an extended time domain expression so that the physical relation 
with the underlying system is lost. However this should help to significantly simplify 
the analysis of the underlying nonlinear system in the frequency domain. 

In practical nonlinear continuous time system identification problems, when only 
input-output observations are available, there will  be a balance between a physically 
meaningful identification, where the resulting model coefficients can be related back 
to the underlying system but which may not be fully frequency domain efficient, and 
a meaningful frequency domain identification, where the resulting model can be used 
as a basis for frequency domain analysis with limited orders of GFRF’s but which 
may not have a simple physical interpretation. This will be investigated in a future 
study. 
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