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Abstract

In this paper, a fast identification algorithm for nonlinear dynamic stochastic system
identification is presented. The algorithm extends the classical Orthogonal Forward Re-
gression (OFR) algorithm so that instead of using the Error Reduction Ratio (ERR) for
term selection, a new optimality criterion —Shannon’s Entropy Power Reduction Ratio
(EPRR) is introduced to deal with both Gaussian and non-Gaussian signals. It is shown
that the new algorithm is both fast and reliable and examples are provided to illustrate the
effectiveness of the new approach.

1 Introduction

In system identification and modelling, the Orthogonal Forward Regression (OFR) least-squares
algorithm (Billings, Chen, and Korenberg 1989, Chen, Billings, and Luo 1989, and Billings,
Korenberg, and Chen 1988) has proved to be an effective algorithm for determining significant
model terms or the model structure and the associated parameter estimates. The OFR algorithm
involves a stepwise orthogonalisation of the regressors and a forward selection of the relevant
terms based on the Error Reduction Ratio (ERR) criterion (Billings, Chen, and Kronenberg
1989). In recent years, many variants of the OFR algorithm have been introduced to improve
the performance of the algorithm including D-optimality OFR (Hong and Harris 2001), variable
pre-selection OFR (Wei, Billing, and Liu 2004), piecewise linearization (Mao and Billings 1999),
minimal model structure detection (Mao and Billings 1997) etc. For the past two decades, the
OFR algorithm and its variants have been successfully applied in a variety of fields in system
identification and modelling (Aguirre and Billings 1995a,b; Billings, Chen, and Backhouse 1989;
Billings, Fadzil, Sulley, and Johnson 1988; Coca, Zheng, Mayhew, and Billings 2000; Coca and
Billings 2001; Liu, Kung, and Chao 2001; Balikhin, Zhu, and Billings 2005).
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A central part of the conventional OFR algorithm is the Error Reduction Ratio (ERR). The
ERR of a term represents the percentage reduction in the total mean square error by including
this specific term in the final model. By selecting a term with a maximal ERR value during
the implementation of the algorithm, a minimum of the mean square error can be achieved.
Therefore, the OFR algorithm is basically minimising a mean square error, the variance of the
error in the case of zero-mean variables. This criterion is in line with the traditional approach in
stochastic system identification and optimisation problems. The main reason behind this choice
of criteria is the assumption that most of the random variables in real-life may be sufficiently
described by their second-order statistics, that is their mean and variance. It is well known that
Gaussian random variables can be completely defined by the mean value and variance. Therefore,
for linear Gaussian systems a criterion based on mean square error would be sufficient to extract
all the necessary information from such systems (Papoulis 1991). However, for nonlinear non-
Gaussian systems criteria that not only consider the mean value and variance, but also take
into account the higher order statistical behaviour of the systems, are much desired. Some
recently published papers have addressed this issue (Erdogmus and Principle 2002a, b, Feng,
Loparo, and Fang 1997, Ta and DeBrunner 2004, Stoorvogel and van Schuppen 1998). In this
paper, differential entropy/ Shannon’s entropy power will be introduced as a new criterion for
the nonlinear stochastic system identification problem.

Entropy of a given random variable can be considered as a measure of the average information
contained in the probability density function (pdf) of that specific random variable. When the
entropy of a random variable is minimised, all moments of the error pdf including the second
moments are constrained. It follows therefore that entropy as an optimality criterion extends
the concept of mean square error. In particular, it can be shown that the differential entropy
is proportional to its variance for Gaussian random variables, and thus minimising entropy is
equivalent to the minimisation of the variance/mean square error for Gaussian variables. Using
entropy as an optimality criterion has desirable advantages in the dynamic system identification
problem because minimising mean square error simply constrains the variance of the identification
error between the observed response and the model response, which does not guarantee the
capture of all the details of the underlying dynamics. In this paper, an extended OFR algorithm
is proposed by accommodating differential entropy/ Shannon’s entropy power as an objective
function instead of conventional mean square error. By making use of Shannon’s entropy power
inequality, a new quantity —Shannon’s Entropy Power Reduction Ratio (EPRR) —is introduced
as an extension of the ERR. It is shown that the model terms can be selected in the same way as
the classical OFR algorithm, that is sequentially and independently. This is the main difference
between the proposed method and existing methods such as in Erdogmus and Priciple (2002a).

The paper is organised as follows. Section 2 presents a brief introduction to differential en-
tropy and Shannon’s entropy power including their estimates using a Parzen window and kernel
function approach (Shwartz, Zibulevsky, and Schechner 2005). In section 3, the classical OFR
algorithm is reviewed first, the relationship between ERR and EPRR is discussed in detail, and
the extended OFR algorithm is then presented. Section 4 illustrates the proposed approach using
numerical simulations and real data, and finally conclusions are given in section 5.
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2 Differential entropy and Shannon’s entropy power in-

equality

2.1 Differential entropy and its estimation

Differential entropy of a random variable X with a probability density function fX(·) is defined
as

H(X) = −
∫

fX(x) log fX(x)dx (1)

Generally, differential entropy can be interpreted as a measure of randomness of X. In the case
that X is a Gaussian variable with fX(x) as follows

fX(x) =
1√

2πσX

exp (−(x − x̄)2

2σ2
X

) (2)

where x̄ is the mean value and σ2
X is the variance. Then it is easy to show that the differential

entropy H(X) becomes

H(X) =
1

2
log(2πeσ2

X) (3)

This clearly shows that minimising differential entropy is equivalent to the minimisation of the
variance for Gaussian signals.

For a general random variable with finite variance σ2
X < ∞, Guo, Shamai, and Verdu (2005) have

shown that the differential entropy of X, regardless of the distribution of X, can be represented
as

H(X) =
1

2
log(2πeσ2

X) − 1

2

∫

∞

0

σ2
X

1 + γσ2
X

− E{(XE{X|√γX + N})2}dγ (4)

where E{·} denotes the expectation, E{X|√γX+N} is the conditional expectation, N ∼ N(0, 1)
is the standard Gaussian which is independent of X. γ is understood as the (gain of the) signal-
to-noise ratio of the Gaussian channel whose input is X.

From (4), it can bee observed that the nongaussianness of X is given by one half of the integral of
the difference of the minimum mean square errors achievable by a Gaussian input with variance
σ2

X and by X, respectively.

In practice, differential entropy can be estimated using a Parzen window and kernel function
approach (Shwartz, Zibulevsky, and Schechner 2005). Let x1, x2, · · · , xN be a sample of a random
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variable X, then the Parzen window approximation of its probability density function fX(·) is

f̂X(x) =
1

N

N
∑

i=1

K(x − xi) (5)

where K(·) is the kernel function. A Gaussian kernel function is defined as

K(x) =
1√

2πh2
exp(− x2

2h2
) (6)

where h is the bandwidth of the kernel function. In practice, h can be selected according to
Silverman’s rule

h = 1.06σN−1/5 (7)

in which σ is the standard deviation of the data.

According to the Parzen window estimation f̂X(x) in (5) of the probability density function and
the definition of differential entropy, an estimation of differential entropy H(X) in (5) can be
derived as follows

Ĥ(X) = −
∫ 1

N

N
∑

i=1

K(x − xi) · log(
1

N

N
∑

i=1

K(x − xi))dx (8)

= − 1

N

N
∑

j=1

log(
1

N

N
∑

i=1

K(xj − xi))

and if the kernel is Gaussian, this yields

Ĥ(X) = − 1

N

N
∑

j=1

log(
1√

2πNh

N
∑

i=1

exp(
(xj − xi)

2

2h2
)) (9)

2.2 Shannon’s entropy power inequality

Shannon’s power entropy inequality gives a bound on the entropy of the sum of independent
random variables as follows

exp(2H(X1 + X2 + · · ·+ Xn)) ≥ exp(2H(X1)) + exp(2H(X2)) + · · ·+ exp(2H(Xn)) (10)
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where X1, X2, · · · , Xn are n independent random variables. The entropy power is maximum and
equal to the variance when the random variable is Gaussian, and it follows that the essence
of Shannon’s entropy power inequality (10) is that the sum of independent variables tends to
be “more Gaussian” than individual components. Note that if all of the random variables are
Gaussian, (3) yields

2πeσ2
∑

n

i
Xi

= exp(log(2πeσ2
∑

n

i
Xi

)) ≥
n

∑

i

exp(log(2πeσ2
Xi

)) (11)

Note that because the entropy power of X is exp(2H(X)), from (3), exp(2H(x)) = 2πeσ2
X

for X being Gaussian. This indicates that minimising entropy power is also equivalent to the
minimisation of the variance for Gaussian signals.

For given samples x1, x2, · · · , xN of a random variable X, Shannon’s entropy power of X can be
approximately calculated according to the estimate Ĥ(X) in (8) of differential entropy as follows

exp(2H(X)) ≈ exp(2Ĥ(X)) = exp(−2
1

N

N
∑

j=1

log(
1

N

N
∑

i=1

K(xj − xi))) (12)

3 An extended orthogonal forward regression least squares

algorithm

3.1 The classical OFR least-squares algorithm

Let p0, p1, · · · , pn be random variables and y the output response of a system. Without loss of
generality, all involved variables are assumed to be zero-mean. Assume that there is a subset I

of {0, 1, · · · , n} such that a linear relationship

y =
∑

i∈I

θipi + ξ (13)

exists, in which ξ is an independent noise variable with zero mean and finite variance. Given a
set of observations, the system modelling problem of interest is to determine the subset I and
the values of θi. The OFR algorithm for this problem involves three steps

• Orthogonalise the regressors to remove the correlations between these variables;

• Select significant terms using the ERR as a criterion;

• Estimate the corresponding parameters for the selected terms.
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Formally, the classical OFR least-squares algorithm can be stated as follows (Billings, Korenberg,
and Chen 1988).

Let p0(t), p1(t), · · · , pn(t) and y(t), t = 1, 2, · · · , N be the series of observations. Denote Y =
(y(1), y(2), · · · , y(N))T and Pi = (pi(1), pi(2), · · · , pi(N))T , i = 0, 1, · · · , n, then the following
linear regression model can be formed

Y = Pθ + Ξ (14)

where P = (P0, P1, · · · , PN) is the regression matrix, θ = (θ1, θ2, · · · , θn)T represents the unknown
parameters to be estimated, and Ξ = (ξ(1), ξ(2), · · · , ξ(N))T is some modelling error vector. The
three steps in the OFR algorithm are

1) ORTHOGONALISATION The orthogonal decomposition P = WA, where A is an (n +
1)× (n+1) upper triangular matrix with unity diagonal elements, of the regression matrix
P provides an alternative representation of eqn. (14)

Y = Pθ + Ξ = WAθ + Ξ = Wg + Ξ (15)

where W is an N × (n + 1) matrix with orthogonal columns Wi such that W T W = D in
which D is an (n+1)×(n+1) diagonal matrix with elements di =< Wi, Wi >, i = 0, 1, · · · , n.
Note that < ·, · > denotes the inner product so that di =< Wi, Wi >=

∑N
t=1 wi(t)wi(t),

i = 0, 1, · · · , n.

2) TERM SELECTION The orthogonal least squares solution to g is given by

ĝi =
< Y, Wi >

< Wi, Wi >
=

W T
i Y

W T
i Wi

, i = 0, 1, · · · , n (16)

The fraction of variance not explained by a regression of Y on Wg is

< Ξ, Ξ >

< Y, Y >
=

< Y − Wg, Y − Wg >

< Y, Y >
=

< Y, Y > − < Wg, Wg >

< Y, Y >
(17)

Thus the error reduction ratio (ERR) caused by term i, i = 0, 1, · · · , n is defined as

ERRi =
< Wigi, Wigi >

< Y, Y >
(18)

The OFR least-squares algorithm selects the subset I, that is a subset of regressors in a
forward-regression manner by maximising the contribution of a regressor to the explained
desired response variance, that is its ERR.
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3) PARAMETER ESTIMATION Once the parameters gi, i ∈ I have been estimated using
(16) the parameters θi, i ∈ I in the regression equation (13) can be calculated as

θ̂ = A−1ĝ (19)

From the definition of ERR (18), it can be observed that the OFR is equivalent to maximising
the product moment correlation coefficient. In fact, the product moment correlation coefficient
ρi of term i satisfies

ρ2
i =

< Y, Wi >2

< Y, Y >< Wi, Wi >
=

<Y,Wi>2

<Wi,Wi>2 < Wi, Wi >

< Y, Y >
=

< Wigi, Wigi >

< Y, Y >
= ERRi (20)

3.2 Error reduction ratio (ERR) vs. Shannon’s entropy power re-
duction ratio (EPRR)

Consider the above step 2), that is the Term Selection. This term selection procedure is actually
based on the ERR values of each candidate terms. The rationale can be explained as follows
(Billings, Chen, and Kronenberg 1989).

For the regression problem (14), the orthogonalised version is that of equation (15). Taking the
inner product to (15) gives

< Y, Y >=< Wg, Y > + < Ξ, Y > (21)

Substituting Y = Wg + Ξ into the right hand side of (21) yields

< Y, Y >=< Wg, Wg > + < Ξ, Ξ >=
n

∑

i=0

< Wigi, Wigi > + < Ξ, Ξ > (22)

that is

N
∑

t=1

y2(t) =
n

∑

i=0

N
∑

t=1

g2
i w

2
i (t) +

N
∑

t=1

ξ2(t) (23)

assuming that ξ(t) is an independent noise sequence with zero mean and finite variance, and the
orthogonality property of columns of the matrix W holds. The maximum mean square error is
achieved when no terms are selected to give

< Ξ, Ξ >=< Y, Y > (24)
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Therefore, the reduction in mean square error by including a term Wigi (equivalently Piθi) in
the model will be equal to

< Wigi, Wigi >=
N

∑

t=1

g2
i w

2
i (t) (25)

It follows that the reduction ratio as a result of including the term Piθi is the percentage reduction
in the total mean square error

ERRi =
< Wigi, Wigi >

< Y, Y >
(26)

which is defined as error reduction ratio (ERR) as (18). By selecting a term with a maximal
ERR value at a time during the implementation of the algorithm, a minimum of the mean square
error can be achieved. This clearly indicates that the above algorithm minimises the mean square
error

< Ξ, Ξ >=< Y − Wg, Y − Wg >=
N

∑

t=1

(y(t) −
m

∑

i=0

giwi(t))
2 (27)

for any non-negative integer m ≤ n because of the orthogonality property. Note that under the
assumption that ξ has zero mean and finite variance, minimising the mean square error < Ξ, Ξ >

is equivalent to minimising the variance of ξ.

Now assume that all involved random variables wi are jointly Gaussian, then they are mutually
independent because the orthogonality of Gaussian variables implies independence. It follows
that Shannon’s power entropy inequality holds, that is

exp(2H(y)) ≥ exp(2H(w1g1)) + exp(2H(w2g2)) + · · ·+ exp(2H(wngn)) + exp(2H(ξ)) (28)

This relationship can be explained as (22). The maximum entropy power of error (equivalently
differential entropy of error) is achieved when no terms are selected to give

exp(2H(ξ)) = exp(2H(y)) (29)

Equation (29) indicates that Shannon’s entropy power of error can never go beyond the Shan-
non’s entropy power of y for Gaussian stochastic systems. As in the ERR approach, to obtain
a minimum of Shannon’s entropy power or simply differential entropy of error, those terms with
maximal Shannon’s entropy values should be included in the regression model. As mentioned ear-
lier, minimising differential entropy is equivalent to the minimisation of the variance for Gaussian
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variables while the ERR approach is designed to minimise such a variance. Since differential en-
tropy has a more general meaning than that of variance for any random variables, it can be used
to measure and form a term selection criterion for the general stochastic system identification
problem. Following the above discussion, a new criterion, which is called the EPRR (Entropy
Power Reduction Ratio), is proposed in this paper as follows.

Notice that Shannon’s entropy power reduction ratio is, as a result of including the term wigi or
piθi, the percentage reduction in the total entropy power

EPRRi =
exp(2H(wigi))

exp(2H(y))
(30)

When wi and y are zero-mean and Gaussian, using (3) and H(wigi) = H(wi) + log |gi|, EPRR
can be expressed as

EPRRi =
exp(2H(wigi))

exp(2H(y))
(31)

=
exp(log(2πeσ2

wi
) + log(g2

i ))

exp(log(2πeσ2
y))

=
σ2

wi
g2

i

σ2
y

=
< Wigi, Wigi >

< Y, Y >

= ERRi

From the definitions of ERR and EPRR, and (4), it can be shown that the EPRR for general
random variables can be expressed as follows

EPRRi = ERRi · exp(
∫

∞

0

< Y, Y > − < Wi, Wi >

(1+ < Y, Y >)(1+ < Wi, Wi >)
(32)

+(E{(y − E{√γy + Ny})2} − E{(wi − E{wi|
√

γwi + Nwi
})2})dγ)

In practice, the EPRR values can be approximately calculated using (12)

EPRRi ≈ g2
i ·

(

N
∏

t=1

∑n
k=1 K(y(t) − y(k))

∑N
k=1 K(wi(t) − wi(k))

)

2

N

(33)
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3.3 A summary of the proposed extended OFR algorithm

Let Y = (y(1), y(2), · · · , y(N))T and Pi = (pi(1), pi(2), · · · , pi(N))T , i = 0, 1, · · · , n be defined as
before, where N is the length of the samples. Then the extended OFR algorithm can now be
summarised as follows

Step 1 For i = 0, 1, · · · , n, let W
(i)
1 = Pi and compute the coefficients g

g
(i)
0 =

< Y, W
(i)
0 >

< W
(i)
0 , W

(i)
0 >

(34)

and their corresponding EPRR using (33)

EPRR
(i)
0 ≈ (g

(i)
0 )2 ·

(

N
∏

t=1

∑n
k=1 K(y(t) − y(k))

∑N
k=1 K(w

(i)
0 (t) − w

(i)
0 (k))

)

2

N

(35)

Find the index with a maximal EPRR value h0 = arg[max(EPRR
(i)
0 , 0 ≤ i ≤ n)] and

select the corresponding term W0 = W
(h0)
0 .

Step l+1 , l ≥ 1 For 0 ≤ i ≤ n, i �= h0, h1, · · · , hl−1, calculate the orthogonal projection of Pi on the
linear subspace spanned by W0, W1, · · · , Wl−1 as follows

W
(i)
l = Pi −

l−1
∑

j=0

< Pi, Wj >

< Wj , Wj >
Wj (36)

Compute the coefficients g

g
(i)
l =

< Y, W
(i)
l >

< W
(i)
l , W

(i)
l >

(37)

and their corresponding EPRR using (33) again

EPRR
(i)
l ≈ (g

(i)
l )2 ·

(

N
∏

t=1

∑n
k=1 K(y(t) − y(k)

∑N
k=1 K(w

(i)
l (t) − w

(i)
l (k))

)

2

N

(38)

Find the index with a maximal EPRR value hl = arg[max(EPRR
(i)
l , 0 ≤ i ≤ n), i �=

h0, h1, · · · , hl−1] and select the corresponding term Wl = W
(hl)
l .

The procedure is terminated at the nth
s step when

1 −
ns
∑

i=1

EPRRi < ρ (39)

where 0 < ρ < 1 is a prescribed tolerance. This gives a subset model containing ns

significant terms.
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Following the determination of the most significant terms W0, W1, · · · , Wns
according to the above

steps, estimates of the parameters θi, i = 0, 1, · · · , ns can be obtained. This can be done using
the following equations

θi =
ns
∑

j=i

gjvj (40)

where gi, i = 0, 1, · · · , ns are calculated as follows

gi =
< Y, Wi >

< Wi, Wi >
=

∑N
t=1 y(t)wi(t)
∑N

t=1 w2
i (t)

, i = 0, 1, · · · , ns (41)

and

vi = 1 (42)

vj = −
j−1
∑

k=i

αk,jvk, j = i + 1, · · · , n

in which

αk,j =
< Pj, Wk >

< Wk, Wk >
=

∑N
t=1 pj(t)wk(t)
∑N

t=1 w2
k(t)

, k = 0, 1, · · · , j − 1 (43)

Remark 1 It is worth noting that the algorithm is developed under the assumption that the
involved variables are mutually independent or uncorrelated with a jointly Gaussian distribution.
There are some recent results about Shannon’s entropy power inequality for dependent variables
(Johnson 2004, Takano 1996). The proposed algorithm projects the regression matrix into an or-
thogonal space which implies the involved variables are uncorrelated. Although uncorrelationness
does not mean independence, it is, in practice, a good estimation of independence. The examples
in this paper show that the extended OFR algorithm works well with this uncorrelationness.

4 Numerical simulations

4.1 Example 1: A linear system with Gaussian and non-Gaussian
noise

Consider the following simple AR model

11
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Figure 1: Example 1: Distribution of a non-Gaussian noise signal with two peaks

Table 1: Example1: The terms and parameters of the final model using the OFR algorithm with
Gaussian noise

Terms Estimates ERR
y(t− 1) 1.7749e+000 3.7352e-001
y(t− 2) -1.9534e+000 2.3680e-001
y(t− 3) 1.3874e+000 1.8680e-001
u(t − 1) 9.9466e-001 1.2390e-001
y(t− 4) -4.7615e-001 4.5940e-002

y(t) = a1y(t − 1) + a2y(t− 2) + a3y(t − 3) + a4y(t− 4) + a5u(t − 1) + e(t) (44)

where a1 = 1.8, a2 = −1.99, a3 = 1.422, a4 = 0.493, and a5 = 1.0. In order to apply the
proposed extended OFR algorithm, system eqn. (44) was simulated where u(t) was a uniformly
distributed random signal on the interval [0, 1] and two sets of data were collected for the cases
where e(t) had a Gaussian (∼ N(0, 0.32)) and a non-Gaussian probability distribution. Fig. (1)
shows the probability density function of the applied non-Gaussian noise.

The set of terms in an initial candidate model was set to be {1, y(t− 1), y(t− 2), y(t− 3), y(t−
4), y(t − 5), y(t − 6), u(t − 1)}. The identified results using the original and the extended OFR
algorithms are shown in Tables 1 to 4.
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Table 2: Example 1: The terms and parameters of the final model using the extended OFR
algorithm with Gaussian noise

Terms Estimates ERR EPRR
y(t − 1) 1.7749e+000 3.7352e-001 3.7359e-001
y(t − 2) -1.9534e+000 2.3680e-001 2.3814e-001
y(t − 3) 1.3874e+000 1.8680e-001 1.8806e-001
u(t − 1) 9.9466e-001 1.2390e-001 1.0005e-001
y(t − 4) -4.7615e-001 4.5940e-002 4.6161e-002

From Tables 1 and 2 it can be observed that the selected significant terms (which are the terms in
the original system model) and the parameter estimates are exactly the same (which are very close
to the real values) for both algorithms with Gaussian noise, and in this case the ERR values and
EPRR values for each selected terms are almost identical. This is because the noise is Gaussian,
which verifies the theoretical results, that is that minimising entropy is equivalent to the minimi-
sation of variance for Gaussian signals. Furthermore, the estimated higher moments of the errors
from both algorithms are coincident (Fig. (3)) : µ3 = 1.4614e − 003, µ4 = 2.6130e − 002, µ5 =
1.7881e−003, µ6 = 1.3225e−002, µ7 = 2.1976e−003. Note that the errors from both algorithms
for Gaussian noise have approximated to a Gaussian distribution. This can be observed from Fig.
(2) which is the error probability density function estimate calculated using Parzen windowing
and Gaussian kernel functions for both algorithms. Therefore, the extended OFR algorithm is
equivalent to the original OFR for such Gaussian systems. However, for non-Gaussian noise the
results are different. Tables 3 and 4 show that the ERR values and EPRR values are different
although all of the correct terms have been selected in the right order by both algorithms. An
investigation shows that the higher moments for both algorithms are slightly different as well
(Fig. (4)): for the extended OFR algorithm µ3 = 2.4736e − 001, µ4 = 3.4510e + 000, µ5 =
1.6009e + 000, µ6 = 1.3223e + 001, µ7 = 9.8424e + 000, and for the original OFR algorithm
µ3 = 2.4856e−001, µ4 = 3.4393e+000, µ5 = 1.6140e+000, µ6 = 1.3129e+001, µ7 = 9.9515e+000.
It can also be observed from Fig. (5), that there is a slight difference between the estimated
probability density functions of errors from the two algorithms. Those observations reveal that
instead of the minimisation of conventional mean squares error, minimising entropy/entropy
power does introduce more information into the solution.
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Table 3: Example1: The terms and parameters of the final model using the OFR algorithm with
non-Gaussian noise

Terms Estimates ERR
y(t− 1) 1.9394e+000 5.7413e-001
y(t− 2) -2.1653e+000 1.0629e-001
y(t− 3) 1.5944e+000 1.9971e-001
y(t− 4) -5.1538e-001 2.2979e-002
u(t − 1) 1.0327e+000 2.0446e-002
y(t− 6) 8.6247e-002 2.3946e-003
y(t− 5) -3.2717e-002 2.4375e-005
u(t − 2) -1.3459e-002 2.7265e-006

Table 4: Example 1: The terms and parameters of the final model using the extended OFR
algorithm with non-Gaussian noise

Terms Estimates ERR EPRR
y(t − 1) 1.9417e+000 5.7413e-001 5.7422e-001
y(t − 2) -2.1801e+000 1.0629e-001 1.5813e-001
y(t − 3) 1.6272e+000 1.9971e-001 2.6595e-001
y(t − 4) -5.5539e-001 2.2979e-002 3.4981e-002
u(t − 1) 1.0322e+000 2.0446e-002 2.6012e-002
y(t − 6) 7.2360e-002 2.3946e-003 3.4763e-003
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Figure 2: Example 1: Estimated probability distribution of errors of models from original OFR
(dotted) and extended OFR algorithm(dashed) for Gaussian noise (the solid is the pdf of the
original noise)
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Figure 3: Example 1: Higher central moments of errors of models from conventional OFR
(diamond) and extended OFR algorithms (square) for Gaussian noise (the circles denote the
higher central moments of the original noise)
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Figure 4: Example 1: Higher central moments of errors of models from conventional OFR
(diamond) and extended OFR algorithms (square) for non-Gaussian noise (the circles denote the
higher central moments of the original noise)

15



−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Error value

Es
tim

at
ed

 p
ro

ba
bi

lit
y 

de
ns

ity

Figure 5: Example 1: Estimated probability distribution of errors of models from original OFR
(dotted) and extended OFR algorithms (solid) for non-Gaussian noise

4.2 Prediction of the Dst index in Geophysics

Dst is a geomagnetic index which monitors the world wide magnetic storm level. It is generally
constructed by averaging the horizontal component of the geomagnetic field from mid-latitude
and equatorial magnetograms from all over the world. Negative Dst values indicate a magnetic
storm is in progress, the more negative Dst is the more intense the magnetic storm. The negative
deflections in the Dst index are caused by the storm time ring current which flows around the
Earth from east to west in the equatorial plane. The ring current results from the differential
gradient and curvature drifts of electrons and protons in the near Earth region and its strength
is coupled to the solar wind conditions. Only when there is an eastward electric field in the
solar wind which corresponds to a southward interplanetary magnetic field (IMF) is there any
significant ring current injection resulting in a negative change to the Dst index. In addition
to the ring current, other currents such as the current along the magnetopause, a boundary
between the terrestrial magnetosphere and the solar wind, also provide some contribution to the
evolution of the Dst index. Due to the importance of the Dst index, it is highly desirable to be
able to predict its values. However, the relationship between the Dst index and the evolution
of the ring, magnetopause and magnetotail currents under the influence of the solar wind is
extremely complicated. In this study a low dimensional input-output dynamical system model
of the magnetosphere will be identified directly from observations using the new approach, in
which the input is the product of the solar wind velocity V and the southward component of
the solar wind magnetic field Bs and the output is the Dst index. Note that the input was
calculated using the plasma velocity and magnetic field measurements from the Wind satellite.
The effects of other factors on the system will be neglected in the present study.

A set of 1580 pairs of samples of the input and output were collected from satellites with a
sampling period of one hour and the data are shown in Fig. (6). A polynomial NARMAX model
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Figure 6: Example 2: The input and output data

Table 5: Example2: The terms and parameters of the final model using the extended OFR
algorithm

Terms Estimates ERR EPRR
y(t− 1) 1.0569e+000 9.9752e-001 9.9838e-001
y2(t − 2) -1.3591e-001 3.7412e-004 1.3399e-002

y(t − 2)u(t − 1) -4.1862e-001 8.5993e-004 1.3130e-002
y(t − 1)u(t − 2) 1.6460e-001 2.0221e-004 4.9254e-003
y(t − 4)y(t − 7) 7.5858e-002 3.5534e-005 8.2560e-004

u(t− 1) 3.3662e-001 3.0053e-005 4.3869e-004
y(t − 7)u(t − 1) -3.6974e-001 4.9174e-005 9.6667e-004

with input lag 3 and output lag 7 and nonlinear degree 2 was used to fit the measured data. The
identified final model using the first 500 pairs of data and the extended OFR algorithm is shown in
Table 5, which indicates that only 7 out of 66 candidate terms are selected to yields a very simple
nonlinear model. A comparison of the test results, that is the output data, the model predicted
output and one-step-ahead predicted output, are shown in Fig. (7). The error probability
density function estimate calculated using Parzen windowing and Gaussian kernel functions is
shown in Fig. (8). The higher moments for the new algorithm are: µ3 = −8.3544e + 001, µ4 =
1.0190e + 005, µ5 = −9.9569e + 005, µ6 = 1.8408e + 008, µ7 = −4.1276e + 009.
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Figure 7: Example 2: Measurement (solid), model predicted output (dotted) and one-step-ahead
predicted output(dashed)
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Figure 8: Example 2: Estimated probability distribution of errors of the model from extended
OFR algorithms
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From the test results some observations can be made:

1). Both the model predicted and one-step-ahead predicted outputs are good. The model
predicted output is not as good as the one-step-ahead predicted output but this is to be
expected because model predicted output is a much more severe test than one-step-ahead
predictions. However, the model predicted output shows good long-term predictions and
gives more confidence in the identified model comparing with the one-step-ahead prediction.
Such a model with long-term predictive ability provides a basis for any further analysis and
control of the underlying dynamics.

2). Fig. (8) shows that the modelling errors have approximated to a Gaussian distribution,
which is different from the estimated pdf from the conventional OFR algorithm.

3). From the final model it can be observed that the main influence of the input (V Bs) on
the system current output (Dst) is approximately two hours behind (only u(t−1), u(t−2)
appear in the final model) whilst the influence of the past Dst index on the Dst index is
approximately seven hours behind (y(t − 7) appears in the identified model).

4). The discrepancy between the model predicted values and the measured values of Dst may
result from the errors between the real values of the entropy/Shannon entropy power and the
estimated values using Parzen windowing and Gaussian kernel functions, high dependence
between some candidate model terms, and/or the other factors which actually affect the
system dynamics but were not included in the current model.

5 Conclusions

An extended OFR algorithm for the identification of both the model terms or structure and
the unknown parameters of non-linear stochastic systems with Gaussian and non-Gaussian noise
has been introduced. It has been shown that by using entropy/entropy power as an optimality
criterion, the identification ability of the conventional OFR algorithm can be enhanced. The
introduction of EPRR in the extended OFR algorithm not only retains the advantages of the
OFR algorithm, that is terms can be selected in a fast, simple, and independent way, but also
takes into account the higher statistical behaviour of the systems and signals. In this sense the
proposed algorithm can be considered as an extension of the conventional OFR algorithm. The
method has been tested on both simulated and real data and was shown to perform very well.
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