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Abstract:  An efficient class of nonlinear models, constructed using cardinal B-spline (CBS) basis functions, 

are proposed for high tide forecasts at the Venice lagoon. Accurate short term predictions of high tides in the 

lagoon can easily be calculated using the proposed CBS models, which can also produce good long term (up to 

24 hrs ahead) forecasts for normal water levels. 
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1.   Introduction 

The Venice lagoon is one of the world’s most delicate and unstable ecosystems. Since the disastrous 

flood that occurred in November 1966, the problems of the Venice lagoon have become one of 

national and international interest. The threatened Venice city has frequently been inundated by high 

waters formed in the northern Adriatic Sea, where interactions of several astronomical and 

meteorological phenomena often occur. The end results are the Venice floods due to a combination of 

astronomical and meteorological effects: the tides induced by the moon and the tides caused by 

stormy weather arise from low atomospheric pressure combined with winds. To prevent disastrous 

floods, measures have been taken since 1966, and perhaps the most famous project is the recently 

endorsed MoSE (Mo

Several authors have discussed the data-based modelling problem relating to high tide forecasts at 

dulo Sperimentale Elettromeccanico—Experimental Electromechanical Module) 

project, although the feasibility of this project is still in public debate [3][10][11]. A parallel and 

complementary approach to engineering constructions, for example the barrier system as involved in 

the MoSE, is to build an operational flood warning system, which is used to forecast the main surge, 

for some time ahead ideally many hours or even several days. The objective of such a flood warning 

system is to support some necessary actions such as the removal of goods from ground floors, the 

redirection of the city boat traffic, and the installation of elevated pedestrian walkways [13]. The flood 

warning system is model-based:  it utilises both statistical and hydrodynamic models to obtain short 

term as well as long term forecasts [13]. The hydrodynamic modelling usually starts with first 

principles that require a comprehensive physical insight into the underlying dynamics of the system, 

whereas the statistical modelling and similar methods often start with observational data, based on 

which mathematical models that support forecasts of the main surge are deduced. 
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the lagoon, by treating the regularly measured water level as a nonlinear time series, with the 

assumption that no information on the hydrodynamics of the lagoon is involved, but merely observed 

water level data are available [18]. Many approaches have been proposed to model the associated 

nonlinear time series including nonlinear regression models, chaos and embedding methods, neural 

networks, evolutionary algorithms, and other methods, see [2][18] and the references therein.  

This study aims to present a novel and efficient data-based modelling approach for predicting high 

tides at the Venice lagoon. In the new modelling approach, it is assumed that no a priori knowledge 

about the hydrodynamics of the lagoon is available, but merely observed water level data are used. 

Motivated by the successful applications of wavelet modelling frameworks, especially wavelet 

multiresolution decompositions, in nonlinear time series analysis and nonlinear system identification 

[1][5][6][14]- [17], cardinal B-spline multiresolution analysis (MRA) is employed in the present study 

to construct parsimonious nonlinear models that can be used for high tide forecasting. As will be seen, 

the resulted CBS models provide not only accurate short term forecasts, but also provide good long 

term predictions for the variation of the water levels in the lagoon. Compared with existing data-based 

methods, the proposed data-based CBS modelling approach can produce more accurate predictions for 

high tides at the Venice lagoon. 

2.  Time Series Forecasting Problem 

Let T
ttty
0

)}({ = be a known observed sequence for the underlying dynamical time series. The goal of 

multi-step-ahead forecasts is to predict the values of )( sty + , with 1≥s , using the information carried 

by the observed sequence T
ttty
0

)}({ = . To achieve such a goal, a commonly used approach is to learn a 

model, or a predictor, from the available data. To obtain multi-step-ahead predictions of nonlinear 

time series, both iterative and direct methods can be employed [17]. In theory, long-term predictions 

can be obtained from a short-term predictor, for example a one-step-ahead predictor, simply by 

applying the short predictor many times in an iterative way. This is called iterative prediction. Direct 

prediction, however, provides a once-completed predictor and multistep forecasts can be obtained 

directly from the established predictor in a way that is similar to computing one step predictions. 

Following [17], a direct approach will be considered. Take the case of the s-step-ahead forecasting 

problem as an example. The task for s-step-ahead forecasts is to find a model that can predict the 

value of )( sty +  using a set of selected variables {)(ty , ,),1( −ty )1( +− dty }, in the sense that 

)())1(,),(()( )( tedtytyfsty s ++−=+                                                                              (1) 

where )(sf  with 1≥s  are some nonlinear functions, )(te is an unpredictable zero mean noise 

sequence, d is the model order (the maximum lag). For a real system, the nonlinear function )(sf is 

generally unknown and might be very complex. A class of models that are both flexible, with 
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excellent approximation capabilities, and which can represent a broad class of highly complex 

systems are therefore required to ensure accurate direct s-step predictions. The model class that uses 

cardinal B-splines as the basis functions to approximate the s-step predictor )()( ⋅sf  satisfies all these 

conditions and will therefore be investigated in the present study as a new approach of achieving 

accurate direct s-step predictions. 

3.  Cardinal B-spline Models 

3.1  Cardinal B-splines 

The mth order cardinal B-spline function is defined by the following recursive formula [8]: 

)1(
1

)(
1

)( 11 −
−
−

+
−

= −− xN
m

xm
xN

m

x
xN mmm , 2≥m                                                             (2) 

where 



 ∈

==
otherwise

xif
xxN

        0

)1,0[         1
)()( )1,0[1 χ                                                                                     (3) 

It can easily be shown that the support of the mth order B-spline function is ],0[supp mNm = . 

Compared with other basis functions, the most attractive and distinctive property of B-splines are that 

they are compactly supported and can be analytically formulated in an explicit form. Most 

importantly, they form a multiresloution analysis (MRA) [8]. B-splines are unique, among many 

commonly used basis functions, because they simultaneously possess the three remarkable properties, 

namely compactly supported, analytically formulated and multiresolution analysis oriented, among 

many popular basis functions. These splendid properties make B-splines remarkably appropriate for 

nonlinear dynamical system modelling. The most commonly used B-splines are those of orders 1 to 4, 

which are shown in Table 1.  

For the mth order B-spline function )2(RLNm ∈ , let )2(2)( 2/
, kxNxN j

m
jm

kj −= , 

}:{ , Z∈= kND m
kj

m
j , where Z∈kj,  are called the scale (or dilation) and position (translation) 

parameters respectively. Following [8], for eachZ∈j , let m
jV denote the closure of the linear span 

of m
jD , namely, ><= m

jL
m
j DV

)(2clos
R

. The following properties possessed by m
jD  and m

jV  form the 

foundations of the cardinal B-spline multiresolution analysis modelling framework for nonlinear 

dynamical systems. 
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Table 1 
Cardinal B-splines of order 1 to 4 

 

 
)(1 xN  )(2 xN  2 )(3 xN  6 )(4 xN  

10 <≤ x  1 x  2x  
3x  

21 <≤ x  0 x−2  362 2 −+− xx  412123 23 +−+− xxx  

32 <≤ x  0 0 2)3( −x  4460243 23 −+− xxx  

43 ≤≤ x  0 0 0 644812 23 +−+− xxx  

elsewhere 0 0 0 0 

 

 

 

 

 

 

 

 

 

 

i)   For any pair of integers m and j, with m≥ 2, the family }:)({ , Z∈= kxND m
kj

m
j  is a Riesz basis 

of m
jV  with Riesz bound mAA =  ( mA is a constant related to m) and B=1. Furthermore, these 

bounds are optimal [8].  

ii)  The mth order B-spline function mN is a scaling function andm
jV  forms a multiresolution 

analysis (MRA) [8]. 

From the above discussions, for every function m
jVf ∈ , there exists a unique sequence 

)(}{ 2 ZZ ∈∈k
m
kc  such that  

∑
∈

−=
Zk

j
m

jm
k kxNcxf )2(2)( 2/                                                                                                    (4) 

For convenience of description, the symbolφ will be introduced to represent the mth order B-spline 

function mN  and the symbol ‘m’ will be omitted in associated formulas. 

3.2  The Cardinal B-spline Model for High Dimensional Problems 

The result for the 1-D case described above can be extended to high dimensions and several 

approaches have been proposed for such an extension. Tensor product and radial construction are two 

commonly used methods [5][15][16]. In the present study, a linear additive CBS model structure will 

be employed to represent a high dimensional nonlinear function. 

For a d-dimensional function )2 dLf (R∈ , the linear additive representation is given below 

)()()(),,,( 221121 ddd xfxfxfxxxf +++=                                                                            (5) 

where )2(RLfr ∈  (r=1,2, …, d) are univariate functions, which can be expressed using the expansion 

(4) as below 

∑
∈

=
Zk

rkj
r

kjrr xcxf )()( ,, φ                                                                                                                (6) 

where )2(2)( 2/
, kxx jj
kj −= φφ , and Z∈kj,  are the scale and position parameters, respectively.  
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Now consider the model given by (1) and let )1()( +−= rtytxr for r=1,2, …, d.  Using (5) and 

(6), model (1) can be expressed as 

∑
=

=+
d

r
r

s
r txfsty

1

)( ))(()( ∑∑
= ∈

=
d

r k
rkj

rs
kj txc

1
,

),(
, ))((

Z

φ )(te+                                                         (7) 

The remaining task is how to deduce, from (7), a parsimonious model that can be used for s-step-

ahead forecasts for a given prediction horizon s. The following problem needs to be solved: 

•   How to choose the scale and position parameters j and k ? 

•   In practical modelling problems, the variables )(txr  (r=1,2, …, d), as the lagged versions of 

)(ky , are usually sparsely distributed in the associated space and therefore the problem may be 

ill -posed. The representation (7) is thus  often redundant in the sense that most of the basis 

functions (or model terms), )(, ⋅kjφ in (7), can be removed from the model, and experience shows 

that only a small number of significant model terms are required for most nonlinear dynamical 

modelling problems. The question is: how to select the potential significant model terms from a 

large number of candidate basis functions? 

The scale and position determination problem will be discussed in the following section. The model 

term selection problem has been systematically investigated in [4][7]. In the present study, the 

orthogonal forward regression (OFR) algorithm [4], coupled with a Bayesian information criterion 

(BIC) [9][12],  will be used to select significant model terms and to determine the model size (the 

number of model terms included in the final model). 

3.3  Determination of the scale and position parameters 

Assume that a d-variate function f of interest is defined in the unit hypercube d]1,0[ . Consider the scale 

parameter determination problem first. Experience on numerous simulation studies relating to wavelet 

multiresolution modelling for dynamical nonlinear systems, see for example, [5][15][16] and the 

references therein, has shown that the scale parameter j in model (7) should not be chosen too large. A 

value that is between zero and two or three for j is often adequate for most nonlinear dynamical 

modelling problems.  

For cardinal B-spline functions, the position parameter k is dependent on the corresponding 

resolution scale j. Indeed, for each fixed point ]1,0[∈x , since mN  has compact support, all except a 

finite number of terms in the expansion (4) are zero. Take the 4th-order B-spline function as an 

example. At a given scale j, the non-zero terms are determined by the position parameter k for 

12,,1,2,3 −−−−= jk  . In general, for the B-spline function of order m, whose support is ],0[ m , the 
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support for the associated function )2(2)( 2/
, kxx jj
kj −=φ  is )](2  ,2[ kmk jj +−− , therefore, the 

position parameter k at a resolution scale j should be chosen  as 12)1( −≤≤−− jkm .  

4.  Water Level Modelling and High Tide Forecasting  

4.1  The Data 

The data set used here is formed by the hourly recorded observations of water levels at Punta della 

Salute, Venice Lagoon, for the period from January 1990 to December 1994. Only 2208 data points, 

corresponding to the water levels of the period from October to December 1990, were used for model 

training, and the remaining data were used to test the performance of the identified model. The 

associated Fourier spectrum, estimated via fast Fourier transform, and the power spectral density 

(PSD), estimated via the Welch method, are shown in figures 1 and 2, where the two dominant 

frequencies are calculated to be 1f =0.0417 Hz and2f =0.0808 Hz, which correspond to the two main 

oscillation cycles of 24/1 11 ≈= fT hrs and 12/1 22 ≈= fT hrs, respectively.  

Using the information given by figures 1 and 2, the maximum lag for the input variables in the 

initial modelling procedure was chosen to be 24, to cover the range of the maximum oscillation cycle. 

Thus, the variables )23(,),1(),( −− tytyty  were used as inputs to form a predictor, whose output 

was the future behaviour, denoted by )( sty +  ( )1≥s .  

Note that the original data were initially normalized to [0,1] via a transform 

)/())(~()( abatyty −−= , where )(~ ty indicate the initial observations, and 100−=a and b=150. The 

identification procedure was therefore performed using normalized values y(t). The outputs of an 

identified model were then recovered to the original measurement space by taking the associated 

inverse transform.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  The Fourier spectrum estimated using 2208 data points hourly 
measured during October to December 1990. 
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4.2  The Models 

Let )1()( +−= rtytxr , r=1, 2,…, 24. The structure of the initial CBS model was chosen to be 

)( sty + ∑∑
= −=

=
24

1

0

3
,0

),(
,0 ))((

r k
rk

rs
k txc φ ∑∑

= −=

+
24

1

1

3
,1

),(
,1 ))((

r k
rk

rs
k txφα                                                           (8) 

where )2(2)( 2/
, kxx jj
kj −= φφ ,with Z∈kj, ,  are the 4th-order B-spline functions. Notice that model 

(8), which involves two scale levels for j=0 and j=1, is in structure different from model (7), where 

the model term )(, ⋅kjφ  only involves a single scale level. The reason that the initial model (8) was 

chosen to be such a structure was to enrich the pool of the model term dictionary, so that basis 

functions with different scale parameters can be sufficiently utilised. Although a total number of 216 

model terms (basis functions)  were involved in the initial model (8) for any given s, only a small 

number of basis functions were required to describe the relationship between 

)}23(,),1(),({ −− tytyty   and )( sty + , and significant model terms were efficiently selected by 

performing a model term detection algorithm,. Also, different values for s usually led to different final 

models. For each s, a Bayesian information criterion (BIC) [9][12] was used to determine the number 

of model terms, and the parameters of the final CBS model was then re-estimated by introducing a 

linear moving average (MA) model of order 10 [5][17].  

4.3  Prediction Results 

For convenience of comparison with other results in [2][18], eight cases, corresponding to s=1, 4, 12, 

24, 28, 48, 72, and 96, were considered, and eight different CBS models were identified. The resultant 

Fig. 2  The power spectral density function estimated using 2208 data points 
hourly measured during October to December 1990. 
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Table 2 
Prediction errors for the water level of the years 1991, 1992, 1993, and 1994, with 8760, 8760, 

8784, and 8760 records, respectively. 
 

Prediction 
horizon 

Model 
size 

RMSE 

1991 1992 1993 1994 Average 
Evolutionary 

algorithm 
Neural 

networks 
1 25 1.57 1.60 1.59 1.55 1.58 3.37 3.30 

4 26 5.62 5.60 5.53 5.35 5.53 8.26 9.55 

12 16 7.88 8.21 7.49 7.31 7.72 8.46 11.38 

24 15 8.08 8.10 7.68 7.42 7.82 8.70 11.64 

28 16 9.88 9.69 9.27 9.12 9.49 11.62 15.74 

48 15 11.22 11.30 10.54 10.35 10.86 11.28 ᧩ 

72 16 13.52 13.91 12.74 12.46 13.16 14.45 ᧩ 

96 13 15 21 15 79 14 46 14 18 14 91 16 04  

eight models were applied respectively over four test data sets, for the years from 1991 to 1994, to 

calculate s-step-ahead forecasts of the water levels. Prediction performance, measured by the root-

mean-square-errors (RMSE) as used in [2][18],  over the four test data sets, obtained from the 

identified CBS models, are shown in Table 2, where some results produced from multilayer neural 

networks [18] and evolutionary algorithms [2] are also listed to facilitate the comparison. Clearly, 

compared with the results produced by multilayer neural networks [18] and evolutionary algorithms 

[2], where over 45,000 observations were involved in the training data set, the results produced by the 

proposed CBS models are better, both for short and long term forecasting. 

To visually illustrate the CBS models’ performance for high tide forecasting, short term 

predictions for some abnormal high tides, and medium and long term predictions for some normal 

high tides, were calculated using the identified CBS models. Figure 3 presents the one-step-ahead 

(one-hour-ahead) prediction for typical abnormal high tides, figures 4 and 5 presents 4 and 12-step-

ahead predictions for typical high tides, while figures 6 and 7 present 24 and 48-step-ahead 

predictions for typical normal water level at the Venice lagoon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.  Conclusions 

The CBS models are a class of nonlinear representation, where dilated and translated versions of 

cardinal B-spline functions were chosen to be the basis functions (regressors or model terms). As a 

special class of linear-in-the-parameters representation, the CBS models are easy to train using some 

standard model term selection algorithms, and the final identified models usually only include a small 

number of significant model terms. The proposed CBS models provide an efficient representation for 

tide forecasts at the Venice lagoon: the resulting models can produce accurate short term predictions 

for typical abnormal high tides; can produce good predictions for typical high tides; and can produce 

good long term predictions for typical normal water levels.  
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Fig. 3  One-hour-ahead prediction for typical abnormal high tides. The thin line with dots indicates the 
measurements (observed in 1992), and the thick line with circles indicates the prediction values. 

Fig. 4  Four-hour-ahead prediction for typical high tides. The thin solid line indicates the 
measurements (observed in 1993), and the thick dashed line indicates the prediction values. 
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Fig. 5  Twelve-hour-ahead prediction for typical high tides. The thin solid line indicates the 
measurements (observed in 1993), and the thick dashed line indicates the prediction values. 

Fig. 6  Twenty-four-hour-ahead prediction for typical normal water level. The thin solid line indicates the 
measurements (observed in 1994), and the thick dashed line indicates the prediction values. 
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Fig. 7  Forty-eight-hour-ahead prediction for typical normal water level. The thin solid line indicates 
the measurements (observed in 1994), and the thick dashed line indicates the prediction values. 
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