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Abstract

The identification of binary cellular automata from spatio-temporal binary patterns is
investigated in this paper. Instead of using the usual Boolean or multilinear polynomial
representation, the Fourier transform representation of Boolean functions is employed in
terms of a Fourier basis. In this way, the orthogonal forward regression least-squares algo-
rithm can be applied directly to detect the significant terms and to estimate the associated
parameters. Compared with conventional methods, the new approach is much more robust
to noise. Examples are provided to illustrate the effectiveness of the proposed approach.

1 Introduction

Cellular automata (CA) have been widely studied in recent years. The great importance of these
studies comes from the fact that simple CA rules can be used to produce very complex patterns,
such as spirals of the Belousov-Zhabotinsky reaction, spots and strips on animal skins, and the
contours on human fingerprints etc., but also to provide an explanation about pattern formation
in a variety of scientific fields (Ilachinski 2001, Deutsch and Dormann 2005, Gerhart, Schuster,
and Tyson 1990, Greenberg, Hassard, and Hastings 1978). Whilst there is plenty of literature
focusing on developing CA models theoretically and investigating the dynamical behaviour and
pattern formation revealed by given CA models, the problem of identification or extraction
of CA rules from observed spatio-temporal patterns has received far less attention. The CA
identification problem is very important because of the importance of being able to produce a
CA model directly from observed patterns. These extracted CA models can subsequently be
used for the analysis of the mechanism of the observed pattern formation, for the simulation of
the dynamical behaviours, and even for hardware implementation.
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The CA identification problem consists of extracting the local transition rules and the associated
neighbourhood over which the rule is operated, from observed, possibly noisy, spatio-temporal
patterns. The identified CA rules should be parsimonious so that the set of the rules is as
small as possible and the size of the neighbourhood is minimal. Several researchers have studied
this problem (Adamatzky 1994, 1997, Adamatzky and Bronikov 1990, Burton 1996, Richards,
Meyer, and Packard 1990, Yang and Billings 2000, Billings and Yang 2003a,b). Sequential
and parallel algorithms for computing the local transition table were presented by Adamatzky
(1994), and Richards (1990) introduced a method using genetic algorithms (GAs). However, no
clear structure of the related neighbourhoods was obtained in either of these studies and the
neighbourhood detection process was complicated. GAs were also employed in Yang and Billings
(2000) to determine the rules as a set of logical operators. Simple local rules were found for
low-dimensional problems, but when CAs with large-size neighbourhoods are involved the search
process can be computationally demanding, this is due to the nature of the GA evolution. A
multilinear polynomial form was used by Billings and Yang (2003a,b) to represent the underlying
binary Boolean rules and a modified orthogonal least-squares algorithm was employed to detect
the neighbourhood and the unknown model parameters. It has been shown that this method can
be used to deal with high-dimensional problems in a very effective way. However, the method
may deteriorate when the data is corrupted by noise. This is due to the fact that the coefficients
of the multilinear polynomial representation of binary Boolean rules are integers. It follows that
an identified CA model, from noisy data, may produce noninteger values and hence the method
is not totally robust to noise. To retain the advantages of this approach, that is being able to
deal with high-dimensional problems, while overcoming the sensitivity to noise, in this paper
a new identification approach is proposed by associating the Orthogonal Forward Regression
(OFR) algorithm (Billings, Chen, and Kronenberg 1989) with a threshold Fourier transform
representation of binary Boolean functions. The main advantage of the approach arises because
the Fourier transform representation of a binary Boolean function is in the field of real numbers so
that the OFR algorithm can be applied directly whereas in the case of the multilinear polynomial
representation, integer constraints must be considered (Billings and Yang 2003a, b). Moreover,
the probability of an error when predicting using the threshold Fourier representation is bounded
by the modelling error, which means the possibility of an error in the predictions can be made
sufficiently small as long as the approximation error is sufficiently small (Mansour 1994).

The paper is organised as follows. Section 2 presents a brief introduction to binary CA models
of spatio-temporal systems. Several different representations of binary CA rules are discussed
in section 3. The new identification algorithm is derived in section 4 and section 5 describes
simulation examples to demonstrate the potential of the proposed approach. Finally conclusions
are given in section 6.

2 Binary CA models of spatio-temporal dynamical sys-

tems

The CAs, of interest in this paper, are dynamical systems in which space and time are discrete
over regular grids of cells, each of which can be in one of a finite number of possible states,
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updated synchronously in discrete time steps according to a local, identical transition rule. The
state of a cell is determined by the local rule which depends on the states of a surrounding
neighbourhood of cells. In this paper, binary CAs are investigated, that is the state of the cells
can only take two values.

Formally a binary CA can be defined as follows.

Let I be a d-dimensional lattice consisting of the set of all integer coordinate vectors i =
(i1, · · · , id) ∈ Zd. Suppose the state of a cell i in I at time instant t is determined by the
previous states of a surrounding neighbourhood ni = (i+n1, i+n2, · · · , i+nm) of the cell i. The
CA model of a spatio-temporal dynamical system defined over I can be described as

xi(t) = f(x
ni

(t − 1), · · · , x
ni

(t − k)) (1)

where xi(t) is the state of the ith cell in I at time instant t, f is a function describing the
local transition rule, and x

ni
(t− j) = (xi+n1

(t− j), xi+n2
(t− j), · · · , xi+nm

(t− j)), j = 1, 2, · · · , k
represents the previous states of the neighbourhood of the cell i with k the maximal time lag.

From the CA model (1) it can be observed that for a binary CA, the transition rule f is a
Boolean function defined on {0, 1}n taking values on {0, 1}, where n = m×k is the total number
of neighbouring cells. Note that the local transition rules can be defined in several equivalent
ways. In what follows, some of these representations are discussed.

3 Binary CA rules and their representations

Consider the space of real functions from {0, 1}n into R, that is the set of Fn = {f |f : {0, 1}n →
R}. It follows that all Boolean functions are included in Fn. Obviously, each f ∈ Fn can be
regarded as a vector of 2n real values and Fn is then a vector space of dimension 2n with its
standard basis.

3.1 Binary CA rules represented by a transition table

The most common method to define a CA rule is to use a transition table analogous to a truth
table where the first row describes the state of the neighbourhood and the second row indicates
the next state of the cells. As an example, the rules are then labelled by specifying which
neighbourhoods map to zero and which to one. The standard form of a 1-dimensional 3-cell von
Neumann neighbourhood rule R is shown below

xi−1(t − 1)xi(t − 1)xi+1(t − 1) 000 001 010 011 100 101 110 111
xi(t) r0 r1 r2 r3 r4 r5 r6 r7

(2)
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where rl, l = 0, 1, · · · , 7 indicate the next states of the cells. The numerical label D assigned
to the rule R is given uniquely by D =

∑23−1
l=0 rl2

l, which is simply the sum of the coeffi-
cients associated with all the non-zero components. For example, a 1-dimensinal 3-cell von
Neumann neighbourhood rule Rule30 is defined as Rule30 = (01111000) and the numerical label
D(Rule30) = 21 + 22 + 23 + 24 = 30. From the vector space point of view, this rule can be
expressed as a Boolean function in F3 with the standard basis of F3. In fact, the standard basis
of vector space Fn can be defined by the so-called ‘delta’ functions, that is for each α ∈ {0, 1}n,
define eα : {0, 1}n → {0, 1} as

eα(x) =

{

1, if x = α
0, otherwise

(3)

then all 2n functions eα forms a set of basis of the space Fn. It follows that any Boolean function
f ∈ Fn can be represented as

f(x) =
∑

α∈{0,1}n

θαeα(x) (4)

where the coefficients are θα = f(α).

For the above special case n = 3, it is clear that the first row of the rule can be regarded as the
basis functions and with the second row, the above rule can be written as a Boolean function as
follows

R(x) = r0e000(x)+r1e001(x)+r2e010(x)+r3e011(x)+r4e100(x)+r5e101(x)+r6e110(x)+r7e111(x) (5)

Accordingly, a binary CA model of form (1) of this system can be written as

xi(t) = R(xi−1(t − 1), xi(t − 1), xi+1(t − 1)) (6)

=
∑

α∈{0,1}3

rαeα(xi−1(t − 1), xi(t − 1), xi+1(t − 1))

where α ∈ {0, 1}3.

3.2 The Boolean form of CA rules

The Boolean form of CA rules can be constructed using some simple logical operators such as
NOT, AND, and OR etc. The rules for all 1-dimensional CA with a 3-cell neighbourhood can
be found in Wolfram (1994). The Boolean form of Rule30, for example, is
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xi(t) = Rule30(xi−1(t − 1), xi(t − 1), xi+1(t − 1)) (7)

= (xi−1(t − 1) ∧ x̄i(t − 1) ∧ x̄i+1(t − 1)) ∨ (x̄i−1(t − 1) ∧
xi(t − 1)) ∨ (x̄i−1(t − 1) ∧ xi+1(t − 1))

where −,∧, and ∨ denote the NOT, AND, and OR operators respectively.

The Boolean form of CA rules can also be represented using only AND and XOR operators
(Billings and Yang 2003b). For the same example Rule30, this kind of Boolean form is

xi(t) = Rule30(xi−1(t − 1), xi(t − 1), xi+1(t − 1)) (8)

= a0 ⊕ a1xi−1(t − 1) ⊕ a2xi(t − 1) ⊕ a3xi+1(t − 1) ⊕ a4(xi−1(t − 1) ∧ xi(t − 1)) ⊕
a5(xi−1(t − 1) ∧ xi+1(t − 1)) ⊕ a6(xi(t − 1) ∧ xi+1(t − 1)) ⊕
a7(xi−1(t − 1) ∧ xi(t − 1) ∧ xi+1(t − 1))

where ⊕ denotes the XOR operator, ai, i = 0, 1, · · · , 7 = 23 − 1 are binary numbers and ai = 1
indicates that the corresponding term is included in the Boolean function while ai = 0 indicates
that the corresponding term is not included. A general form of (9) for the n-variable case with
an m-site neighbourhood of ni = (i+n1, i+n2, · · · , i+nm) and maximal time lag k (n = m× k)
can be written as

xi(t) = a0 ⊕ a1xi+n1
(t − 1) ⊕ · · · ⊕ a2n−1(xi+n1

(t − k) ∧ · · · ∧ xi+nm
(t − k)) (9)

Note that this representation is unique, that is for an n-variable problem, one set of {ai, i =
0, 1, · · · , 2n − 1} corresponds to one and only one n-variable CA rule. This holds for higher
dimensional CAs.

3.3 Multilinear polynomial form of CA rules

Let f ∈ Fn be a Boolean function. A real multilinear polynomial p : Rn → R is called a
representation of f over the real field if for every x ∈ {0, 1}n, f(x) = p(x). It is well known
that every Boolean function f can be represented as a polynomial fp over the ring of integers
(Schneeweiss 1989, 1998, Billings and Yang 2003a, b), that is

fp(x) = fp(x1, x2, · · · , xn) = c0 +
m

∑

i=1

(ci

∏

j∈Ii

xj), Ii ⊂ {1, 2, · · · , n} (10)

This representation is unique and the coefficients are integers (c0 is Boolean). With this mul-
tilinear polynomial representation of the rules, a binary CA with an m-site neighbourhood of
ni = (i + n1, i + n2, · · · , i + nm) and maximal time lag k (n = m × k) can be written as
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xi(t) = c0 +
m

∑

j=1

k
∑

l=1

cj,lxi+nj
(t − l) +

m
∑

j1≥j2=1

k
∑

l1≥l2=1

cj1,j2,l1,l2xi+nj1
(t − l1)xi+nj2

(t − l2) (11)

+ · · ·+ c2n−1xi+n1
(t − 1) · · ·xi+nm

(t − k)

3.4 CA rules represented by the Fourier basis

Clearly, each f ∈ Fn can be regarded as a vector of 2n real values and Fn is then a vector space
of dimension 2n with its standard basis. Moreover, the space Fn can be endowed with an inner
product as follows

< f, g >=
1

2n

∑

x∈{0,1}n

f(x)g(x) (12)

The norm of a function f in Fn is then ‖f‖ =
√

< f, f >.

The Fourier basis of the space Fn consists of 2n functions: for each α ∈ {0, 1}n, χα : {0, 1}n →
{−1, +1} is defined by

χα(x) = (−1)
∑n

i=1
xiαi (13)

There are several important properties of the above Fourier basis:

• The basis is normal, that is ‖χα‖ = 1.

• The basis is orthogonal, that is

< χα, χβ >=

{

1, if α = β
0, otherwise

(14)

• The number of Fourier basis is 2n.

Following the above three properties, the Fourier basis forms an orthonormal basis and any
function f in Fn can uniquely be represented as a linear combination of the basis functions,
that is

f(x) =
∑

α∈{0,1}n

θαχα(x) (15)

where θα = f̂(α) =< f, χα >.
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• Parsevals identity:
∑

α∈{0,1}n f̂(α)2 = 1/2n
∑

x∈{0,1}n f(x)2.

It follows that for Boolean functions taking the values on {−1, +1}, Parsevals identity is
∑

α∈{0,1}n f̂(α)2 = 1.

• Let h be a function in Fn. Define the sign function or threshold to be

Sign(h)(x) =

{

+1, if h(x) ≥ 0
−1, otherwise

(16)

If f ∈ Fn is a Boolean function taking values on {−1, +1}, then

Pr[f(x) 
= Sign(h(x))] ≤ E[(f − h)2] (17)

where Pr[·] denotes the probability and E[·] is the expectation.

With this Fourier basis, a binary CA with an m-site neighbourhood of ni = (i+n1, i+n2, · · · , i+
nm) and maximal time lag k (n = m × k) can be written as

xi(t) =
∑

α∈{0,1}n

θαχα(xi+n1
(t − 1), · · · , xi+nm

(t − k)) (18)

3.5 Comments on CA identification using different representations

of Boolean functions

The objective of binary CA identification for spatio-temporal dynamical systems is to obtain
a binary CA model, that is the local transition rule, from observed spatio-temporal patterns.
Any one of the above equivalent representations of the local transition functions can be used
to describe the underlying spatio-temporal dynamics once the representation is estimated or
extracted by using some identification algorithm. Ideally, the identification technique should be
able to produce a concise expression of the rule. This ensures that the obtained CA model is
parsimonious and can readily be interpreted either for simulation or hardware implementation
of the CA. Note that all of the above four representations (5), (9), (11), and (18) of the CA
rules are in a form that is linear-in-the-parameters based on either the field of real numbers, the
ring of integers, or Boolean algebra, therefore, theoretically any least-squares-like algorithm can
be employed to produce an approximation of the rule. However, there are several difficulties
associated with the CA identification problem that need to be addressed:

1. The neighbourhood of a cell is the set of cells over both space and time that are directly
involved in the evolution of the cell. The size of a neighbourhood determines the dimension
of the local rules. Most commonly considered neighbourhoods are the von Neumann and the
Moore neighbourhoods. However, there are many more possible neighbourhood structures
for higher dimensional CAs. For instance, the CA model of reaction-diffusion systems

7



generally involves two different areas in the space domain, which interact with each other
to mimic the reaction process and the diffusion process. Because the neighbourhood of a
cell in a spatio-temporal system involves cells from different spatial and temporal scales, it
follows that the size of the neighbourhood for a higher dimensional CA can be very large.
This in turn can make the number of terms in the linear-in-the-parameters expression very
large, which can then make the direct application of a least-squares-type algorithm difficult.

2. Generally, when identifying CA rules, the only a priori knowledge that is available will
be the observed spatio-temporal patterns produced by the evolution of the underlying
spatio-temporal system. The neighbourhood structure will most likely to be unknown and
this means that the possible combinations can number into the millions. Furthermore, as
the size of the neighbourhood, or the dimensionality, or both increase the combinational
possibilities become very large.

3. Noise can be caused by imperfect measurements or uncertainties due to an incorrect neigh-
bourhood structure. A most serious consequence caused by noise is the loss of the Boolean
property in the identified transition functions.

A few authors have appreciated the neighbourhood size problem (Adamatzky 1994, Richards,
et al 1990) and have therefore focused on a very limited class of low-dimensional CAs. Billings
and Yang (2003a,b) presented a possible solution to this problem by combining the polynomial
representation (11) with a modified orthogonal least-squares method. The main advantage of
this method is that the identification problem is mapped into an integer polynomial in a linear-
in-the-parameters form and an orthogonal least squares algorithm can then be used to detect
the model structure or neighbourhood and produce the parameter estimates in a stepwise man-
ner. Consequently, higher dimensional problems can be dealt with. However, the method may
become sensitive to noise or uncertainty because the Boolean property of the identified CA rules
can become corrupted by the approximate error and the estimated parameters can become real
numbers rather than integers in the presence of noise. Because the multilinear polynomial rep-
resentation of the rule is in terms of integers, integer parameter estimation techniques (Hassibi
and Boyd 1998) can be applied. However, these authors showed that the estimates can be poor
if the parameters are treated as being real and then rounded to be integers. Boolean regression
methods (Boros, Hammers, and Hooker 1995) suffer from similar problems, and post processing
using a GA algorithm (Billings and Yang 2003a) is computationally very expensive.

To overcome these problems, in this paper a totally new approach is proposed by applying
the Orthogonal Forward Regression (OFR) least-squares algorithm to a thresholded Fourier
representation of CA rules. The proposed method has the following characteristics.

• The Fourier representation of CA rules is in the field of real numbers. Compared with the
representation in Boolean algebra and integer ring, there is no need to use any constraints
when applying the identification algorithm.

• By using a thresholded Fourier representation the property of being Boolean can always
be retained.
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• The property of a thresholded Fourier representation guarantees as long as the modelling
error is sufficiently small, the identified model can be sufficiently accurate and robust to
noise.

• The OFR least-squares algorithm can effectively detect the neighbourhood structure and
provide parameter estimates in a forward term selection manner when the neighbourhood
structure is unknown.

In the following section, the OFR algorithm and some simulation examples will be presented
based on the new Fourier basis approach.

4 The identification algorithm

Rewrite (18) using the threshold operation to give

xi(t) = f(xi+n1
(t−1), · · · , xi+nm

(t−k)) = Sign(
∑

α∈{0,1}n

θαχα(xi+n1
(t−1), · · · , xi+nm

(t−k))) (19)

Note that in this way the output domain is {−1, +1} while the input domain is {0, 1}n. It
follows that when doing model prediction after identification, the xi(t) should be transformed
back to the domain {0, 1} as the input at the next time instant if necessary. The objective of
the CA identification for spatio-temporal dynamic systems is to determine f in (19), that is to
determine the neighbourhood structure and to estimate the parameters. In order to obtain the
unknown neighbourhood structure, initially a large possible neighbourhood should be chosen,
which should include the correct neighbourhood as a subset. From the initial neighbourhood, a
set of candidate model terms can be constructed according to the Fourier basis. The Orthogonal
Forward Regression algorithm (OFR) (Chen, Billings, and Luo 1989) is then employed. The
OFR algorithm involves a stepwise orthogonalisation of the regressors and a forward selection
of the relevant terms based on the Error Reduction Ratio (ERR) criterion (Billings, Chen, and
Kronenberg 1989). The algorithm provides the optimal least-squares estimate of the associated
coefficients θ.

For a given candidate regressor set G = {ϕm}M
m=1, the OFR algorithm can be summarised as

follows

1. Step 1

I1 = IM = {1, · · · , M}

wm(t) = ϕm(t), b̂m =
wT

my

wT
mwm

(20)
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l1 = arg max
m∈I1

(b̂2
m

wT
my

yT y
) = arg max

m∈I1
(errm) (21)

w0
1 = wl1 , c

0
1 =

w0T
1 y

w0T
1 w0

1

(22)

a1,1 = 1 (23)

2. Step j, j > 1

Ij = Ij−1\lj − 1 (24)

wm(t) = ϕm(t) −
j−1
∑

k=1

w0T
k y

w0T
k w0

k

w0
k, b̂m =

wT
my

wT
mwm

(25)

lj = arg max
m∈Ij

(b̂2
m

wT
my

yTy
) = arg max

m∈Ij

(errm) (26)

w0
j = wlj , c

0
j =

w0T
j y

w0T
j w0

j

(27)

ak,j =
w0T

k ϕlj

w0T
k w0

k

, k = 1, · · · , j − 1. (28)

The procedure is terminated at the Ms-th step when the termination criterion

1 −
Ms
∑

m=1

errm < ρ (29)

is met, where ρ is a designated error tolerance, or when a given number of terms in the final
model is reached.

The estimated coefficients are calculated from the following equation













θl1

θl2
...

θlMs













=















1 a1,2 · · · a1,Ms

0 1
... a2,Ms

...
...

. . .
...

0 0 · · · 1















−1












c0
1

c0
2
...

c0
Ms













(30)

and the selected terms are ϕl1 , · · · , ϕlMs
.
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Based on this algorithm, the identification procedure for CA models of spatio-temporal systems
can be summarised as follows

1. Step 1: Select the largest possible spatial neighbourhood sites n1, · · · , nm.

2. Step 2: Select the maximal possible time lags k and then calculate all the candidate model
terms using the data and the Fourier basis.

3. Step 3: Apply the OFR algorithm to obtain the terms (neighbourhood) and parameters
of the CA model.

4. Step 4: Apply model validity tests to evaluate the model. If no valid models are found,
go back to Step 1 and reset the candidate terms to include a larger spatio-temporal neigh-
bourhood.

5. Step 5: Validate the final CA model.

Remark 1 The final model and parameters should be validated as the final step in the identifi-
cation. A commonly used approach is to check one-step-ahead predictions or model predictions.
In this paper, model predictions will be used. Furthermore, the Parseval’s identity for Boolean
functions:

∑

α∈{0,1}n f̂(α)2 = 1 can also be used to test the suitability of the final CA model.

Remark 2 Note that in the above identification procedure, the spatial neighbourhood sites
and the time lags of the identified site need to be set known a priori. In other words, the
neighbourhood of the identified site, that is, the region around that site which influences the
dynamics of that site in the spatial domain and in the time domain need to be set known
before starting the identification. In practice, these two factors are important in determining the
spatio-temporal dynamics of the underlying system. This problem is related to the embedding
dimension problem in system reconstruction theory (Casdagli, 1992).

5 Numerical simulations

5.1 Example 1: Identification of a 1-dimensional 3-site CA Rule30

As discussed earlier, the standard form of a 1-dimensional 3-cell rule with a von Neumann
neighbourhood is shown below

xi−1(t − 1)xi(t − 1)xi+1(t − 1) 000 001 010 011 100 101 110 111
xi(t) r0 r1 r2 r3 r4 r5 r6 r7

(31)

where ri, i = 0, 1, 2, · · · , 7 indicates the next state of the cells. The 1-dimensinal 3-cell rule
Rule30 with von Neumann neighbourhood can then be written as Rule30 = (01111000) with the
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Figure 1: Example 1: Spatio-temporal patterns formed by the evolution of the one dimensional
CA Rule30 with von Neumann neighbourhood

numerical label D(Rule30) = 21 + 22 + 23 + 24 = 30. The spatio-temporal patterns generated
by the evolution of the Rule30 over a 200 × 200 spatio-temporal lattice with a von Neumann
neighbourhood xi−1(t − 1), xi(t − 1), and xi+1(t − 1) is shown in Fig. (1).

For the purpose of identification, the initial possible neighbourhood was assumed to be xi−2(t−
1), xi−1(t− 1), xi(t− 1), xi+1(t− 1), xi+2(t− 1), xi+1(t− 2), which is the same as that in Billings
and Yang (2003b). Then the thresholded form of the Fourier representation of Rule30 with this
initial neighbourhood is given by

xi(t) = Sign(
∑

α∈{0,1}6

θαχα(xi−2(t − 1), xi−1(t − 1), xi(t − 1), xi+1(t − 1), xi+2(t − 1), xi+1(t − 2)) (32)

= Sign(
∑

α∈{0,1}6

θα(−1)xi−2(t−1)α1+xi−1(t−1)α2+xi(t−1)α3+xi+1(t−1)α4+xi+2(t−1)α5+xi+1(t−2)α6)

where α = (α1, α2, · · · , α6). The objective of CA identification is to determine which terms should
be retained in this model and to obtain an estimate of the corresponding parameters θα. The data
used in the identification were extracted randomly from the 200×200 spatio-temporal cells. After
applying the algorithm in section 4, the final model and parameters obtained are shown in Table
(1) and the model predicted output is shown in Fig. (2), where Terms represents the selected
model terms, Estimates are the associated parameters, and ERR indicates the error reduction
ratio from the OFR algorithm (Billings, Chen, and Kronenberg 1989). It is noteworthy that the
estimated parameters satisfy Parseval’s identity. Moreover, from Fig. (2) it can be observed that
there is no prediction error, which indicates an excellent identification and prediction result.

To test the sensitivity of the proposed approach to noise or uncertainty, the data used for iden-
tification were corrupted with noise. This was achieved by randomly flipping some of the states
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Terms Estimates ERR

(−1)yi−1(t−1) 5.0000e-01 3.6000e-01
(−1)yi−1(t−1)+yi(t−1)+yi+1(t−1) -5.0000e-01 2.0364e-01

(−1)yi−1(t−1)+yi(t−1) -5.0000e-01 1.9166e-01
(−1)yi−1(t−1)+yi+1(t−1) -5.0000e-01 2.4471e-01

Table 1: Example 1: The terms and parameters of the final CA model using the threshold Fourier
representation
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Figure 2: Example 1: Model predicted output using the identified CA model and the thresholded
Fourier representation in Table 1
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Terms Estimates ERR

(−1)yi−1(t−1)+yi(t−1)+yi+1(t−1) -5.2748e-01 3.3640e-01
(−1)yi−1(t−1)+yi+1(t−1) -4.3018e-01 1.7217e-01
(−1)yi−1(t−1)+yi(t−1) -4.6830e-01 1.9075e-01

(−1)yi−1(t−1) 4.3440e-01 1.8934e-01
(−1)yi−1(t−2)+yi+1(t−1)+yi+2(t−1) 7.0325e-02 4.8764e-03

Table 2: Example 1: The terms and parameters of the final CA model using the threshold Fourier
representation from noisy data
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Figure 3: Example 1: Model predicted output using the identified CA model with noise and the
thresholded Fourier representation in Table 2

of the updated cells from 1 to 0 or from 0 to 1. The identified model and estimated parameters
based on this noisy data set are shown in Table (2) and Fig. (3). From the final model it can
be seen that a false neighbour yi−1(t − 2) has been chosen by the algorithm and also that the
square-summation of the estimated parameters is 9.3608e − 01 when it should be 1 according
to the requirement of Parseval’s identity. All of these observations indicate that the model ob-
tained from noisy data is an approximate CA model. Nevertheless, Fig. (3) shows that there
is no prediction error which shows the very good prediction ability of the thresholded Fourier
representation of Boolean functions.

5.2 Example 2: Binary CA rule identification of vertebrate skin pat-

terns

It is well known that the patterns on vertebrate skin are of great importance to the survival of
the species because they represent camouflage, species identification, and/or warning patterns.

14
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Figure 4: Example 2: Vertebrate skin patterns at the time steps: (a) t = 1, (b) t = 8, (c) t = 9,
and (d) t = 10

Typical vertebrate skin patterns include spots and stripes. Striped patterns are not only seen
in animals but also in human fingerprints. From both an evolutionary and a mathematical
point of view, it is of great interest to investigate how such skin patterns are formed. Since
Turing’s reaction-diffusion model (Turing 1952) many different models have been presented, for
example, Suzuki, Takayama, Motoike, and Asai (2006), and Young (1984). However, there are
very few studies that have considered the identification of a CA model from observed or recorded
vertebrate skin patterns. In this section, the new Fourier basis proposed identification method
will be used to obtain a simple binary CA model directly from observed patterns. For the
purpose of numerical simulation, example patterns were generated using Young’s model (Young
1984) over a 100×100 spatial lattice and are shown in Fig. (4). The activation area had a radius
of 2.30 and the inhibition area had an outer radius of 6.01. Therefore, roughly the neighbourhood
involved about 225 spatial cells. If the time lag is considered as 1, the Fourier basis consists of
2225 = 5.3920e+ 067 terms which is not realistic for identification. In this identification example
therefore, the initial spatial neighbourhood was set to be the Moore neighbourhood with a radius
of 1 and the time lag was assumed to be 1.

The final identified CA model is shown in Table (3) and the model predicted patterns are shown
in Fig. (5), which indicates a good result.

6 Conclusions

A new identification method for binary CA models of spatio-temporal dynamic systems has
been proposed. The proposed method is a combination of the threshold Fourier representation
of Boolean functions and an orthogonal forward regression identification algorithm. The new
method introduced a new approach to CA identification techniques for spatio-temporal dynamical
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Terms Estimates ERR

(−1)yi,j(t−1) -4.3771e-01 6.4000e-01
(−1)yi+1,j(t−1) -3.6346e-01 6.4533e-02

(−1)yi−1,j+1(t−1) -3.5913e-01 4.3562e-02
(−1)yi,j(t−1)+yi+1,j(t−1)+yi−1,j+1(t−1) 1.2087e-01 4.1232e-02

(−1)yi,j−1(t−1)+yi−1,j (t−1)+yi,j (t−1)+yi−1,j+1(t−1)+yi,j+1(t−1) -2.0270e-01 1.7281e-02
(−1)yi,j−1(t−1)+yi,j (t−1)+yi−1,j+1(t−1) 1.4639e-01 2.0924e-02
(−1)yi,j−1(t−1)+yi+1,j−1(t−1)+yi,j (t−1) -2.7958e-01 1.4924e-02

(−1)yi−1,j−1(t−1)+yi−1,j (t−1)+yi+1,j (t−1)+yi−1,j+1(t−1)+yi,j+1(t−1) 2.2127e-01 1.6312e-02
(−1)yi−1,j−1(t−1)+yi+1,j (t−1)+yi+1,j+1(t−1) -2.5408e-01 1.6102e-02

(−1)yi,j−1(t−1)+yi+1,j−1(t−1)+yi,j (t−1)+yi+1,j (t−1)+yi+1,j+1(t−1) 1.6063e-01 1.9184e-02
(−1)yi−1,j(t−1)+yi,j (t−1)+yi+1,j (t−1)+yi,j+1(t−1)+yi+1,j+1(t−1) 1.4089e-01 1.2709e-02

(−1)yi−1,j−1(t−1)+yi+1,j−1(t−1)+yi,j (t−1)+yi−1,j+1(t−1)+yi,j+1(t−1) 1.1902e-01 9.0570e-03

Table 3: Example 2: The terms and parameters of the final CA model using the threshold Fourier
representation
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Figure 5: Example 2: Vertebrate skin patterns produced by the identified CA model at the time
steps: (a) t = 1, (b) t = 8, (c) t = 9, and (d) t = 10
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systems, which is more robust to the presence of noise or uncertainty. The application of the
proposed method has been demonstrated by several numerical simulations.
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