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Abstract: High-dimensional data analysis involving a large number of variables or features is commonly 

encountered in multiple regression and multivariate pattern recognition. It has been noted that in many cases 

not all the original variables are necessary for characterizing the overall features. More often only a subset of 

a small number of significant variables is required. The detection of significant variables from a library 

consisting of all the original variables is therefore a key and challenging step for dimensionality reduction. 

Principal component analysis is a useful tool for dimensionality reduction. Principal components, however, 

suffer from two main deficiencies: Principal components always involve all the original variables and are 

usually difficult to physically interpret. This study introduces a new multiple sequential orthogonal least 

squares algorithm for feature ranking and subset selection. The new method detects in a stepwise way the 

capability of each candidate feature to recover the first few principal components. At each step, only the 

significant variable with the strongest capability to represent the first few principal components is selected. 

Unlike principal components, which carry no clear physical meanings, features selected by the new method 

preserve the original measurement meanings.  

Keywords:  Dimensionality reduction, high-dimensional data analysis, subset selection, principal component 

analysis, orthogonal least squares. 

1.     Introduction 

Multivariate data analysis such as multiple regression and high-dimensional pattern classification, often 

involves a large number of variables or features. Quite often the sample features are unknown a priori and 

measurements are obtained with respect to more variables than is strictly necessary for conveying the main 

features. There is, therefore, the potential to greatly reduce the dimensionality without distorting the overall 

features. As one commonly used dimensionality reduction approach, subset selection aims to find a small 

number of significant variables or features from a library consisting of all the original variables. The remaining 

insignificant variables are, in a sense, irrelative or redundant, and can be ignored. In fact, the inclusion of these 

insignificant variables may often complicate data inspection without providing any extra information [Jolliffe 

1972]. 

A large amount of work has been done on dimensionality reduction, see for example, [Oja 1983, Jain et al. 

2000, Carreira-Perpinan 2001, Fodor 2002, Webb 2002]. Principal component analysis (PCA) and its variants 

[Jolliffe 2002] belong to the class of the most commonly used methods for dimensionality reduction. Note, 

however, that principal components (PCs) suffer from two main drawbacks: PCs are transformed variables that 

always involve all the original variables, and PCs are usually difficult to physically interpret. In many cases there 

may be some redundancy, linear correlation or linear dependency among the original variables. The redundant or 

irrelevant variables need not to be included in PCs and the exclusion of these insignificant variables could sake 
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to save a great amount of time and cost spent on obtaining and measuring these insignificant variables in future 

experiments. Bearing this fact in mind, efforts have been made to develop algorithms to select significant 

variables or eliminate insignificant variables from the full set of original variables, to form an effective subset 

that can be used to sufficiently recover the main information conveyed by the full data set [Jolliffe 1972, 1973, 

Krzanowski 1987, Pudil et al. 1994, Kohavi and John 1997, Mao 2005]. In fact, in many cases it is desirable to 

reduce not only the dimensionality in the transformed space, but also the number of variables that need to be 

considered or measured in the future in the measurement space [McCabe 1984].  

This study introduces a new method for ranking significant variables and selecting a subset from a library 

consisting of all the original variables. In the new method, a general variable detection and subset selection 

problem is initially converted into a multivariate regression problem by treating principal components as the 

dependent variables (responses) and the original variables as the independent variables (predictors or explanatory 

variables). A new multiple sequential orthogonal least squares (MSOLS) algorithm is derived to detect the  

significant variables for multivariate regression. The main idea behind the new method is to detect, in a stepwise 

way, the significance of each candidate variable to represent the first few PCs. At each step only the variable 

with the strongest capability to present the first few PCs is selected and included in the subset. 

The paper is organized as follows. In Section 2 the multiple sequential orthogonal least squares method is 

proposed in detail. In Section 3, the variable detection problem from principal components is converted into a 

subset selection problem for multiple regression, for which significant variables can easily be detected using the 

MSOLS algorithm. In Section 4, three examples relating to both artificial and real data sets are provided to 

illustrate the application of the new method for feature ranking and subset selection. The work is briefly 

concluded in Section 5. 

2.     The MSOLS algorithm 

This section presents an orthogonal least squares type algorithm for variable detection and subset selection 

for a multiple linear regression. The models that are considered throughout the paper will be restricted to the 

linear in the regression coefficients form. The learning algorithm is multiple-regression oriented and will be 

implemented using a sequential orthogonal least squares method. This new learning scheme will thus be referred 

to as the multiple sequential orthogonal least squares (MSOLS) algorithm. 

2.1   The multiple regression model 

Denote the multiple response variables by  and the set of n predictor (or independent) variables 

by . Assume that the relationship between (i=1,2, …,m) and (j=1,2, …,n) can be 

approximated by the linear-in-the-parameters regression model 

myyy L,2,1

nxxx ,,, 21 L iy jx
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where denotes the kth observation of the ith response variable and denotes the kth observation of the 

jth predictor variable (i=1,2, …, m; j=1,2, …, n; k=1,2, …, N); is assumed to be an unobservable error 

representing the discrepancy in the approximation; , called the regression parameters or 
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coefficients, are unknown constants that need to be estimated from the data. The linear model (1) can be 

expressed using a compact form 

iii eXȕy +=                                                                                                                                            (2) 

where , , and 

 with and for j=1,2,…, n. 
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The m matrix equations given by (2) can be put together to form an mth block-structured matrix equation 

below  
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2.2   Subset selection for the multiple regression model 
In many cases, the full set of the original predictor variables may be redundant for 

representing the response variables, , because of linear correlation and dependency. Furthermore, 

it is not necessary that all the n predictor variables are of the same importance for representing the response 

variables. The objective of subset selection is to find a subset

nxxx ,,, 10 L

myyy ,,, 21 L

},,{},,{
11 diiddS xxzz LL ==  

, where , },,,{ 10 nS xxx L=⊆
kik xz = },,1,0{ nik L∈  (k=1,2, …, d), so that (i=1,2,…,m) can be 

satisfactorily approximated using a linear combination of  as below 

iy
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iddiii e,11, +++= zzy θθ L                                                                                                                   (4) 

or, in a compact matrix form  

iii e+= Zșy                                                                                                                                           (5) 

where the matrix  is of full column rank,  is a parameter vector, and is an 

approximation error vector.  

T
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To select a subset for the multiple regression model, the significance of each variable needs to be detected 

initially by inspecting the capability of each predictor variable to represent all the response variables. A subset 

can then be determined by selecting the significant predictor variables or eliminating the insignificant predictor 

variables. In the following, a new multiple sequential orthogonal least squares (MSOLS) method is proposed for 

significant variable detection and subset selection. 

2.3   The MSOLS algorithm for subset selection 

The MSOLS algorithm starts from the mth order block-structured matrix equation (3). Let 

be the column vectors of the matrix X
~

)1(21 ,,, +nmȖȖȖ L . Define 
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n≤≤ 10 l),mod( ⋅⋅ ’ is defined as the modulus after division and thuswhere the function ‘ . The meaning of 

 will be explained later. The first significant variable can then be selected as , and the 

associated orthogonal variable can be chosen as 
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Assume that a subset , consisting of (r-1) significant variables, , has been determined at step 

(r-1), and the (r-1) selected variables have been transformed into a new group of orthogonalized 

variables via some orthogonal transformation. To select the rth significant variable , let 

 for j=1,2,…,m(n+1) and . Orthogonalize 

with as below 

11 ,, −rzz L1−rS

121 ,,, −rqqq L rz

}1,,2,1for   of multiple is :{ 0 −==∉ rkīj kr Lllljrj ȖĮ =,

121 ,,, −rqqq Lrj,Į

∑
−

=

−=
1

1

,
,,

r

k

k

k
T
k

k
T

kj

rjrj q
qq

qĮ
Įq                                                                                                                     (9) 

Following [Korenberg et al. 1988, Billings et al. 1989, Chen et al. 1989], the error reduction ratio, ERR[j;r], 

produced by adding the jth data vector jrj ȖĮ =, into for representing the overall responseis defined as y1−rS
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r l
xz =The rth significant variable can then be chosen as , and the associated orthogonal variable can be chosen 

as . Subsequent significant variables can be detected in the same way step by step. At each step, the 

‘best’ variable that accounts for the variation of the overall response y with the highest percentage is selected. 
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The above variable detection procedure involves sequential orthogonal transformations.  For example, at step 

r, where a subset of r significant variables, , has been obtained. These r variables can be used to 

approximate the overall response with a linear form 

rzzz ,,, 21 LrS
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where  is an auxiliary parameter vector. Using the orthogonal property of 

, can be directly calculated from y  and  as  for k=1,2, …,r. The 

unknown parameter vector can then be easily calculated from and
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Thus,  is the increment to the desired total sum of squares of the output brought by. The kth 

error reduction ratio (ERR) introduced by (or equivalently by ), is defined as [Korenberg et al. 1988, 

Billings et al. 1989, Chen et al. 1989] 
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This ratio provides a simple but an effective index to indicate the significance of adding the kth variable into the 

model. The orthogonalization procedure for variable selection is usually implemented in a stepwise way, one 

variable at a time. The sum of error reduction ratio (SERR) [Wei et al. 2004] due to is defined as rqqq ,,, 21 L

∑
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The selection procedure can be terminated at any time when SERR[r] satisfies some specified conditions, say 

when SERR[r] is greater than a given threshold. Otherwise, the variable detection procedure needs to be 
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continued and new significant variables need to be added to the subset, until the specified conditions are met. 

The pseudo-code of the MSOLS algorithm developed on the basis of the forward Gram-Schmidt transformation 

is given in Appendix A.  

3.     Detecting significant variables from PCs using MSOLS 

Feature selection and feature extraction are two commonly encountered problems in statistical pattern 

recognition. Unlike regression analysis, where the objective is to achieve an approximation of the relationship 

between the response variables and the predictor variables and which can be solved using some supervised 

learning schemes, a typical dimensionality reduction problem, for instance feature extraction and feature 

selection in statistical pattern recognition, often involves a group of input data with a target to find significant 

patterns or features but without a clearly defined external supervisor (the desired response). Thus, in many cases 

the tasks of dimensionality reduction (subset selection) are fulfilled using some unsupervised learning algorithms 

[Haykin 1999, Webb 2002, Jain et al. 2000].  

As will be seen, the feature detection and subset selection problem for a general non-regression high-

dimensional data analysis can be directly converted into a multiple regression problem by treating the PCs as the 

response variables and the original measurement variables as the predictors; the MOLS algorithms can then be 

applied to detect significant variables and hence to select a subset.  

3.1   PCA  

Principal component analysis is a matrix based subspace decomposition method [Oja 1982, Jolliffe 2002], 

where a covariance (or correlation) matrix is initially constructed from collected data, and associated eigenvalues 

and eigenvectors (called direction vectors) of the covariance (or correlation) matrix are then calculated. Input 

data vectors in the original measurement space can be orthogonally projected onto the subspace (the new feature 

space) spanned by a few eigenvectors with maximum eigenvalues. The resulting projections are referred to as 

principal components (PCs), the significance of PCs is evaluated by the corresponding eigenvalues. The basic 

idea of PCA can briefly be summarized below. 

Step 1.  Data collection. 

Assume that a total of N observations (patterns) are available and let  

be the kth feature vector in the measurement space. The data matrix can then be represented 

as . Note that the collected data are often centralized or standardized. 

T
n kxkxkxk )](,),(),([)( 21 L=x

TN )](,),2(),1([ xxxX L=

Step 2.   Form the covariance (or correlation) matrix . XXXXȈ TT NN )/1())1/(1( ≈−=

Step 3.   Calculate the eigenvalues and eigenvectors of the matrix .  Ȉ
Step 4.   Sort the eigenvalues and the eigenvectors. Rearrange the eigenvalues in decreasing order such that 

nλλλ ≥≥≥ L21 . Rearrange the eigenvectors accordingly and denote the rearranged eigenvectors by  

nĮĮĮ ,,, 21 L . 

Principal component analysis aims to find a well-defined transform that maps the feature vectors in the n-

dimensional measurement space to a new m-dimensional feature space without losing much information, where 

in general . Dimensionality can often be greatly reduced by introducing an orthogonal transform 

involving only the first m eigenvectors , such that 
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where , and is referred to as the ith 

principal component (PC) (i=1,2, …, m). PCA is perhaps the most commonly used transform for feature 

extraction. Note that each new variable in the new feature space is a linear combination of all the original 

variables, this often makes it difficult to physically interpret the principal components in the new space. 

T
nxxx ],,,[ 21 L=x

T
iiii Nyyy )](,),2(),1([ L=y

T
niiii ],,,[ ,2,1, ααα L=Į

3.2   Detecting significant variables of PCs 

It has been noted that although the dimensionality may be greatly reduced, the number of variables need to 

be measured in the original measurement space is kept the same. In cases where there exists some linear 

dependency and linear correlation among the original variables, the inclusion of redundant variables in PCs is 

not necessary. Subset selection is thus desired. 

Let  be the collected data matrix, where for j=1,2, …, n. 

The vectors may be linearly dependent or correlated in the n-dimensional measurement space. The 

objective of subset selection is to find a subset

T
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measurement space, where , s=1,2,…,d with nd ≤ nd <<},,2,1{ nis L∈ (generally  if the measurement space is 

of large dimension). This means that any data vector  in the measurement space can be well approximated 

using . From (19), the ith principal component (i=1,2, …, m) should also be well approximated using the 

selected subset as below 
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It is known from the definition of PCs that variables which are significant in the original measurement space 

are also significant when representing the transformed variables. In other words, variables that are significant for 

representing PCs must be significant to characterize the overall features in the original measurement space. 

Specifically, variables that are important to account for the variations in the first few PCs should also be 

important to account for the variations in the original feature space. 

Motivated by the above observations, feature detection and subset selection can be achieved by detecting 

significant variables using the first few PCs. From the definition of PCs, the task of the significant variable 

detection problem for subset selection from the first m PCs can be viewed as a special case of detecting 

significant variables from a multiple linear regression by treating as the response 

variables and as the predictor variables. 
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In most PCA based methods, the number of PCs, denoted by m, has to be known before the calculation of the 

first m PCs. Although there exist several rules of thumb for choosing the number of PCs [Jeffers 1967, Jolliffe 

1972, Jolliffe 2002], no standard criteria are available. In the present study, the number of PCs will be 

determined as below. Let  be the ith PC (i=1,2, …) and  (m=1,2, …) be the 

overall response formed by the first m PCs. For each m, an mth order block-structured matrix equation can be 

obtained, which is similar to (3). By performing the MSOLS algorithm on the mth order block-structured matrix 
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equation, the given n features can then be ranked in order of the capability to represent the overall response. 

As will be seen in the examples given in the next section, the order of the ranked features will become 

unchanged when m becomes large enough. The choice of the number of PCs will thus not be of importance when 

applying MSOLS to select a feature subset.  

)(m
y

3.3   Determining the number of significant variables 

Assume that the first d selected significant variables are , which compose a subset . In the linear 

case, each data vector (j=1,2, … , n) in the measurement space can be approximated using a linear 

combination of  as below 
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or in a compact matrix form 
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where the matrix  is of full column rank,  is a parameter vector, and is 

an approximation error. Using the same orthogonalization procedure given in Section 2.3, the full rank 

matrix can be orthogonally decomposed as 
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where R  is an unit upper triangular matrix and Q  is an dd × dd × matrix with orthogonal columns  

. Similar to (17), the total sum of squares of the independent variable from the origin can then 

be expressed as 
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The total error reduction ratio, TERR[d], which indicates what percentage of the overall variation in all the 

variables can be accounted for by the subset, can be defined as dS
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The criterion TERR[d] can be used to measure the performance of the selected subset. If TERR[d]is larger 

than a given threshold, the associated subsetcan then be considered to be sufficient to represent the overall 

features; otherwise, more significant variables need to be included to form a new subset. 
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The procedure to detect significant features (variables) for subset selection using the new MSOLS algorithm 

can briefly be summarized below, where the first m PCs  are treated as the response 

variables, and the features are treated as the predictor variables. 
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•     Data collection and pre-processing (centralization and standardization).  

•    Calculate eigenvalues nλλλ ≥≥≥ L21  and eigenvectors  from the associated covariance (or 

correlation) matrix . 
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1 , )()( α• ,  i=1,2 …, m.     Calculate principal components

•    Perform the MSOLS algorithm to detect significant features by treating as the 

response variable and as predictor variables. 
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•     Evaluate the performance of the selected subset. 

4.     Experiments 

In this section, two examples, one for artificial and another for real data sets, are provided to illustrate the 

application of the new method for significant variable detection.  

4.1   Example 1– An artificial data set 

Consider the model below 

)()2sin()( 1111 ttfctx επ ++=                                                                                                              (28a) 

)()2sin()( 2222 ttfctx επ ++=                                                                                                            (28b) 

)()2sin()( 3333 ttfctx επ ++=                                                                                                            (28c) 

)()(2)()( 4214 ttxtxtx ε++=                                                                                                             (28d) 

)()(2)()( 5325 ttxtxtx ε++=                                                                                                              (28e) 

)()()(2)( 6316 ttxtxtx ε++=                                                                                                               (28f) 

)()()()()( 73217 ttxtxtxtx ε+++=                                                                                                    (28g) 

)()()(2)()( 83218 ttxtxtxtx ε++−=                                                                                                 (28h) 

)()(2)()()( 93219 ttxtxtxtx ε+−+=                                                                                                  (28i) 

)()()()(2)( 1032110 ttxtxtxtx ε+++−=                                                                                             (28j) 

where =1, =2, =3, =1, =1.5, =3.5, and  for i=1,2, …,10. This model was 

simulated by setting the sampling period as 

)05.0,0(~ 2Niε1c 2c 3c 1f 2f 3f

01.0=h and 200 observations have been recorded to form a 

200 10 data set. Although this data set involves 10 variables, that is, the measurement space is of 10 

dimensions, 7 of the 10 variables are redundant and only 3 variables are required to depict the underlying system 

characteristics. The object here is to identify and rank the 10 variables, and then to select a subset without using 

any a priori information on either the data set or the simulated model. 

×

The data set was centralised before analysis. By performing PCA on the centralised data, 10 eigenvalues, 

6.6198, 6.5390, 6.4927, 0.0030, 0.0025, 0.0023, 0.0003, 0.0002, 0.0001, and the related eigenvectors 
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1021 ,,, ĮĮĮ L , of the associated covariance matrix have been obtained. A total number of 10 experiments have 

been done. In the pth experiment, the MSOLS algorithm was applied to the first p PCs: , i=1,…, p, and  

the 10 variables were ranked in order of their significance. The results for the 10 experiments are shown in Table 

I, where it is clear that the order of the ranked variables becomes stable from p=3, the number of PCs could thus 

be chosen as m=3. 

xĮy
T
ii =

 

 

 

 

 TABLE  I 
RANKED VARIABLES OBTAINED BY CONSIDERING DIFFERENT NUMBER OF PCS FOR THE 

SIMULATED DATA  FROM MODEL (28) 
 

Ranked variables for different number of PCs Index 

1 2 3 4 5 6 7 8 9 10

1 3 10 10 10 10 10 10 10 10 10 

2 8 3 4 4 4 4 4 4 4 4 

3 9 8 3 3 3 3 3 3 3 3 

4 6 9 8 8 8 8 8 8 8 8 

5 5 2 6 6 6 6 6 6 6 6 

6 4 4 9 9 9 9 9 9 9 9 

7 7 6 2 2 2 2 2 2 2 2 

8 10 5 7 7 7 7 7 7 7 7 

9 2 1 1 1 1 1 1 1 1 1 

10 1 7 5 5 5 5 5 5 5 5 

TABLE  II 
THE TWO CRITERIA SERR AND TERR  FOR THE SIMULATED DATA  FROM  MODEL (28) 

 

SERR[j;d] (%) 

Index j Index 

d 1 2 3 4 5 6 7 8 9 10 

TERR[d] 

(%) 

1 66.64 17.03 16.49 0.03 29.78 29.93 0.14 25.13 24.57 100 30.96 

2 86.69 96.57 16.49 100 45.57 45.81 59.03 54.71 54.27 100 65.91 

3 99.89 99.89 100 100 99.88 99.82 99.77 99.81 99.88 100 99.89 

4 99.89 99.95 100 100 99.88 99.83 99.77 100 99.89 100 99.92 

5 99.93 99.95 100 100 99.88 100 99.79 100 99.90 100 99.95 

6 99.94 99.96 100 100 99.88 100 99.81 100 100 100 99.96 

7 99.95 100 100 100 99.91 100 99.82 100 100 100 99.97 

8 99.95 100 100 100 99.91 100 100 100 100 100 99.99 

9 100 100 100 100 99.91 100 100 100 100 100 99.99 

10 100 100 100 100 100 100 100 100 100 100 100 
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Using the information given by the number of the 3rd column in Table I, the first variable to be included in 

the final subset should be , followed by the variables , , etc. The remaining problem for subset selection 

is to determine the number of variables to be included in the subset. The two criteria, SERR[j;d] and 

TERR[d]defined in Section 3.3 were used to measure the performance of the selected subset consisting of d 

significant variables. The values of SERR[j;d] and TERR[d]for j=1,2, …, 10 and d=1,2, …,10 are shown in 

Table II, where the element of SERR in the dth row and jth column indicates what percentage of the variation in 

the jth variable can be accounted for by the first d variables in column 3 of Table I. The total error reduction 

ratio, TERR[d], which refers to what percentage of the overall variation in all the 10 variables can be accounted 

for by the first d variables in column 3 of Table I, is also given in Table II. It is clear from Table II that there is a 

steep change in the total error reduction ratio, TERR[d], from d=2 to d=3, and from d=3 TERR[d] becomes 

stable. Variations in each of the 10 variables can be accounted for with a very high percentage using only the 

first three variables, ,  and , listed in column 3 of Table I. The final subset for the simulated data set 

was thus chosen to be . 

10x 4x 3x

jx

10x 4x 3x

},,{ 34103 xxxS =

4.2   Example 2– The Alate Adelges data 

The alate adelges (winged aphids) related data set which has been studied by Jeffers [1967] using a PCA 

method, concerns an investigation into the variation in 40 individual winged aphids. This data has been studied 

as a benchmark by several other authors to test new variants of PCA methods or variable selection algorithms, 

see the detailed discussions in [Jolliffe 2002]. The data comprise 19 variables measured on each of 40 winged 

aphids (alate adelges) that had been caught in a light trap. The full 40× 19 data matrix is available in 

[Krzanowski 1987], and a description of the variables is given in [Jeffers 1967].  

Denote the 19 variables (features) by and let . The data set has been 

standardized before analysis. By performing PCA on the standardized Alate Adelges data, 19 eigenvalues, 

T
nxxx ],,,[ 21 L=x1921 ,,, xxx L

1921 λλλ ≥≥≥ L ,  and related eigenvectors, , of the associated correlation matrix (standardized 

covariance matrix) were obtained. A total number of 10 experiments have been done. In the pth experiment, the 

MSOLS algorithm was applied to the first p PCs: , i=1,…, p, and  the 19 variables were ranked in 

order of their significance. The results for the 10 experiments are shown in Table III, where it is clear that the 

order of the ranked variables becomes stable from p=6. In fact, the order of most ranked variables becomes 

stable from p=4. The number of PCs could thus be chosen as m=4, rather than m=6. The total error reduction 

ratio, TERR[d], which refers to what percentage of the overall variation in all the 19 variables can be accounted 

for by the first d variables in column 4 of Table III, is plotted in Fig. 1. Fig. 1 shows that about 70% overall 

variation in all the 19 variables can be accounted for by 

1921 ,,, ĮĮĮ L

xĮy
T
ii =

}{ 131 xS = , 81% by , 85% by 

, 87% by , and 90% by 

},{ 17132 xxS =

},,{ 1117133 xxxS = },,,{ 81117134 xxxxS = },,,,{ 581117135 xxxxxS = , etc.  

Note that for the same alate adelges data set, different criteria and different algorithms may lead to different 

subsets [Jolliffe 2000]. The subset , selected by MSOLS algorithm here is identical to that 

selected by the method B4 (a PCA based algorithm) [Jolliffe 1973]. Compared with other methods, the subset 

 selected by B4 is considered to be the best in all subsets of three variables [Jolliffe 2000].  

},,{ 1117133 xxxS =

},,{ 1117133 xxxS =
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TABLE  III  
RANKED VARIABLES OBTAINED BY CONSIDERING DIFFERENT NUMBER OF PCS FOR THE ALATE 

ADELGES DATA   
 

 Ranked variables for different number of PCs Index 
 1 2 3 5 7 8 9 10 4 6 

1 13 13 13 13 13 13 13 13 13 13  
2 5 17 17 17 17 17 17 17 17 17 
3 8 8 11 11 11 11 11 11 11 11

 4 2 5 8 8 8 8 8 8 8 8 

5 12 18 5 5 5 5 5 5 5 5  
6 3 16 4 4 4 4 4 4 4 4  
7 15 11 18 18 18 18 18 18 18 18

 
8 10 7 16 16 16 16 16 16 16 16

 9 9 3 7 19 19 19 19 19 19 19

10 11 19 3 14 14 14 14 14 14 14  

11 14 12 12 7 7 7 7 7 7 7  
12 6 15 6 3 3 3 3 3 3 3  
13 19 10 15 6 6 6 6 6 6 6 

 
14 1 6 10 12 12 12 12 12 12 12

 
15 7 14 19 15 9 9 9 9 15 9 

 16 18 9 14 10 10 10 10 10 10 10

17 16 4 2 2 2 15 15 15 15 15  

18 4 1 9 9 9 2 2 2 2 2  
19 17 2 1 1 1 1 1 1 1 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  The total error reduction ration, TERR [d], versus the number of variables in the subset for the Alate Adelges data 
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TABLE  IV 

RANKED VARIABLES OBTAINED BY CONSIDERING DIFFERENT NUMBER OF PCS 

FOR THE PIMA INDIANS DIABETES DATA  
 

Ranked variables for different number of PCs Index 

1 2 3 4 5 6 7 8 

1 2 2 2 2 2 2 2 2 

2 5 5 5 5 5 5 5 5 

3 3 8 8 8 8 8 8 8 

4 6 4 4 4 4 4 4 4 

5 8 3 3 3 3 3 3 3 

6 4 6 6 6 6 6 6 6 

7 1 7 7 7 7 7 7 7 

8 0 1 1 1 1 1 1 1 

TABLE  V 
THE TWO CRITERIA SERR AND TERR FOR THE PIMA INDIANS DIABETES TEST DATA SET 

 

SERR[j;d] (%) TERR[d] 

(%) 

Index j Index 

d 1 2 3 4 5 6 7 8 

Test 
data 

Training 
data 

1 53.65 100 90.05 59.90 40.54 91.11 66.05 85.66 73.37 73.39 

2 54.88 100 90.08 65.04 100 91.11 66.22 86.32 81.71 82.21 

3 71.13 100 92.25 65.35 100 92.07 67.09 100 85.99 85.26 

4 71.25 100 92.96 100 100 93.58 68.98 100 90.85 90.13 

5 71.26 100 100 100 100 94.85 69.61 100 91.97 91.33 

6 71.33 100 100 100 100 100 70.28 100 92.71 92.09 

7 71.34 100 100 100 100 100 100 100 96.42 96.09 

8 100 100 100 100 100 100 100 100 100 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3   Example 3– The Pima Indians Diabetes data 

The pima indians diabetes (PID) data is taken from UCI Machine Learning Repository [Newman et. al 1998]. 

The PID data set comprises 8 individual features, measured with 768 samples, where the first 500 samples were 

used for training and the remaining 268 samples were used for testing. The objective here is to rank the 8 

features used in the 5008 data set. Denote the 8 features by . 821 ,,, xxx L×

Similar to Example 1, the significance of the 8 features were detected and ranked by performing the MSOLS 

algorithm on a different number of PCs, and the associated results are shown in Table IV, where the number zero 

in the 2nd column means that only 7 features are required to represent the first PC. It is clear from Table IV that 

the number of PCs to be considered for subset selection is 2. The most significant feature select by MSOLS is, 

referring to the plasma glucose concentration at 2 hours in an oral glucose tolerance test. This feature has been 

employed as one of the main criteria by World Health Organization (WHO) for diabetes diagnosis. The result 

here just reflects the fact that  is significant for diabetes diagnosis.  

2x

2x
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The values of SERR[j;d] with respect to the PID test data set are shown in Table V, where the element of 

SERR in the dth row and jth column indicates what percentage of the variation in the jth variable can be 

accounted for by the first d variables in column 2 of Table V. The total error reduction ratio, TERR[d], for both   

the training data set and the test data set are also listed in Table V. 

jx

5.     Conclusions 

A new learning scheme has been proposed for feature ranking and subset selection. By treating the first 

principal components as the response variables and all the candidate features as the predictor variables, the 

problem for feature ranking and subset selection can be viewed as a special case of variable detection and subset 

selection in multiple linear regression analysis. The new MSOLS algorithm can thus be applied to detect and 

rank the features according to the capability to represent the first few PCs.  The selected feature subset can be 

evaluated by the total error reduction ratio (TERR), which refers to what percentage of the overall variation in all 

the features can be accounted for by a selected subset, and which can be used as a criterion to indicate how many 

features (variables) need to be included in the subset. Unlike principal components, which carry no clear 

physical meaning, variables (features) selected using MSOLS are physically interpretable. The applicability and 

usefulness of the new MSOLS algorithm and associated learning scheme for feature (variable) ranking and 

subset selection have been demonstrated using results from several examples for both artificial and real data sets, 

including the three examples given in Section 4. 

Appendix A �The MSOLS algorithm  

In the following,  are the data vectors associated with the (n+1) candidate variables, 

 are the columns of the matrix X

nxxx ,,, 10 L

~
)1(21 ,,, +nmȖȖȖ L  defined by (3); is the significant variable selected at the 

rth step (r=1,2 …) . 

rz

The MSOLS algorithm: 

Step 1:   Set ; ; },,1{1 LI L= )1( += nmL

           for j=1 to  L

                           ; jj ȖĮ =

))((

)(
][err

2
)1(

j
T
j

T

j
T

j
ĮĮyy

Įy
=                           ;  {if set };  ,δ<j

T
jĮĮ 0][err )1( =j

                end for  

]}[err{maxarg )1(
1

1

k
Ik∈

=l ;  ;  )1,mod( 1
0
1 += nll

][err]1err[ 1
)1( l= ;  ;   ]1err[]1serr[ =

                ; ;  ; } and  of multiple is :{ 1
0
11 Iī ∈= llll

11 lĮq = 0
1

1 l
xz =

2≥r Step r,  : 
                 for r=2 to n+1 

                        ; 11 \ −−= rrr īII

                              for  rIj∈

∑
−

=

−=
1

1

r

k

k

k
T
k

k
T
j

jj q
qq

qȖ
ȖĮ ;   
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))((

)(
][err

2
)(

j
T
j

T

j
T

r j
ĮĮyy

Įy
=     ;    {if set };                               (29) 0][err )( =jr,δ<j

T
jĮĮ

                              end for ( end loop for j )  

  ;   )}(arg{ δ<=
∈

j
T
j

Ij
r

r

J ĮĮ rrr JII \= ;                                                                                 (30) 

]}[{errmaxarg )( kr

Ik
r

r∈
=l ; ;    )1,mod(0 += nrr ll

][err][err )(
r

rr l= ;  ; ∑
=

=
r

k

kr
1

][err][serr

                              ; ; ; } and  of multiple is :{ 0
rrr Iī ∈= llll

rr lĮq = 0
r

r l
xz =

                end for (end loop for r ) 

The MSOLS algorithm provides an effective tool for selecting significant variables for a multiple regression with 

an iterative stepwise way. Variables are selected step by step, one variable at a time. Most numerical ill 

conditioning can be avoided by eliminating the candidate variables for which  are less than a 

predetermined threshold

jjĮĮ
T

δ , say  with τ− 10≥τδ =10 (Eqs. (29), (30)). If required, the selection procedure can 

be terminated at any step when SERR[r] satisfies some specified conditions. This algorithm can be applied to not 

only the normal cases, where the number of features is smaller than the number of training samples ( ), but 

also the cases where the number of features is much larger than that of training samples ( ). The 

applications of MSOLS algorithm is not restricted to variable selection in linear regression, it can be used to 

select significant model terms for any linear-in-the-parameters models. 

Nn <

Nn ≥
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