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Abstract: High-dimensional data analysisvolving a large number of variables or features is commonly
encountered in multiple regression and multivariate pattern recognition. It has been noted that in many cases
not all the original variables are necessary for characterizing the overall features. More often only a subset of
a small number of significant variables is requirede Tetection of significantariables from a library
consisting of all the original variables is thereforkeg and challenging step fdimensionality reduction.
Principal component analysis is a useful tooldanmensionality reduction. Priipal components, however,

suffer from two main deficiencies: iRcipal components alwayisvolve all the original variables and are
usually difficult to physically interet. This study introduces a nawultiple sequential orthogonal least
squares algorithm for feature rankingdasubset selection. The new mad detects in a stepwise way the
capability of each candidate feature to recover trst few principal component#t each step, only the
significant variable with th strongest capability to represent thratffew principal components is selected.
Unlike principal components, which carry no clear ptglsmeanings, featureslseted by the new mettdo
preserve the original measurement meanings.

Keywords: Dimensionality reduction, higdimensional data analysis, subsetection, principal component

analysis, orthogonal least squares.

1. Introduction

Multivariate data analysis such as multiple regression and high-dimensional pattern classification, often
involves a large number of variables or features. Quften the sample featurese unknown a priori and
measurements are obtained with respect to more variables than is strictly necessary for conveying the main
features. There is, therefore, the potential to greattiuce the dimensionality without distorting the overall
features. As one commonly used dimensionality reduction approach, subset selection aims to find a small
number of significant variables or features from a libr@oysisting of all the original variables. The remaining
insignificant variables are, in a sense, irrelative or redundant, and can be ignored. In fact, the inclusion of these
insignificant variables may often complicate data inspection without providing any extra information [Jolliffe
1972].

A large amount of work has been done on dimensionality reduction, see for example, [Oja 1983, Jain et al.
2000, Carreira-Perpinan 2001, Fodor 2002, Webb 2@%®jcipal component analysis (PCA) and its variants
[Jolliffe 2002] belong to the class of the mostroonly used methods for dim&onality reduction. Note,
however, that principal components (PCs) suffer from two main drawbacks: PCs a@nmadsfariables that
always involve all the original variables, and PCs are usddéfigult to physically interpret. In many cases there
may be some redundancy, linear correlation or linearmlrey among the original iables. The redundant or

irrelevant variables need not to be included in PCs and the exclusion of these insigvdfiedies could sake
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to save a great amount of time and cost spent on obtaining and measuring these insiggifaddes in future
experiments. Bearing this fact in mind, efforts have been made to develop algorithms to selecargignifi
variables or eliminate insignificant variables from the futl gleoriginal variables, to form an effective subset

that can be used to sufficiently recover the mainrinfdgion conveyed by the full data set [Jolliffe 1972, 1973,
Krzanowski 1987, Pudil et al. 1994, Kohavi and John 1997, Mao 2005]. In fact, in many cases it is desirable to
reduce not only the dimensionality in the transformed space, but also the number of variables that need to be
considered or measuredtime future in the measement space [McCabe 1984].

This study introduces a new method for ranking significant variables and selecting a subset from a library
consisting of all the original variables. In the new method, a general variable detection and subset selectio
problem is initially converted into a multivariate regression problentrdgting principal components as the
dependent variables (responses) and the original variables as the independent variablesspregkgianatory
variables). A new multiple sequential orthogonal leagtases (MSOLS) algorithm is derived to detect the
significant variables for multivariate regression. The main idea behind the new method is to detect, in a stepwise
way, the significance of each candidate variable to reptdabe first few PCs. At each step only the variable
with the strongest capability to present the first few PCs is selected and included in the subset.

The paper is organized as follows. In Section 2 the multiple sequential orthogonal least sqtreréssme
proposed in detail. In Section 3, the variable detection problem from principal components is conteded in
subset selection problem for multiple regression, for wkignificant variables can elysbe detected using the
MSOLS algorithm. In Section 4, three examples relatingpdth artificial and reatlata sets are provided to
illustrate the application of the nemethod for feature ranking and subsefection. The work is briefly

concluded in Section 5.

2. The MSOLS algorithm

This section presents an orthogonal least squares type algorithm for variable detection and subset selection
for a multiple linear regression. The models that areiderexd throughout the paper will be restricted to the
linear in the regression coefficients form. The leagnalgorithm is multiple-regression oriented and will be
implemented using a sequential orthogonal least squaed®d. This new learningtseme will thus be referred

to as the multiple sequential orthogonal least squares (MSOLS) algorithm.

2.1 The multiple regression model

Denote the multiple response variables)y, -y, and the set ot predictor (or independent) variables
by x;,x,,---,x, . Assume that the relationship between (;=1,2, ...m) and X; (=1,2, ...n) can be

approximated by the linear-in-the-parameters regression model
(k)= B+ D B, x (k) + e (k) (1)
j=1

wherey;, (k) denotes théth observation of théh response variable and (k) denotes théth observation of the
Jjth predictor variableif1,2, ...,m; j=1,2, ...,n; k=1,2, ...,N); ¢;(k)is assumed to be an unobservable error

representing the discrepancy in the approximatidn, 5;,,---, 5, , called the regression parameters or



coefficients, are unknown constantattmeed to be estimated from tHata. The linear model (1) can be

expressed using a compact form

y; =XB; +e
where y; =[y, .7, »:(NMI" . B =[Bofu B, . e=le®e@. V)] and
X =[Xg,X;,-+,x,] with xo = [1L---1]" and x; =[x; @), x; (2),--,x;(N)] for j=1,2,....n.

The m matrix equations given by (2) can be put together to formethAnblock-structured matrix equation

below
y=i[3+e 3
where
Y1 e B, X O -0
v=|"2 ] e=|7| p= bl |0 X O -1, ®X
vl e b, 00 X

whereO is a N x m(n +1) matrix whose all entries are zeros, the notdkjpdenotes thenth order unit matrix,

and the symbol ® ' denotes the Kronecker product, which is defined for two ma&ix (a.'j)m and

B= (bi,j)uxv as

al]lB al’zB aLSB

a,B a,,B - a, B

,8

A®B=

_ar,lB ar,ZB ar’,sB

2.2 Subset selection for the multiple regression model
In many cases, the full set of the original predictor variablgsx,,---,X, may be redundant for

representing the response variables,y,, -,y ,,, because of linear correlatiamd dependency. Furthermore,
it is not necessary that all thepredictor variables are of the sameportance for representing the response

variables. The objective of subset selection is to find a subget{z,,--,z,}={x,, X, }

< S={xg,xy,--,x,} , wherez, =x,; , i, €{0L--n} (=12, .., d), so thaty, (i=1,2,...;m) can be
satisfactorily approximated using a linear combinatiozof--,z, as below

Yi =042+ 40, .2, +6€
or, in a compact matrix form

Y, =78, +€ %)
where the matrif = [z,,--+,z,] is of full column rank®, =[6,,,---,6, ,]" is a parameter vector, aadis an

approximation error vector.

(2)

(4)



To select a subset for the multipleyression model, the siditiance of each variableeeds to be detected
initially by inspecting the capability of each predictor variable to represent all the response variables. A subset
can then be determined by selecting the significantiggedvariables or eliminating the insignificant predictor
variables. In the following, a new multiple sequentidghogonal least squares (MSOLS) method is proposed for

significant variable detection and subset selection.

2.3 The MSOLS algorithm for subset selection
The MSOLS algorithm starts from the mth order block-structured matrix equation (3). Let

Y1 Y20 ¥ 1) PE the column vectors of the matX. Define

L Oy
ERRY[j]=——L— j=1.2,....m(n+1), (6)
oty e
fy=arg_max {ERR™[/]} (7)
(9 =mod(,,n+1) (8)

where the function mod¢,))’ is defined as the modulus after division and #ds/; <n. The meaning of

ERR(l)[j] will be explained later. The first significant variable can then be selected=ag ,, and the

9
associated orthogonal vable can be chosen gs =1, .

Assume that a subs&t_, , consisting of £-1) significant variablesz,,---,z,_,, has been determined at step
(r-1), and the 1) selected variables have been transformed into a new group of orthogonalized
variablesq,,q,, -, q,_4 via some orthogonal transformation. To select #te significant variable, , let
o,,=v; for j=1,2,..m(n+1) and jeI', ={¢:/ismultipleof (% fork=12,---,r -1} . Orthogonalize
a;, with q;,q,, "+, q,_;as below

r=1 o7

a .q
4, =0, -y %q 9)
=1 D

Following [Korenberg et al. 1988, Billings et al. 1989, Chen et al. 1989krile reduction ratio, ERRJ;r],

produced by adding th¢h data vectos ; . =y ; into S,_, for representing the overall respoiysis defined as

T 2
ERR"[ ] =M (10)
(y'v)q;,4,,)
Let
¢ =arg max {ERR"[, 11
, QK_/SM(M){ LT} 1)
?° =mod(,,n+1) 2) @

Therth significant variable can then be chosen, as x , , and the associated orthogonal variable can be chosen

0
09

asq, =q, ,- Subsequent significant variables dandetected in the same way step by step. At each step, the

‘best’ variable that a@unts for the variation of the overall responswith the highest percentage is selected.



The above variable detection procedure involves sequertti@gonal transformations. For example, at step
r, where a subsef, of r significant variables,,z,,---,z, , has been obtained. Theseariables can be used to

approximate the overall respongewith a linear form
y= P ;e (13)
where P =[“{/,1,W2 Y 1 0")is the regression parameter vecigf) is the approximation error vector.

From the above variable selection procedure, the full rank nRitfican be orthogonally decomposed as
P") = QWR® (14)

where R") is a rxr unit upper triangular matrix anQ(’) is an rxr matrix with orthogonal columns

41,95, ", q, - Substituting (14) into (13), yields
v=[PO(RD)RVON] + e = Qg 1 (15)

where g(r) =[g1(r),~--,g£r)]T =R™9" is an auxiliary parameter vector. Using the orthogonal property of
Q" , g can be directly calculated frooy and Q") as g =(y"q,)/(qlq,) for k&=1,2, ...r. The
unknown parameter vect®" can then be easily calculated fragi’ andR ) by substitution using the special

structure oR .,

The total sum of squares of the overall respop®m the origin can then be expressed as

Yy =2 (e aiq, + (") e (16)
k=1

Note that the total sum of squarg8y consists of two parts, the desired ou@izl(gk’))zngk , which can

be explained by the selected variables, and the(qSQr)Te(’), which represents the residual sum of squares.

Thus, (gk’))zq,qu is the increment to the desired total sum of squares of the output brought Blye ith

error reduction ratio (ERR) introduced dpy (or equivalently byz, ), is defined as [Korenberg et al. 1988,
Billings et al. 1989, Chen et al. 1989]

T 2
ERRVA] = — Y 9" qo (17)
[] (v"y)(ara,)

This ratio provides a simple but an effectindex to indicate the significance of adding ttte variable into the

model. The orthogonalization procedure for variable selection is usually implemented in a stepwise way, one

variable at a time. Thewn of error reduction ratio (SERR) [Wei et al. 2004] due dg,q,,"-*,q, is defined as

SERRr] =Y ERR[] (18)
k=1
The selection procedure can be terminated at any time when gERR$fies some specified conditions, say

when SERRY]] is greater than a given threshold. Otherwise, the variable detection procedure needs to be



continued and new significant variables need to be added to the subset, until the specified conditions are met.
The pseudo-code of the MSOLS algorithm developed on the basis of the forward Gram-Schmidtriasinsf

is given in Appendix A.

3. Detecting significant variables from PCs using MSOLS

Feature selection and feature agtion are two commonly encountered problems in statistical pattern
recognition. Unlike regressioanalysis, where the objective is to asld an approximation of the relationship
between the response variables and the predictor variables and which can be solyetrosirsupervised
learning schemes, a typical dimensionality reductwablem, for instance feature extraction and feature
selection in statistical pattern recognition, often involvegaup of input data with a target to find significant
patterns or features but without a clearly defined external supervisor (the desired response). Thys;asesa
the tasks of dimensionality reduction (subset selectianjudfilled using some unsupervised learning algorithms
[Haykin 1999, Webb 2002, Jain et al. 2000].

As will be seen, the feature detection and subdectsen problem for a general non-regression high-
dimensional data analysis can be directly convertedaimmltiple regression problem by treating the PCs as the
response variables and the originaasurement variables as the predi¢ttre MOLS algorithms can then be

applied to detect significant variables and hence to select a subset.

3.1 PCA

Principal component analysis is a matrix basdesgace decomposition methodjgd982, Jollife 2002],
where a covariance (or correlation) matrix is initially dansted from collected data, and associated eigenvalues
and eigenvectors (called direction ves)oof the covariance (or correlatiomatrix are thercalculated. Input
data vectors in the originaheasurement space can be orthogonallyeptefl onto the subspace (the new feature
space) spanned by a few eigenvectors with maximumeadges. The resulting projections are referred to as
principal components (PCs), the significance of PCs is evaluated by the corresponding eigenwvalbasicT

idea of PCA can briefly be summarized below.

Step 1. Data collection.
Assume that a total a¥ observations (patterns) are available andk(@t) =[x, (k), x, (k),---,x, (k)]"

be thekth feature vector in the @asurement space. The data irattan then be represented

asX =[x(1),x(2),---,x(N)]" . Note that the collected data arften centralized or standardized.

Step 2. Form the covariance (0f correlation) matrix X = (LI(N -1))X'X = (Y N)X'X .
Step 3. Calculate the eigenvalues and eigenvectors of the matrix X .
Step 4. Sort the eigenvalues and the eigenvectors. Rearrange the eigenvalues in decreasing order such that

4 24, 2---2 A, . Rearrange the eigenvectors accordingly denote the rearranged eigenvectors by

al,azi...’a

-
Principal component analysis aims to find a vagfined transform that mpa the feature vectoxgk) in the n-
dimensional measurement space to a medimensional feature spaegéthout losing much information, where

in generalm << n . Dimensionality can often be greatly reduced by introducing an orthogonal transform

involving only the firstn eigenvectore,,d.,, -+, 0, , such that

LRl



n

y; = al.Tx = Zal.,jxj (19)

j=1

wherew, =[a, 1,2, 5,2, 1" x=[x,%,,,x,] andy, =[y, @), »,(2),-, y,(N)]" is referred to as thith
principal component (PC) ¢=1,2, ..., m). PCA is perhaps the most comnfy used transform for feature
extraction. Note that each new variable in the new feature space is a linearatmmbaf all the original

variables, this often makes it difficult to physically interpret the principal comp®iretiie new space.

3.2 Detecting significant variables of PCs
It has been noted that although the dimensionality may be greatly reduced, the number of vaedlies ne
be measured in the original measurement space istheptame. In cases where there exists some linear
dependency and linear correlation among the original variables, the inclusion of reduniddtes/ar PCs is
not necessary. Subset selection is thus desired.
LetX =[xy,X,, -+,X,] be the collected data matrix, whexe =[x, (1), x, (2),---,xj(N)]Tforj:1,2, ey
The vectorx,, X,, -+, X, may be linearly dependent or correlated ins;ttdimensional measurement space. The

objective of subset seféon is to find a subsét, ={x, ,x, ,~-,x, } , which constitutes a basis for the original

measurement space, where {12,---, n} , s=1,2,...d withd < n (generallyd << n if the measurement space is

of large dimension). This means that any data ve:c;o'm the measurement space can be well approximated
usingS, . From (19), theth principal componeny, (i=1,2, ...,m) should also be well approximated using the

selected subse§, as below

50 =35 () e ) 20

It is known from the definition of PCs that variablesich are significant in the original measurement space
are also significant when reggenting the transformed variables. In other words, variables that are significant for
representing PCs must be significant to characterigeotterall features in the original measurement space.
Specifically, variables that are important to accounmttfe variations in the first few PCs should also be
important to account for the variatis in the original feature space.

Motivated by the above observations, feature detection and subset selection can be achieved by detecting
significant variables using the first few PCs. From thénd®n of PCs, the task of the significant variable

detection problem for subset selection from the fitsPCs can be viewed as a special case of detecting

significant variables from a multiple linear regression by treati{g), y,(k),---,y, (k) as the response

variables andy, (k), x,(k),- -, x, (k) as the predictor variables.

In most PCA based methods, the number of PCs, denotedhns to be known before the calculation of the
first m PCs. Although there exist several rules of thumbcfamosing the number of PCs [Jeffers 1967, Jolliffe
1972, Jolliffe 2002], no standard criteria are avdda In the present study, the number of PCs will be
determined as below. Lat, =ax be theith PC (=1,2, ...) andy™ =[yI,y?,---,y" 1" (m=1,2, ...) be the

overall response formed by the firgstPCs. For each:, anmth order block-structured matrix equation can be

obtained, which is similar to (3). By performing the MSOLS algorithm omitheorder block-structured matrix



equation, the given features can then be ranked in ordehefcapability to represent the overall requﬁ?é.

As will be seen in the examples given in the next section, the order of the ranked features will become
unchanged whem becomes large enough. The choice of the number of PCs will thus not be of importance when

applying MSOLS to sekt a feature subset.

3.3 Determining the number of significant variables

Assume that the first selected significant variables arg---,z, , which compose a subsgf . In the linear

case, each data vectar; (/=1,2, ... ,n) in the measurement space can dpproximated using a linear

combination ofz,,---,z, as below

szzdlﬁjvmzm+ej 1) (2
m=1
or in a compact matrix form
xj=P9j+ej (22)
where the matri® =[z,,---,z,] is of full column rank9; z[ejl"”’ej,d]T is a parameter vector, aed is

an approximation error. Using the same orthogonalization procedure given in Section 2.3] taakful
matrixP can be orthogonally decomposed as

P=QR (23)
where R is an d xd unit upper triangular matrix an€ is an d xd matrix with orthogonal columns

q,,9,,""*,q, . Similar to (17), the total sum of squares of the independent van@tﬂem the origin can then

be expressed as
d
2
X)X, =D 87,4,4, teje, (24)
k=1
Thekth error reduction ratio (ERR) introduced fJy (or equally by including, ), is given by

(X§Qk )?

— k=12, ....d, (25)
(xix;)a;q;)

ERR j, k] =

The sum of error reduction ratio (SERR) dug{aq,,***,q, (or equally due ta,,---,z ) is

d
SERR j;d]= ) ERR ] (26)
k=1
The total error reduction ratio, TERRF)], which indicates what percentage of the overall variation in all the

variables can be accounted for by the suSgetan be defined as

TERRd] =EZSERRU; d] @27)
n=-
j=1
The criterion TERR]] can be used to measure the performance of the selected $pb#eTERR[d]is larger
than a given threshold, the associated sufjsean then be considered to bdfisient to represent the overall

features; otherwise, more significant variabiesd to be included to form a new subset.



The procedure to detect significdattures (variables) for subsetesglon using the new MSOLS algorithm
can briefly be summarizedelow, where the first: PCsy, (k), v, (k),--,», (k) are treated as the response
variables, and the featuregk), x, (k),---,x, (k) are treated as theggtictor variables.

e Data collection and pre-processiegntralization and standardization).

e Calculate eigenvaluds> 4, >---> A, and eigenvectora,,a,,:--,a, from the associated covariance (or

correlation) matrix .

e Calculate principal componentgk) =Zj:lal.ijj k), i=1,2 ...,m.

e Perform the MSOLS algorithm to detect significant features by treatitk), v,(k),:--, v, (k) as the

response variable angl(k), x, (k),---,x, (k) as predictor variables.

e Evaluate the performance of the selected subset.

4. Experiments
In this section, two examples, one for artificial and heofor real data sets, are provided to illustrate the

application of the new method for significant variable detection.

4.1 Example 1- An artificial data set

Consider the model below

x,(2) = ¢, +sin@rfyt) + &,(¢) (28a)
X,(t) = ¢, +SiN@7f,t) + £,(t) (28b)
X3(t) = c3 +SiN@afst) + £5(¢) (28c)
x4 (2) = x1(2) + 2x, (1) + £4(¢) (28d)
x5(1) = x, () + 2x5(¢) + &5(¢) (28e)
X6 (1) = 2x, () + x5(2) + £6(2) (28f)
x7(8) = x,(6) + x,(£) + x5(¢) + &7(2) (28g)
xg(t) = x,(t) — 2x,(2) + x5(2) + &5(2) (28h)

Xg (1) = x,(2) + x5 (¢) — 2x5(¢) + &4 (2) (28i)

Xyo(t) = —=2x, () + x, (1) + x5 (t) + &0 (¢) (28j)

where ¢, =1, ¢,=2, ¢;=3, f, =1, f,=1.5, f,=3.5, ande, ~ N (0005°) for i=1,2, ...,10. This model was

simulated by setting the sampling period /as 001and 200 observations have been recorded to form a
200x 10 data set. Although this dat®t involves 10 variables, thé, the measurement space is of 10
dimensions, 7 of the 10 variables are redundant and only 3 variables are requiract thelepderlying system
characteristics. The object here is teritify and rank the 10 variables, and then to select a subset without using
any a priori information on either the data set or the simulated model.

The data set was centralised before analysis. By performing PCA on the centralised data, 10 eigenvalues,
6.6198, 6.5390, 6.4927, 0.0030, 0.0025, 0.0023, 0.0003, 0.0002, 0.0001, and the related eigenvectors

10



a,,0,, -, 0, of the associated covariance matrix have been obtained. A total number of 10 expéiavents

been done. In theth experiment, the MSOLS algorithm was applied to theiRRCs:y, = a,.Tx, i=1,...,p, and
the 10 variables were ranked in order of their significance. The results for the 10 experiments are shown in Table
I, where it is clear that the order thie ranked variables becomes stable frar8, the number of PCs could thus

be chosen ag=3.

TABLE |
RANKED VARIABLES OBTAINED BY CONSIDERINGDIFFERENTNUMBER OFPCS FOR THE
SIMULATED DATA FROM MODEL (28)

Index Ranked variables for different number of PCs

1 2 3 4 5 6 7 8 9 10
1 3 10 10 10 10 10 10 10 10 10
2 8 3 4 4 4 4 4 4 4 4
3 9 8 3 3 3 3 3 3 3 3
4 6 9 8 8 8 8 8 8 8 8
5 5 2 6 6 6 6 6 6 6 6
6 4 4 9 9 9 9 9 9 9 9
7 7 6 2 2 2 2 2 2 2 2
8 10 5 7 7 7 7 7 7 7 7
9 2 1 1 1 1 1 1 1 1 1
10 1 7 5 5 5 5 5 5 5 5

TABLE 1l

THE TwO CRITERIA SERRAND TERR FOR THESIMULATED DATA FROM MODEL (28)

SERRYJ;d] (%) TERR[]
Index Index; (%)

d 1 2 3 4 5 6 7 8 9 10
1 66.64 | 17.03] 1649 0.03 2918 29.93 0.14 2513 2457 100 30.96
2 86.69 | 96.57| 16.49 100] 4557 4581 59/03 5471 54.27 100 65.91
3 99.89 [ 99.89 100 100 99.88 | 99.82 | 99.77 | 99.81 | 99.88 100 99.89
4 99.89 99.95 100 100 99.88 99.83 9977 100 99.89 100 99.92
5 99.93 99.95 100 100 99.88 100 99.[79 100 99.90 100 99.95
6 99.94 99.96 100 100 99.88 100 99.81 1d)0 1P0 100 99.96
7 99.95 100 100 100 99.91L 10 99.82 100 100 1po 99.97
8 99.95 100 100 100( 99.91 10 10p 1q0 100 100 99.99
9 100 100 100 100 99.9L  10( 10p 1Q0 1Q0 100 99.99
10 100 100 100 100 100 10 10p 1q0 1q0 100 100

11



Using the information given by the number of the 3rd column in Table I, the first variable to lwkeéhaiu
the final subset should bg,, followed by the variables,, x;, etc. The remaining problem for subset selection
is to determine the number of variables to ibeluded in the subset. The two criteria, SERR[and
TERR[]defined in Section 3.3 were used to measure the performance of the selected subset congisting of
significant variables. The values of SERK[ and TERR{]for j=1,2, ..., 10 and/=1,2, ...,10 are shown in

Table II, where the element of SERR in tlie row andith column indicates what percentage of the variation in
the,th variablex; can be accounted for by the fitstzariables in column 3 of Table I. The total error reduction
ratio, TERR{], which refers to what percentage of the overaliation in all the 10 variables can be accounted
for by the firstd variables in column 3 of Table I, is also giverTable Il. It is clear from Table Il that there is a

steep change in the total error reduction ratio, TERRfom d=2 to d=3, and fromd=3 TERR[/] becomes

stable. Variations in each of the 10 variables can beusted for with a very high percentage using only the

first three variablesy,,, x, and x5, listed in column 3 of Table I. The final subset for the simulated data set

was thus chosen to 8¢ ={x;q, x,, x5} .

4.2 Example 2— The Alate Adelges data

The alate adelges (winged aphids) related data set which has been studied by Jeffers [196R@Aing a
method, concerns an investigation into the variatiofOinndividual winged aphids. This data has been studied
asa benchmark by several other authors to test new variants of PCA methods or variable selection slgorithm
see the detailed discussions in [Jolliffe 2002]. The data comprise 19 variables measured on each of 40 winged
aphids (alate adelges) that had been caught in a light trap. The flll9Qata matrix is available in
[Krzanowski 1987], and a description of the variables is given in [Jeffers 1967].

Denote the 19 variables (features) ayx,, -, x;o and letx =[x, x,,---,x,]" . The data set has been
standardized before analysis. By performing PCA on the standardized Alate Adelges data, 19ueggenval
A=A, 2---> A4, and related eigenvectons,,a.,,---,0,4, Of the associated correlation matrix (standardized
covariance matrix) were obtained. A total number of 10 experiments have been dongthrestperiment, the
MSOLS algorithm was applied to the figstPCs:y, :al.Tx, i=1,...,p, and the 19 variables were ranked in

order of their significance. The results for the 10 expenits are shown in Table Ill, where it is clear that the
order of the ranked variables becomes stable fsef In fact, the order of most ranked variables becomes
stable fromp=4. The number of PCs could thus be chosem=4, rather tham=6. The total error reduction

ratio, TERR{], which refers to what percentage of the overaliation in all the 19 variables can be accounted

for by the firstd variables in column 4 of Table Ill, is plotted in Fig. 1. Fig. 1 shows that about 70% overall
variation in all the 19 variables can be accounted forSpy{x;.} , 81% by S, ={x;5,x,;} , 85% by
Sy ={x13, X7, %10} , 87% by S, ={x13,x17, %11, %5} , and 90% bySg ={x;5, %17, X11, X5, X5} , etc.

Note that for the same alate adeldaa set, different criteria and diféat algorithms may lead to different
subsets [Jolliffe 2000]. The subs$gt={x,5,x;7,%,,}, selected by MSOLS algorithm here is identical to that
selected by the method B4 (a PCAséa algorithm) [Jolliffe 1973]. Comped with other methods, the subset

S, ={x,3,x,7,x,,} selected by B4 is considered to be the best in all subsets of three variables [Jolliffe 2000].
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TABLE Il
RANKED VARIABLES OBTAINED BY CONSIDERINGDIFFERENTNUMBER OFPCS FOR THEALATE

ADELGESDATA
Index Ranked variables for different number of PCs
1 2 3 4 5 6 7 8 9 10
1 13 13 13 13 13 13 13 13 13 13
2 17 17 17 17 17 17 17 17 17
3 11 11 11 11 11 11 11 11
4 8
5 12 18 5 5 5 5 5 5 5 5
6 3 16 4 4
7 15 11 18 18 18 18 18 18 18 18
8 10 7 16 16 16 16 16 16 16 16
9 9 3 7 19 19 19 19 19 19 19
10 11 19 3 14 14 14 14 14 14 14
11 14 12 12 7 7 7 7 7 7 7
12 6 15 6 3 3 3 3 3 3 3
13 19 10 15 6 6 6 6
14 1 6 10 12 12 12 12 12 12 12
15 7 14 19 15 15 9 9 9 9 9
16 18 9 14 10 10 10 10 10 10 10
17 16 4 2 2 2| 15 15 15 15 15
18 4 1 9 9 9 2 2 2 2 2
19 17 2 1 1 1 1 1 1 1 1
100 T : o
a5
a0
x B85
[id
(10 ]
|_
80
75
70
65 ! : !
o} 5 10 15 20

MNumber of variables, d

Fig. 1 The total error reduction ration, TERR, versus the number of variables in the subset for the Alate Adelges data
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TABLE IV
RANKED VARIABLES OBTAINED BY CONSIDERINGDIFFERENTNUMBER OFPCs
FOR THEPIMA INDIANS DIABETES DATA

Index Ranked variables for different number of PCs

1 2 3 4 5 6 7 8
1 2 2 2 2 2 2 2 2
2 5 5 5 5 5 5 5 5
3 3 8 8 8 8 8 8 8
4 6 4 4 4 4 4 4 4
5 8 3 3 3 3 3 3 3
6 4 6 6 6 6 6 6 6
7 1 7 7 7 7 7 7 7
8 0 1 1 1 1 1 1 1

TABLE V

THE TwO CRITERIA SERRAND TERRFOR THEPIMA INDIANS DIABETES TESTDATA SET

SERRY;d] (%) TERR[]
(%)
Index Index; Test | Training
d 1 2 3 4 5 6 7 g | daa | data

1 53.65 100 90.03 59.9 40894 91.]1 66{05 85)66 73|37 73.39
2 54.88 100 90.0§ 65.04 10( 91.11 6622 86.82 81{71 82.21
3 71.13 100 92.25 65.3 10( 92.07 67/09 100 8599 85.26
4 71.25 100 92.96 100 10d 93.58 68.p8 100 9085 90.13
5 71.26 100 100 100 100 94.85 69.51 10D 91.p7 91.33
6 71.33 100 100 100 100 10 70.28 100 92.71 92.09
7 71.34 100 100 100 100 10 10p 10 96.42 96.09
8 100 100 100 100 100 10d 100 10 100 100

4.3 Example 3— The Pima Indians Diabetes data

The pima indians diabetes (PID) data is taken from UCI Machine Learning Repository [Newman &8].al 199
The PID data set comprises 8 individual features, measuited68 samples, where the first 500 samples were
used for training and the remaining 268 samples were used for testing. The objective heankstihe 8
features used in the 58@ data set. Denote the 8 featurescgy,, -, xg.

Similar to Example 1, the significae of the 8 features were detected and ranked by performing the MSOLS
algorithm on a different number of PCs, and the assatiagsults are shown in Table IV, where the number zero

in the 29 column means that only 7 features are requiredpiesent the first PC. It is clear from Table IV that
the number of PCs to be considered for subset smtest?. The most significant feature select by MSOLS js

referring to the plasma glucose concentration at 2 hours in an oral glucose tolerancestésatie has been
employed as one of the main criteria by World He@ltlganization (WHO) for diabetes diagnosis. The result

here just reflects the fact tha is significant for diabetes diagnosis.
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The values of SERRE] with respect to the PID test data set ahown in Table V, where the element of

SERR in thedth row andjth column indicates what percentage of the variation injttherariablex; can be

accounted for by the firgt variables in column 2 of Table V. The total error reduction ratio, TERR]r both

the training data set and the test data set are also listed in Table V.

5. Conclusions

A new learning scheme has been proposed for feature ranking and subset selection. By treating the first
principal components as the response variables and all the candidate features as the predictor variables, the
problem for feature ranking and subset selection candveed as a special case of variable detection and subset
selection in multiple linear regression analysis. The new MSOLS algorithm can thus be applied to detect and
rank the features according to the dality to represent the first few PCsThe selected feature subset can be
evaluated by the total error reduction ratio (TERR), whichrsdfewhat percentage of the overall variation in all
the features can be accounted for by a selected subdetharh can be used as a criterion to indicate how many
features (variables) need to beclied in the subset. Unlike pripal components, which carry no clear
physical meaning, variables (features) selected usinQW\Sare physically interpretable. The applicability and
usefulness of the new MSOLS algorithm and associaathing scheme for feature (variable) ranking and
subset selection have been demonstrated using resultsdr@mal examples for both didial and real data sets,

including the three examples given in Section 4.

Appendix A —The MSOLS algorithm

In the following, x,,X;,--,X, are the data vectorassociated with thernfl) candidate variables,

Y1 Y20 Y msr) @r€ the columns of the matrX defined by (3);z, is the significant variable selected at the

rth step (=1,2 ...) .

The MSOLS algorithm:
Step 1: Set/,={1---, L}; L=m(n+1);

forj=1toL
;=7
T 2
Or 11— (yaj) s T Or 1 _ A1
er[ j]=——L—; {if aja; <5, seterr”[;]=0};
v'y)(aja)) N
end for

b= argTr;l){err(l)[k]} . (2 =mod(,,n+1);

errfl] =err®[¢,]; serrl] =errfl] ;

4=0,;2,=X,; I} ={¢:Cismultipleof dandlel};

Stepr, r>2:
for=2 ton+1
]r =]r—l\Fr—l;
foj e/,
o =y — S Y?‘h q
= i
’ ’ k=1 q/qu
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(y'a,)?

e[ jl=———L—; {if ala, <5, seter)[]=0}; (29)
v'y)@fa, "
end for ( end loop for
J, ={argala; <8)}; I,=1\J,; 30)
jel,

0, = argrkr1€1:1>{err(’)[k]} ;% =mod(,,n+1) ;

erfr]=ert”[¢ ]; serfr]= Zr:err[k] :
k=1

q,=0, ;z,=x,; I, ={¢ /ismultipleof ¢ and/ e 1.} ;

° ,
end for (end loop fep)

The MSOLS algorithm providean effective tool for selecting significant variables for a multiple regression with

an iterative stepwise way. Variables are selected lsyeptep, one variable at a time. Most numerical ill

conditioning can be avoided by eliminating the candidate variables for V‘dﬁd’} are less than a

predetermined threshaofd, say 6 =107" with 7 >10(Egs. (29), (30)). If required, the selection procedure can
be terminated at any step when SERR#tisfies some specified conditiofi$is algorithm can be applied to not
only the normal cases, where the number of featsr@maller than the number of training samplesc(V ), but
also the cases where the numioérfeatures is much larger than that of training sample& {V ). The
applications of MSOLS algorithm is not restricted taiafale selection in linear regression, it can be used to

select significant model terms fany linear-in-the-parameters models.
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