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Abstract—The wavelet transform and related techniques are
used to analyze singular and factal signals. The normalized Il.  SINGULAR SIGNALS
wavelet scalogram is introdeed to detect singularities Three classes of singulasignals including sharp

including jumps, cusps and other sharply changing points. . ,qhs fractal geometry andhtistical self-affine signals,
The wavelet auto-covariance is gplied to estimate the self- are considered

similarity exponent for statistical self-affine signals.

A. Sharp Cusps and the Gibbs Phenomenon
Consider functions with amx -power cusp [14]. A

functionf is said to have arr -power cusp at a poiri,

Keywords-Brownian motion; fractals, jumps;, sharp
changes; self-similarity; singularies; wavelets.

l. INTRODUCTION if there exists a positive constdtsuch that
Sharp changes such as junpusps and spikes are a ; _ . o
commonly encountered singular phenomenon in practical h'ﬂ} | 1o +h) = TO6) K [N 2)

signal processing. Another espial class of singularities

observed in real or artificial signals are fractals which ar€learly, if =0, thenf has a jump a¥,. In this study,
characterized by th property of self-similarity. These the parametera will be restricted to the interval
singularities and self-similarities can often be used tQ< 4 <1.

describe a wide class of practical phenomena arising in

various fields of both science and engineering. The Although most discontinuous signals can be recovered
detection and analysis of these singularies anffom the inverse wavelet transform with good
similarities have thereforetteacted increasing interest in convergence rates, it has been shown [9],[10] that a wide
recent years, and many approaches including waveletass of wavelet expansions suffer from Gibbs
techniques have been proposed [3]-[6], [9], [12],[14]. phenomenon, which states that the pointwise convergence

. f global approximation of discontinuous functions is at
It is well known that wavelets possess excellent Iocalost first order. In the presence of jumps global

properties in both the time and the frequency domain, ang,roximations are often oscillatory. Gibbs phenomenon
can be used to approximate any square integrable signaig, 5 given discontinuous signal can be reflected by the

including signals with singularities. Lebe a given signal ,5velet transform of the signal due to the property that big
defined in L2(R) , the continuous wavelet transform jumps often produce large wavelet coefficients.

(CWT) of the signalf with respect to a given mother | this study the wavelet scalogram(WS) will be used

wavelety is defined as to detect sharp cusps. The wavelet scalogram of a dignal
- is related to the associated wavelet transform by
1 = t—b
WY (ba)=—=] f (t)w(—Jdt () IWY (b,a)
Ja a SV (b,a) = ——— ®)
a

where ae R" and be R are the scale (dilation) and

translation (shift) parameters. The over-bar above thg' Fractal Geometr_y
functionl// indicates the Comp|ex Conjugate_ The termfractal, introduced by Mandelbrot [7], has

now been extended and developed into three related

The features of a given signal including theconcepts:geometric temporal and statistical fractals.
information of singularities cded on by the signal can Generally, the concept of a fratis defined in terms of
often be reflected by the wavelet transform (1) and/oself-similarity. Many initial applications of fractals
associated transformations. In this paper the wavelébcused on problems in comased matter and computer
scalogram will be introducetb detect singularities and graphics. Soon afterwards, ethapplications have been
similarities based on observed signals, and the wavelektended to aid the understanding of a great number of
auto-covariance will be used to estimate a self-similarityatural phenomena which exhibit self-similarity in
parameter of statistical self-affine signals.
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biology, ecology, geometry, engineering, music, physics, f e L 7
physiology and topography. (xy) (A%, A7y) (7
Various approaches have been proposed to produ&here;ﬁ is a positive numberH is calleq theHurst
fractal models. The concept of an iterated function systef@xponent orHausdorffexponent or self-affine exponent

(IFS) [1] provides an important tool to generate fractawith a value between 0 and 1, that B<H <1.

images. In particular, an IFS with probabilities is definequuation (7) indicates thaf (Ax,A"y) is statistically
as the following structure: o . Lo
similar to f(x, y) with a similarity exponent. In one-
I <X, d)w> (4) dimension, a self-affine fractal [6],[13] is defined as

_H .
where (X, d) is a complete metrispace with a metrig; (X)) =4 f(4X). In this caseX and f (X) are often

W is a family of a finite set of contraction mappingsinterpreted as the time anbe corresponding trajectory

o ; ) (position), respectively. It haseen proved [13] that the
{Wp,:m=12,---,M}, and each, is defined on the Hurst exponentH, and the self-affine fractal dimension,

space (X,d) ; P is an ordered set of numbersor the box-counting dimensio), are related by the
_ equation H=2-D. Therefore 1<D <2 corresponds to
{pm:zx:lpm:l Pm>0Q m:12~--,M} , and a probability 0<H <1 for a self-affine fractal. IH=1, the self-affine
] . ) ) fractal becomes self-similar, which is by definition
pi is to be assigned to theth mapping W .  jsotropic. A stochastic process or a surface with 1/2
Choose&, € X , ard then producex,,(n>1) recursiviely is said to be persistent, and that whth1/2 is said to be
and independently as antipersistent.
Following [6], the basic pragty of a self-affine time
Xp €{W (X 1), Wo (X g)s 5 Wiy (X 0)} ®)  series is that the power spectral density of the time series
has a power-law dependence on frequency. The physical
features of a dynamic system can be easily detected and
revealed using frequency domain analysis, which is often
Ejilrlnplemented by means of Fourier transforms of the
covariance functions. One feature of a self-affine time
series is that the power spectral density of the time series

X a b)x e has a power-law dependence on frequency
L) e
X2 c dx f P(w) o< |a)| (8)

wherea, b, ¢, d, e andf are randomly set to some Note that for a relationship between the power-law
specified real values. exponentf , the Hurst exponenH, and the fractal
Table 1 gives a 2-D fractal model, which can producelimensionD is given [13] by =2H +1=5-2D . For a

very complex patterns, e.g., a group of ‘trees’ as shown ige|f-affine process [6],0<H <1 , 1<D<2 and
Fig. 1. As will be shown, theelf-similar feature of fractal 4 5 <3. For a Brownian motiof = 05, D =15 and
signals produced by the affine model (6) can be detecteg 5
by the wavelet transform. e

where the probabtlj of the eventx, € W.,(X, ;) iS p,-

As a special case of aR$ with probability, the affine
model below can be used to produce very rich 2-D fract
images

Following [3], the covariate of the wavelet transform

TABLE I. COEFFICIENTS ANDPROBABILITIES OF AN AFFINE (1) of a random signak(t) at a given scale can be
FRACTAL MODEL defined as
- Coefficients —
Probabilities " 5 . g " ; R/ (t sa) = E[W/ (t,aW) (s a)] (9)
p,=0.01 0 0 0 0.16 0 | -1.00 It has been shown [15] that in the case tk@} is a self-
_ affine signal obeying the power-law (8), tlaito-
=0.85 -0.85 | -0.04| -0.04| 0.85 0 1.6( . ;
P2 covarianceof the wavelet transform of the signdé) also
p3=0.07 -0.20 | 0.26| 0.23 0.22 0| 160 obeys a power-law in the sense that
p,=0.07 0.15| -0.28| 0.26 0.24 0 0.2 —
R/ (2) = EWY (L a)Wy' (t, a)]

w |~ 2
- . a Tlv(aw)
C. Statistical Self-Similar Signals :Zj—ﬁdw
A self-affine set is statistically invariant under an - |a)|
affine transformation. A 2-dimensional surfadescribed PPIPUN:
. . e : a o
by_ a function f(x,y) is a self-affine fractal, if there _a’ |l//( )| w = Ca’ (10)
exists a numbet such that 20 |w|ﬁ



Figure 1 A group of trees produced from the model (6) with the coefficients listed in Table (1)

1% ) The original noise &e signal is show in Fig. 2(a), where
where C =— I|¢(w)| /|a,|ﬂ dw is a constant. This there is a jump point at 0.5 and a cusp point as 0.6; the
27 ? noise corrupted signal is show in Fig. 2(b), where the
suggests that for aelf-affine proces(t), the auto- added noise was a_Gayssmn white signal with zero mean
covariance of the wavelet transform of signét) also and standard derivativer=2 . The 3-D wavelet
obeys the power-law with respect to the wavelet scalgcalogram for this signal is shown in Fig. 3, where both
parameter. Therefore, the new result (10) can be used téhe jump and the cusp points were precisely detected.
estimate the power-law exponent of self-affine fractals. Example 2—a signal with a jump,

smooth bumps

a sharp cusp and some

I1l.  NUMERICAL EXAMPLES

This section provides severalamples to illustrate the
applications of wavelet traformations for detecting and f(X) = 2sin(4nx) — 6| x— o_4|3’1°
analyzing singular anself-similar signals.

The model of the signal is given by [13]

—05sign(0.7-Xx) + & (11)
A. Jump and Cusp Detection

T . . . . \cfyheree was a Gaussian white noise with zero mean and
wo signals, which contain both jumps and cusps an \andard derivative = 0.2 Th ise f d th .
which were contaminated by noise were considered gpandard dernvative = L.z . The noise iree and the noise
demonstrate the application of the wavelet scalografOruPted signals are shown in Fig. 4(a) and (b).

defined by (3) . The 3-D wavelet scalogram for this signal is shown in

Example 1-—a chip signal vt a jump and a sharp cusp F9: 5. AS expected. both the jump and the cusp poins
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Figure 2 The signal described in Example 1.
(a) noise free; (b) with a noise.
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Figure 3 The wavelet scalagn for the signal described
in Example 1.
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Figure 4 The signal described by (11) in Example 2.
(a) noise free; (b) with a noise.
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Figure 5 The wavelet scalogrdor the signal described by
(11) in Example 2.

B. Self-Similarity Detection for Fractal Geometry

The self-similarity hidden irdractal geometry can be
detected by the wavelet transform.
Example 3—a fractal tree

Take the fractal Barnsley tree as an example. With the
coefficients listed in Table 1, two scalar signgj¢k) and
X, (k) were generated using the affine transform (6), and
part of these are shown in Fig. 6 (a) and (b). The two
signalsx; (k) and x, (k) can form a Barnsley tree similar
to those shown in Fig. 1. As will be seen, the self-
similarity hidden in the signals can be detected by the
wavelet transform. The maxima of the wavelet transform
of the two signals are shown in Fig. 7, from which the
self-similarity possessed by the signals can be clearly seen.
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Figure 6 The signals generated from the model
given by Table 1.
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C. Estimation of a Self-Similar Parameter
The wavelet transform provides an effective tool to ' @
estimate the self-similar parameter for self-affine *% 50 100 150
stochastic processes, where the power spectral density Sampling index

the time series has a power-law dependence on frequency
Example 4—a simulated fractional Brownian motion

Fig. 8(a) shows one realization of a fraction Brownian
motion with a Hurst exponemt=0.8. From Fig. 8(b), the '
slope of the line was calculated to pe 2.658, and the

0.5}

Hurst exponent for the simulated Brownian motion was z:—-

- ol
estimated to bel ~ (f-1)/2~ 0.829.

os|
Example 5—a real data set
Fig. 9(a) shows a set of sales data taking from [2]. | ®

This is a nonstationary time series. The slope of the "% oz oa 0o~ 0a — 12 s 1e
wavelet auto-covariance line was approximately197, el
the Hurst exponent for this process \as 0.485, which Figure 9 The sales data described in Example 5 and the
L . . . . associated wavelet covariance. (a) sales data; (b) the
indicates that the nonstationdigne series can be viewed wavelet covariancdefined by (10).

as a Brownian motion.



IV. CONCLUSIONS

The wavelet transform and related techniques provid I

powerful tools for detecting and analyzing singular an

self-similar signals. Inforation carried by a singular

signal will be totally preserved in the wavelet coefficients|e]

and sharply changing points céwe sensitively detected

using the wavelet scalogram, which is a variant of the
normal wavelet transform. The self-similarity that exits inl"]

fractal geometry can also hevealed by the wavelet

transform. It has been shown that the auto-covariance

the wavelet transform of a self-affine signal obeys a

power-law. This result enablédse wavelet transform to be
used to estimate the selfrilar exponent for self-affine
stochastic processes.
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