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Abstract—The wavelet transform and related techniques are 
used to analyze singular and fractal signals. The normalized 
wavelet scalogram is introduced to detect singularities 
including jumps, cusps and other sharply changing points. 
The wavelet auto-covariance is applied to estimate the self-
similarity exponent for statistical self-affine signals. 

Keywords-Brownian motion; fractals; jumps; sharp 
changes; self-similarity; singularies; wavelets. 

I.  INTRODUCTION 

Sharp changes such as jumps, cusps and spikes are a 
commonly encountered singular phenomenon in practical 
signal processing. Another special class of singularities 
observed in real or artificial signals are fractals which are 
characterized by the property of self-similarity. These 
singularities and self-similarities can often be used to 
describe a wide class of practical phenomena arising in 
various fields of both science and engineering. The 
detection and analysis of these singularities and 
similarities have therefore attracted increasing interest in 
recent years, and many approaches including wavelet 
techniques have been proposed [3]-[6], [9], [12],[14]. 

It is well known that wavelets possess excellent local 
properties in both the time and the frequency domain, and 
can be used to approximate any square integrable signals, 
including signals with singularities. Let f be a given signal 

defined in , the continuous wavelet transform 
(CWT) of the signal f with respect to a given mother 
wavelet 
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where  and  are the scale (dilation) and  
translation (shift) parameters. The over-bar above the 
function

+∈Ra Rb∈

ψ indicates the complex conjugate. 

The features of a given signal including the 
information of singularities carried on by the signal can 
often be reflected by the wavelet transform (1) and/or 
associated transformations. In this paper the wavelet 
scalogram will be introduced to detect singularities and 
similarities based on observed signals, and the wavelet 
auto-covariance will be used to estimate a self-similarity 
parameter of statistical self-affine signals. 

II. SINGULAR SIGNALS 

Three classes of singular signals including sharp 
cusps, fractal geometry and statistical self-affine signals, 
are considered. 

A.  Sharp Cusps and the Gibbs Phenomenon 

Consider functions with an α -power cusp [14]. A 
function f is said to have an α -power cusp at a point  
if there exists a positive constant K such that 
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Clearly, if 0=α , then f has a jump at . In this study, 
the parameter 

0x
α  will be restricted to the interval 

10 <≤α . 

Although most discontinuous signals can be recovered 
from the inverse wavelet transform with good 
convergence rates, it has been shown [9],[10] that a wide 
class of wavelet expansions suffer from Gibbs 
phenomenon, which states that the pointwise convergence 
of global approximation of discontinuous functions is at 
most first order. In the presence of jumps global 
approximations are often oscillatory. Gibbs phenomenon 
for a given discontinuous signal can be reflected by the 
wavelet transform of the signal due to the property that big 
jumps often produce large wavelet coefficients. 

In this study the wavelet scalogram(WS) will be used 
to detect sharp cusps. The wavelet scalogram of a signal f 
is related to the associated wavelet transform by  

a
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B. Fractal Geometry 

The term fractal, introduced by Mandelbrot [7], has 
now been extended and developed into three related 
concepts: geometric, temporal and statistical fractals. 
Generally, the concept of a fractal is defined in terms of 
self-similarity. Many initial applications of fractals 
focused on problems in condensed matter and computer 
graphics. Soon afterwards, the applications have been 
extended to aid the understanding of a great number of 
natural phenomena which exhibit self-similarity in 
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biology, ecology, geometry, engineering, music, physics, 
physiology and topography. 

Various approaches have been proposed to produce 
fractal models. The concept of an iterated function system 
(IFS) [1] provides an important tool to generate fractal 
images. In particular, an IFS with probabilities is defined 
as the following structure: 

><Σ WdX ),,(     :                                          (4) 

where  is a complete metric space with a metric d;  
W is a family of a finite set of contraction mappings 

, and each  is defined on the 

space ; P is an ordered set of numbers 

, and a probability 

is to be assigned to the i-th mapping . 

Choose d then produce )1( ≥nnx  recursiviely 
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where the probability of the event  is . )( 1−∈ nmn w xx mp

As a special case of an IFS with probability, the affine 
model below can be used to produce very rich 2-D fractal 
images  
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where a, b, c, d, e and f  are randomly set to some 
specified real values.  

Table 1 gives a 2-D fractal model, which can produce 
very complex patterns, e.g., a group of ‘trees’ as shown in 
Fig. 1. As will be shown, the self-similar feature of fractal 
signals produced by the affine model (6) can be detected 
by the wavelet transform. 

TABLE I.  COEFFICIENTS AND PROBABILITIES OF AN AFFINE 
FRACTAL MODEL 

Coefficients 
Probabilities 

a b c d e f 

1p =0.01 0 0 0 0.16 0 -1.00 

2p =0.85 -0.85 -0.04 -0.04 0.85 0 1.60 

3p =0.07 -0.20 0.26 0.23 0.22 0 1.60 

4p =0.07 0.15 -0.28 0.26 0.24 0 0.22 

 

C.  Statistical Self-Similar Signals 

A self-affine set is statistically invariant under an 
affine transformation. A 2-dimensional surface described 
by a function  is a self-affine fractal, if there 
exists a number H such that 

),( yxf
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whereλ  is a positive number, H is called the Hurst 
exponent or Hausdorff exponent or self-affine exponent 
with a value between 0 and 1, that is, 10 ≤≤ H . 

Equation (7) indicates that  is statistically 

similar to  with a similarity exponent H. In one-
dimension, a self-affine fractal [6],[13] is defined as 

. In this case, x  and are often 
interpreted as the time and the corresponding trajectory 
(position), respectively. It has been proved [13] that the 
Hurst exponent, H, and the self-affine fractal dimension, 
or the box-counting dimension, D, are related by the 
equation H=2-D. Therefore  corresponds to 

),( yxf Hλλ
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21 ≤D≤
10 ≤≤ H  for a self-affine fractal. If H=1, the self-affine 

fractal becomes self-similar, which is by definition 
isotropic. A stochastic process or a surface with  
is said to be persistent, and that with H<1/2 is said to be 
antipersistent.  

2/1>H

Following [6], the basic property of a self-affine time 
series is that the power spectral density of the time series 
has a power-law dependence on frequency. The physical 
features of a dynamic system can be easily detected and 
revealed using frequency domain analysis, which is often 
implemented by means of Fourier transforms of the 
covariance functions. One feature of a self-affine time 
series is that the power spectral density of the time series 
has a power-law dependence on frequency 

βωω −∝)(P                                                    (8) 

Note that for a relationship between the power-law 
exponentβ , the Hurst exponent H, and the fractal 
dimension D is given [13] by DH 2512 −=+=β . For a 
self-affine process [6], , 10 ≤≤ H 21 ≤≤ D  and 

31 << β . For a Brownian motion, , 5.0=H 5.1=D  and 
2=β . 

Following [3], the covariance of the wavelet transform 
(1) of a random signal x(t) at a given scale a can be 
defined as  

]),(),([);,( asWatWEastR xxx
ψψψ =                (9) 

It has been shown [15] that in the case that  x(t) is a self-
affine signal obeying the power-law (8),  the auto-
covariance of the wavelet transform of the signal x(t) also 
obeys a power-law in the sense that 
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Figure 1  A group of trees produced from the model (6) with the coefficients listed in Table (1) 
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 is a constant. This 

suggests that for a self-affine process x(t), the auto-
covariance of the wavelet transform of signal x(t) also 
obeys the power-law with respect to the wavelet scale 
parameter a. Therefore, the new result (10) can be used to 
estimate the power-law exponent of self-affine fractals. 

III.  NUMERICAL EXAMPLES 

This section provides several examples to illustrate the 
applications of wavelet transformations for detecting and 
analyzing singular and self-similar signals. 

A. Jump and Cusp Detection 

Two signals, which contain both jumps and cusps and 
which were contaminated by noise were considered to 
demonstrate the application of the wavelet scalogram 
defined by (3) . 

Example 1—a chirp signal with a jump and a sharp cusp 

The original noise free signal is show in Fig. 2(a), where 
there is a jump point at 0.5 and a cusp point as 0.6; the 
noise corrupted signal is show in Fig. 2(b), where the 
added noise was a Gaussian white signal with zero mean 
and standard derivative 2=σ . The 3-D wavelet 
scalogram for this signal is shown in Fig. 3, where both 
the jump and the cusp points were precisely detected.  

Example 2—a signal with a jump, a sharp cusp and some 
smooth bumps 

The model of the signal is given by [13] 

)4sin(2)( xxf π= 10/3|4.0|6 −− x  

ε+−− )7.0(5.0 xsign                               (11) 

whereε was a Gaussian white noise with zero mean and 
standard derivative 2.0=σ . The noise free and the noise 
corrupted signals are shown in Fig. 4(a) and (b). 

     The 3-D wavelet scalogram for this signal is shown in 
Fig. 5. As expected, both the jump and the cusp points 
were accurately detected.  
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Figure 2  The signal described in Example 1.   
(a) noise free; (b) with a noise. 

 

 

 

 

 

 

 

 

 

 

 
F  igure 5  The wavelet scalogram for the signal described by

(11) in Example 2.  

 

B. Self-Similarity Detection for Fractal Geometry 

The self-similarity hidden in fractal geometry can be 
detected by the wavelet transform. 

Example 3—a fractal tree 

Take the fractal Barnsley tree as an example. With the 
coefficients listed in Table 1, two scalar signals  and 

 were generated using the affine transform (6), and 
part of these are shown in Fig. 6 (a) and (b). The two 
signals  and can form a Barnsley tree similar 
to those shown in Fig. 1. As will be seen, the self-
similarity hidden in the signals can be detected by the 
wavelet transform. The maxima of the wavelet transform 
of the two signals are shown in Fig. 7, from which the 
self-similarity possessed by the signals can be clearly seen. 

)(1 kx
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Figure 3  The wavelet scalogram for the signal described 
in Example 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4  The signal described by (11) in Example 2.

(a) noise free; (b) with a noise. Figure 6  The signals generated from the model 
given by Table 1.   
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Figure 7  The wavelet transform modulus maxima for the  
Barnsley tree signals shown in figure 6. (a) for x1; (b) for x2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Estimation of a Self-Similar Parameter 

The wavelet transform provides an effective tool to 
estimate the self-similar parameter for self-affine 
stochastic processes, where the power spectral density of 
the time series has a power-law dependence on frequency.  

Example 4—a simulated fractional Brownian motion 

Fig. 8(a) shows one realization of a fraction Brownian 
motion with a Hurst exponent H=0.8. From Fig. 8(b), the 
slope of the line was calculated to be 658.2≈β , and the 
Hurst exponent for the simulated Brownian motion was 
estimated to be . 829.02/)1(

~
≈−≈ βH

Example 5—a real data set 

Fig. 9(a) shows a set of sales data taking from [2]. 
This is a nonstationary time series. The slope of the 
wavelet auto-covariance line was approximately 97.1≈β , 
the Hurst exponent for this process was , which 
indicates that the nonstationary time series can be viewed 
as a Brownian motion. 

485.0≈H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9  The sales data described in Example 5 and the 
associated wavelet covariance. (a) sales data; (b) the 
wavelet covariance defined by (10). 

Figure 8  One realization of a Brownian motion and 
the associated wavelet covariance. (a) a Brownian 
motion; (b) the wavelet covariance defined by (10). 

 

 



IV. CONCLUSIONS 

The wavelet transform and related techniques provide 
powerful tools for detecting and analyzing singular and 
self-similar signals. Information carried by a singular 
signal will be totally preserved in the wavelet coefficients, 
and sharply changing points can be sensitively detected 
using the wavelet scalogram, which is a variant of the 
normal wavelet transform. The self-similarity that exits in 
fractal geometry can also be revealed by the wavelet 
transform. It has been shown that the auto-covariance of 
the wavelet transform of a self-affine signal obeys a 
power-law. This result enables the wavelet transform to be 
used to estimate the self-similar exponent for self-affine 
stochastic processes.  
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