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RESEARCH ARTICLE Open Access

Multiple search methods for similarity-based
virtual screening: analysis of search overlap
and precision
John D Holliday1, Evangelos Kanoulas1, Nurul Malim1,2 and Peter Willett1*

Abstract

Background: Data fusion methods are widely used in virtual screening, and make the implicit assumption that the

more often a molecule is retrieved in multiple similarity searches, the more likely it is to be active. This paper tests

the correctness of this assumption.

Results: Sets of 25 searches using either the same reference structure and 25 different similarity measures

(similarity fusion) or 25 different reference structures and the same similarity measure (group fusion) show that

large numbers of unique molecules are retrieved by just a single search, but that the numbers of unique

molecules decrease very rapidly as more searches are considered. This rapid decrease is accompanied by a rapid

increase in the fraction of those retrieved molecules that are active. There is an approximately log-log relationship

between the numbers of different molecules retrieved and the number of searches carried out, and a rationale for

this power-law behaviour is provided.

Conclusions: Using multiple searches provides a simple way of increasing the precision of a similarity search, and

thus provides a justification for the use of data fusion methods in virtual screening.

Background
The constantly increasing costs of drug discovery have

resulted in the development of many techniques for vir-

tual screening [1-4]. One of the simplest, and most

widely used, techniques is similarity searching, in which

a known bioactive reference structure is searched

against a database to identify the nearest-neighbour

molecules, since these are the most likely to exhibit the

bioactivity of interest [5-9].

A quarter of a century has passed since the first

descriptions of similarity searching [10,11], but it has

still not proved possible to identify some single similar-

ity method that is consistently superior (in terms of

quantitative measures of screening effectiveness such as

enrichment factor or cumulative recall) to the many

others that have been developed over the years

[7,12,13]. Indeed, we would agree with Sheridan [6] that

it is unlikely that it will ever be possible to identify such

an optimal solution. There has hence been much inter-

est in the use of data fusion methods, in which multiple

searches are carried out and the resulting database rank-

ings combined to yield an overall ranking (in order of

decreasing probability of activity) that is the final search

output presented to the user. The many studies that

have been carried out have suggested that the fusion of

multiple search outputs can provide an effective, and

robust, alternative to conventional, single-search

approaches [14]. Most of these studies have been

empirical in character and have not sought to provide a

theoretical rationale for the fusion procedures that have

been used. There is, however, an underlying assumption

that is common to all approaches to the use of data

fusion for virtual screening. This assumption is that the

availability of information resulting from multiple

searches will increase the likelihood of detecting active

molecules when compared to the use of just a single

search. The assumption seems entirely reasonable but it

has not, to our knowledge, been tested systematically:

this article reports such a test.
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The starting point for our work was a paper by

Spoerri that investigated the extent to which the

assumption applies when a query is matched against a

database of textual documents using multiple search

engines [15]. In brief, Spoerri showed that a given docu-

ment was more likely to be relevant to a user’s query

the more search engines retrieved that document, with

this likelihood increasing very rapidly as the number of

search engines retrieving it increased. Spoerri called this

phenomenon the Authority Effect: here, we seek to

determine whether the Effect also applies in the context

of similarity-based virtual screening systems, since this

would provide a firm basis for the use of fusion

methods.

Results and Discussion
We have considered both of the two principal types of

data fusion that have been used for virtual screening:

similarity fusion and group fusion (which we refer to

subsequently as SF and GF, respectively) [14]. SF

involves searching a single reference structure against a

database using multiple different similarity measures,

and the output is obtained by combining the rankings

resulting from these different measures. GF involves

searching multiple reference structures against a data-

base using a single similarity measure, and the output is

obtained by combining the rankings resulting from

these different reference structures. The reader should

note that while we refer in this paper to the SF experi-

ments and the GF experiments, real data fusion using

either of the two approaches requires a procedure to

combine the multiple ranked search outputs to give the

final ranking that is presented to the searcher. Here, we

have merely considered the molecules retrieved in the

top-1% or top-5% of the rankings (see Experimental

Methods), with no attempt being made to produce a

final output ranking from the top-ranked subset of the

database.

We consider first the results of the SF searches. Figure

1(a) shows the overlap plot for the WOMBAT database

with a top-1% cut-off. It will be seen that the same basic

pattern of behaviour is obtained for all of the activity

classes, viz a very large number of molecules that are

retrieved by just a single search, and then rapidly

decreasing numbers of molecules as more searches are

considered. For example, if we consider the COX-2

searches, then there were (averaged over the ten different

reference structures for this activity class) 2195 different

molecules retrieved once in the 25 searches, 1749 differ-

ent molecules retrieved twice, 1345 different molecules

retrieved thrice etc. Entirely comparable plots are

obtained with the top-1% cut-off for the MDDR activity

classes (Figure 1(b)) and for the top-5% searches for both

datasets (data not shown). For comparison with these

data, selecting WOMBAT molecules completely at ran-

dom with a probability of 0.01 (for top-1% searches) in

the Binomial Distribution would yield 27,128 molecules

that were retrieved once; however, the numbers then

drop off very rapidly so that only a single molecule would

be expected to be retrieved five times and no molecules

at all for greater numbers of similarity searches.

The skewed nature of the data in Figure 1 suggests

that there may a power law relationship between the

overlap and the number of searches, with a few observa-

tions (i.e., molecules being retrieved in the present con-

text) occurring very frequently and the great majority

occurring only once. Such relationships have been

widely discussed in library and information science,

where the Bradford, Lotka and Zipf distributions have

been used for many years to discuss the dispersion of

the scholarly literature, author productivity and word-

usage frequencies respectively [16,17]. However, such

relationships have been observed across the physical and

social sciences: published applications include phenom-

ena as diverse as the populations of cities, casualty fig-

ures in wars, and the sizes of lunar craters inter alia

[18], with Benz et al. reviewing applications in chemoin-

formatics [19].

A power law relationship in the current context has

the general form

O =
a

nb
,

where O is the overlap (see Experimental Methods), n

is the number of similarity searches and a and b are

constants. Plotting log(O) against log(n) should then

give a straight line with a slope of -b, and this has been

tested in Figure 2 for the top-1% searches, where the

overlap figures have been averaged over all of the activ-

ity classes for simplicity and ease of viewing. There are

clear deviations from straight line behavior in both

plots, especially at the largest and smallest numbers of

searches. This is not unexpected since inspection of the

log-log plots that comprise Figure four of the review by

Newman [18] shows that the twelve highly disparate

datasets considered there all exhibit at least some degree

of curvature analogous to that observed in Figure 2. The

slopes (b) and the r2 values for the WOMBAT and

MDDR datasets (both top-12% and top-5%) are listed in

the upper part of Table 1 in the column headed ‘Mole-

cules’. It will be seen that the slopes range from -1.75

(WOMBAT top-5%) to -2.17 (MDDR top-1%) and thus

cluster around the value of -2 that characterizes a classi-

cal Lotka plot [20]. Mitzenmacher has noted that log-

linear plots often give results that are comparable to

log-log plots in power-law studies [21]. For the SF

searches in Table 1, the log-linear plots gave better r2

values for the two top-5% results and worse values for
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Figure 1 Search overlap using similarity fusion. Plots of the mean numbers of molecules retrieved in a given number of similarity searches

for: (a) WOMBAT top-1% searches; (b) MDDR top-1% searches.
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the two top-1% values. Similarly inconsistent sets of

values were obtained when the scaffold overlap and GF

results were considered (vide infra).

Figures 1 and 2 consider the overlap of individual

molecules. Comparable analyses were conducted in

which we counted the overlap of individual ring systems,

specifically the Murcko scaffolds identified by the Pipe-

line Pilot software. Very similar results to those above

were obtained, with the numbers of distinct scaffolds

again dropping off very quickly with an increase in the

number of searches. The b and r2 values for the scaffold

log-log plots are included in the upper part of Table 1.

When applied to virtual screening, the Authority

Effect would suggest that a given molecule is more likely

to be active the more searches that retrieve it. From the

results presented thus far, it is clear that multiple

searches retrieve decreasingly small numbers of mole-

cules; if the Effect holds then these decreasingly small

numbers will contain increasingly large percentages of

(
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Figure 2 Search overlap using similarity fusion. Log-log plots of the mean numbers of molecules retrieved in a given number of similarity

searches for: (a) WOMBAT top-1% searches; (b) MDDR top-1% searches.

Table 1 Slopes (b) and squared correlation coefficients

(r2) for log-log plots of the overlap of molecules and the

overlap of scaffolds using similarity fusion and group

fusion

Molecules Scaffolds

b r
2

b r
2

Similarity fusion

WOMBAT top-1% -1.98 0.966 -1.95 0.965

WOMBAT top-5% -1.75 0.919 -1.71 0.893

MDDR top-1% -2.17 0.959 -2.16 0.950

MDDR top-5% -1.89 0.906 -1.89 0.881

Group fusion

WOMBAT top-1% -2.49 0.957 -2.46 0.946

WOMBAT top-5% -2.12 0.951 -2.09 0.921

MDDR top-1% -2.32 0.952 -2.37 0.938

MDDR top-5% -2.01 0.980 -2.00 0.968
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Figure 3 Search precision using similarity fusion. Plots of the percentage of the molecules retrieved in a given number of similarity searches

that were active for: (a) WOMBAT top-1% searches; (b) WOMBAT top-5% searches.
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actives. That this enrichment occurs in practice is

clearly demonstrated in Figures 3 and 4. There are often

marked differences between the various activity classes

comprising a dataset but the plots are at one in showing

that the precision (see Experimental section) is very low

for molecules retrieved by just a few searches but that it

then increases very rapidly as the number of searches

moves towards the maximum. As in the overlap experi-

ments, the skewed nature of the data suggests that a

power law relationship may be appropriate to describe

the relationship. Averaging over all of the activity

classes, the precision figures are shown as log-log plots

in Figure 5. The plots all curve upwards to the right: fit-

ting the log-log data to power and exponential trends,

the former always gave the better fit, with the continu-

ous curves in the figures representing a cubic relation-

ship. Comparable results to those shown in Figures 3, 4,

5 were again obtained when we considered the active

molecules’ scaffolds that were retrieved, rather than the

active molecules that were retrieved.

We hence conclude that a molecule is more likely to

be active the more frequently it is retrieved when multi-

ple similarity measures are available for carrying out a

similarity search for a bioactive reference structure. The

Authority Effect would thus appear to hold, at least for

the datasets and similarity measures used here.

Turning now to the GF searches, the overlap plots

that were obtained are very similar in form to those

shown in Figures 1 and 2, and we have hence included

just the top-1% log-log plots in Figure 6. The b and r2

values for these plots are included in the lower part of

Table 1, and it will be seen that the magnitudes of the

slopes are larger than in the upper part of this table, i.e.,

the numbers of molecules retrieved drops off more

rapidly than in the similarity fusion searches. However,

this drop-off is from a much larger starting point, as

can be seen by comparing the intercepts on the y-axis

in, e.g., Figures 2(a) and 6(a), i.e., the single similarity

measure and 25 reference structures in the GF search

identify a notably larger number of molecules than the

25 similarity measures and single reference structure in

the SF search. This behaviour is detailed in Table 2,

which shows the mean numbers of common molecules

and common scaffolds for SF and GF searches using 1,

5, 10, 15, 20 and 25 similarity searches.

We believe that there are two factors that may explain

the observed difference between SF and GF. First, the

very different natures of the two types of search. In an

SF search, the same reference structure is used in all 25

searches. Now, the substructures present within that

structure are encoded in different ways by the five dif-

ferent fingerprints, and those encodings are processed in

different ways by the five different similarity coefficients;

however, it is the same basic structural information that

is being used in each and every search. In the GF

searches, conversely, a totally different reference struc-

ture (and hence different structural information) is used

in each search. Second, some of the similarity measure

components are quite closely related to each other; thus

the Tanimoto and cosine coefficients are known to give

very similar (though not monotonic) rankings [22], and

the Unity and Daylight fingerprints use a similar frag-

ment encoding scheme. Thus, not only is the same basic

structural information being used for all the SF searches,

but in some cases this information is being processed in

a similar manner. Taking these two effects together, the

top-ranked molecules resulting from the SF searches

hence have a greater degree of commonality than the

top-ranked molecules from the GF searches, making it

relatively easier for a molecule to be retrieved multiple

times using SF (and relatively more difficult using GF).

In like vein, a still more steeply angled plot (albeit one

that is not based on a log-log relationship) is obtained

when searching is simulated by drawing molecules at

random using the Binomial Distribution, resulting in

sets of molecules having minimal structural

commonality.

The differences between the two types of fusion are

still more marked when we consider the precision of the

GF searches, as can be seen by comparing the results in

Figures 7 and 8 with those in Figures 3 and 4. The gen-

eral GF trend is for the precision to rise steeply (as in

the SF searches) but then to fall rapidly away, giving an

inverted bell-shape rather than the constantly increasing

plots observed previously (see also the log-log plot for

the MDDR top-1% data in Figure 9). The low precision

values observed towards the right-hand parts of the

Figures 7 and 8 plots follow naturally from the discus-

sion above since if the 25 reference structures in a GF

search are quite disparate then it is unlikely that many,

or even any, molecules will be retrieved by large num-

bers of these reference structures. The precision (when

averaged over the ten sets of GF searches for each activ-

ity class) is hence expected to be low, and there is some

evidence to support this view from consideration of the

individual activity classes. Specifically, there is a ten-

dency for the more homogeneous activity classes (such

as the renin inhibitors) to exhibit their maximum preci-

sion at larger numbers of searches than for the less

homogeneous (i.e., more heterogeneous) activity classes,

where we approximate the homogeneity of an activity

class by the mean pair-wise similarity when averaged

across all the pairs of molecules in that class. For exam-

ple, consider the MDDR top-1% GF searches. We have

ranked the eleven activity classes in order of decreasing

mean pair-wise similarity and noted for each such class

the number of similarity searches (in brackets) that

gives the maximum precision. The resulting order is:
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Renin (23) > HIVP (12) > Thrombin (16) > AT1 (11) >

SubP (11) > 5HT3 (12) > 5HTReuptake (9) > D2 (8) >

5HT1A (11) > PKC (11) > COX (6). Thus the differ-

ences in behavior between the GF and SF searches tend

to increase the more diverse the activity class that is

being sought, i.e., the more disparate the reference

structures that are used for the searches. Support for

this view comes from previous studies by Hert et al.
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Figure 4 Search precision using similarity fusion. Plots of the percentage of the molecules retrieved in a given number of similarity searches

that were active for: (a) MDDR top-1% searches; (b) MDDR top-5% searches.
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[23] and by Whittle et al. [24], who showed that GF,

using the MAX and SUM fusion rules respectively, gave

comparable levels of screening effectiveness to conven-

tional similarity searching (and hence, by implication, to

similarity fusion) when structurally homogeneous activ-

ity classes were searched; however, there were noticeable

differences in screening effectiveness (with GF the

superior approach) when more heterogeneous classes

were searched.

We hence conclude that the Authority Effect applies

to GF searches when the reference structures are

structurally quite similar; when this is not the case, it is

applicable when relatively small numbers of reference

structures are used, i.e., when meaningful numbers of

molecules are being retrieved in all of the searches. It

should be emphasized that this does not mean that GF

is in some way inferior to SF as a technique for ligand-

based virtual screening. First, the discussion here has

focussed on the numbers of active molecules that are

retrieved, without consideration of their diversity, and

the previous studies mentioned above demonstrated the

applicability of GF when structurally diverse molecules

are sought [23,24]. Second, it must be remembered that

whilst we refer to SF and GF, practical implementations

of these techniques entail a subsequent step in which a

fusion rule combines the sets of nearest neighbours

from the individual searches. Finally, if 25 different,

active reference structures were available, one should

probably be using a more sophisticated, machine learn-

ing method [25] for database screening, e.g., a naive

Bayesian classifier or a support vector machine, rather

than simple, similarity-based approaches.

The results above show that Spoerri’s Authority Effect

holds - to some extent - for the chemical datasets and

biological activity classes considered here. Specifically, a

molecule is more likely to be active the more frequently

it is retrieved in multiple similarity searches using a sin-

gle reference structure or in multiple similarity searches

using structurally similar multiple reference structures.

This observation hence provides a justification for the

use of data fusion methods in ligand-based virtual

screening. In saying that, we must emphasise that our

experiments have been conducted specifically to investi-

gate the Authority Effect, and that rather different pro-

cedures are normally applied when data fusion

procedures are used in operational virtual screening sys-

tems. For example, a common approach to GF is to use

the MAX (or 1-NN) fusion rule, where the similarity for

a database structure is taken to be the maximum of the

similarities between that structure and each of the refer-

ence structures. Whittle et al. have shown that the num-

bers of retrieved actives increase approximately

monotonically with the number of GF reference struc-

tures even when many of them are employed (see Figure

six in Ref. [24]). Again, if one were to use SF in practice,

one would choose similarity measures that differed in

character, as exemplified by the work of Muchmore et

al. on belief theory [26], rather than the similar 2D fin-

gerprint measures used here. Thus, while the results

that we have presented provide a basis for the use of

data fusion methods in principle, they do not provide a

guide as to the effectiveness of any specific fusion

method in practice.

It would clearly be desirable if we could not only

demonstrate, but also rationalize, the frequency plots
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Figure 5 Search precision using similarity fusion. Log-log plots

of the percentage of the molecules retrieved in a given number of

similarity searches that were active for: (a) WOMBAT top-1%

searches; (b) WOMBAT top-5% searches; (c) MDDR top-1% searches;

(d) MDDR top-5% searches.
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that we have presented. There has recently been interest

in the underlying mathematical models that could gen-

erate power law distributions (see, e.g., [18,21]). Mitzen-

macher has identified five broad types of generative

model, and applied them to the analysis of both log-log

and log-normal distributions [21]. In what follows, we

apply a modification of one of his types - which he

refers to as ‘preferential attachment’ - to the analysis of

our virtual screening data.

Assume that there are n similarity search methods

available, each of which models the possible activity of a

molecule in a similar manner. Without loss of general-

ity, assume also that the search methods for a given

query (i.e., a single reference structure in similarity

fusion or a set of reference structures in group fusion)

are run sequentially. At each time step, a search is con-

ducted of the M molecules in a database and a set of m

possibly active molecules is returned (e.g., those in the

top-5% of the ranking resulting from that search

method). Thus, at time step 1, the first search is run

and a set of m potentially active molecules is returned;
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Figure 6 Search overlap using group fusion. Log-log plots of the mean numbers of molecules retrieved in a given number of similarity

searches for: (a) WOMBAT top-1% searches; (b) MDDR top-1% searches.

Table 2 Numbers of common molecules and of common

scaffolds in similarity fusion (SF) and group fusion (GF)

WOMBAT top-1% searches

Similarity searches Common molecules Common scaffolds

SF GF SF GF

1 3705 7759 1821 3771

5 473 469 277 290

10 107 81 69 51

15 37 23 25 15

20 20 18 12 9

25 24 1 8 1
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at time step 2, a second search is run and another set of

m possibly active molecules is returned, and so on. We

now make the following assumption: that the second

search returns the molecules that have been already

returned by the first search with some probability pro-

portional to g (g <1) while the rest of the molecules are

returned with a probability proportional to (1- g). Then,

when the third search is conducted, a molecule is

retrieved with probability proportional to the number of

searches that have already returned that molecule. We

are using here retrieval methods that are basically very

similar (e.g., all using the same basic 2D substructural
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Figure 7 Search precision using group fusion. Plots of the percentage of the molecules retrieved in a given number of similarity searches

that were active for: (a) WOMBAT top-1% searches; (b) WOMBAT top-5% searches.
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components and closely related association coefficients

in a similarity fusion search), and it is hence not unrea-

sonable to assume that a molecule satisfying the search

criterion for one method is also likely to satisfy the

criteria for other, related methods. If the different

search methods are all equally similar to each other

then a single g is able to capture this similarity indepen-

dently of the order of the methods used for searching

(b)
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Figure 8 Search precision using group fusion. Plots of the percentage of the molecules retrieved in a given number of similarity searches

that were active for: (a) MDDR top-1% searches; (b) MDDR top-5% searches.
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the database. This is the strongest assumption we make

here.

At the end of all the n searches, a total of n*m mole-

cules will have been retrieved (though some of these

will have been retrieved more than once). Let Os denote

the fraction of molecules returned by exactly s searches

(i.e. the overlap between s similarity searches): we now

demonstrate that Os follows a power-law distribution.

However, before providing a mathematical derivation of

the distribution, we shall illustrate the approach using

the example of four searches each retrieving three mole-

cules as shown in Table 3. The set of molecules

returned by three searches is {C}, while the set of

molecules returned by two searches is {A, B, D}. If the

current search (Search 5) returns any of A, B or D

then the size of the set of molecules returned by three

searches will increase by one. The chances of one of

the three molecules being selected by Search 5 is g*

(2*3/12), since out of the 12 molecules already

returned there are 2*3 = 6 instances of molecules

already returned twice. If the current search returns C

then the size of the set of molecules returned by

exactly three searches will decrease by one since C

now belongs to the set of molecules returned by

exactly four searches. The chance that the molecule C

is returned is g*(3*1/12) since out of the 12 molecules

already returned there are 3*1 = 3 instances of mole-

cules already returned thrice. If the growth of the set

of molecules returned s times can be expressed

mathematically then we shall be able to model the dis-

tribution of the fraction Os, as we now demonstrate. In

saying that, the reader should note that the following

derivation excludes the special case of s = 1: this is not

only to simplify the explanation but also because s = 1

is the extreme end of the distribution, corresponding

to molecules retrieved just once in any of the n

searches and thus unlikely to be of practical interest in

a screening context. The full derivation is presented by

Mitzenmacher [21].

Let Xs(t) be a random variable describing the number

of molecules returned by s searches at time step t. Then

for s ≥ 2 the increase in Xs(t) is described by the follow-

ing formula

(

γ
(s − 1)Xs−1

m · t

)

· m, i.e., γ
(s − 1)Xs−1

t

This is the probability that the current search returns

one of the molecules retrieved in s-1 of the previous

searches. The denominator m*t is the total number of

all retrieved molecules up to time step t, (s-1)*Xs-1 is the

total number of instances already retrieved s-1 times,

and thus (s-1)*Xs-1/m*t is the fraction of the complete

set of retrieved molecules that has been previously

retrieved by s searches. Since the current search returns

m molecules, the probability that a molecule is retrieved

given that it has already been retrieved s-1 times is

hence

(s − 1)
Xs−1

m · t
· m

and

t
∑

s=2

(s − 1)Xs−1

m · t
= 1.
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Figure 9 Search precision using group fusion. Log-log plot of the percentage of the molecules retrieved in a given number of similarity

searches that were active for MDDR top-1% searches.

Table 3 Sets of three molecules retrieved in each of four

searches

Search 1 Search 2 Search 3 Search 4 Search 5

{A, B, C} {B, C, D} {C, D, E} {F, G, H} ?
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The decrease of Xs(t) is described by the following

formula

(

γ
sXs

m · t

)

· m, i.e., γ
sXs

t
,

hence it is equal to the probability that the current

search returns one of the molecules previously retrieved

by s searches. Here, s*Xs is the total number of mole-

cules already retrieved by s searches, and thus s*Xs/m*t

is the fraction of the complete set of retrieved molecules

that has been previously retrieved by s searches. The

probability that a molecule is retrieved given that it has

already been retrieved s times is hence

sXs

m · t
.

The growth of Xs is hence given approximately by

dXs

dt
= γ ·

(s − 1)Xs−1 − sXs

t

After all n searches have been executed Xs(t) = Os*m*t,

i.e., the molecules retrieved by s searches constitute a

fraction Os of all the molecules retrieved. In the general

case (for s ≥ 2)

dXs

dt
=

d

dt
Osmt = Osm = γ ·

(s − 1)Xs−1 − sXs

t
= γ

(

(s − 1)Os−1 − sOs

)

m

Solving for the fraction of molecules returned by s

searches gives

Os =
γ s − γ

γ s + 1
Os−1 ⇒

Os

Os−1
=

γ s − γ

γ s + 1
⇒

Os

Os−1
= 1 −

γ + 1

γ s + 1

For large s, g*s+1 ~ g*s and thus,

Os

Os−1
= 1 −

γ + 1

γ

(

1

s

)

.

Asymptotically, for the above to hold, we have

Os ∼ as
−

(

1+
1
γ

)

for some constant a, giving a power law

distribution for the fraction Os and hence a rationale for

the behavior observed in the MDDR and WOMBAT

searches (see Figures 1, 2 and 6).

The reader should note that b= -(1+1/g) can only give

rise to exponents (slopes) that are less than -2, i.e. b =

-(1+1/g) ≤ -2, for 0 <g ≤ 1, so that some of the expo-

nents (slopes) shown in the upper part of Table 1 can-

not be explained by the proposed model. These are the

slopes empirically derived from the data for the mole-

cules and scaffolds using similarity fusion, regarding

which we make two comments. First, the goodness of

fit, as measured by r2, is not as high as the goodness of

fit for the rest of the empirical data, suggesting that the

slope b may not be accurate enough. Second, the

number of searches may not be large enough for accu-

rate use of the approximation g*s+1 ~ g*s in the deriva-

tion. In particular, using the formula before this

approximation and simulating the overlaps for different

values of g based on the formulae above we obtain: for g

= 0.9, b = -1.923>-2, while for g = 0.99, b = -1.845>-2.

This can explain most of the slopes in Table 1 with the

exception of those for WOMBAT top-5%.

It must be emphasized that this derivation considers

only the overlap of the search outputs and says nothing

about the precision of the searches. There is, however, an

analogy that suggests one way in which the precision dis-

tributions might be modeled in future work. The overlap

plots show that there is a distinct lack of consistency, i.e.,

that the different search methods generally retrieve very

different sets of molecules. This situation has also been

shown to pertain in many analogous retrieval contexts,

such as the assignment of indexing terms [27], the crea-

tion of links in hypertext systems [28] and the selection

of search strategies [29]inter alia. In particular, it has

been suggested that while indexers often differ consider-

ably as to which indexing terms should be assigned to

documents, where there is a high degree of consistency

then this should result in enhanced search effectiveness.

Whilst generally dubious of the correctness of this sug-

gestion in practice, Cooper has shown, using a highly

simplified model of the retrieval process, that effective-

ness gains are obtainable in principle [30], and it may be

that analogous procedures could be applied to the model-

ing of the search results in Figures 3, 4, 7 and 8.

Conclusions
Data fusion, or consensus, methods are being increas-

ingly used to combine the rankings that result from

multiple virtual screening searches, with the hope that

the combined ranking will contain a greater number of

active molecules than will the original rankings. Our

experiments with the MDDR and WOMBAT datasets

demonstrate that different ranking methods result in

markedly different sets of retrieved molecules, with the

numbers of retrieved molecules common across a set of

search outputs dropping off rapidly as the number of

searches is increased. Specifically, we find an inverse

log-log relationship between the numbers of searches

carried out and the numbers of molecules common to

those searches, with this power-law relationship being

obtained when both similarity fusion and group fusion

consensus approaches are used. However, whilst the

numbers of retrieved molecules in common drop away

very rapidly as more searches are carried out, the frac-

tion of those that are active increases in the case of

similarity fusion, or increases to a maximum before fall-

ing away in the case of group fusion. We also describe a
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generative model for the overlap between different

screening searches, which provides a quantitative basis

for the observed power-law behaviour. Thus, while the

work presented here does not immediately suggest any

new way of carrying out virtual screening, it does pro-

vide a rationale, both empirical and theoretical, for the

use of a practice that is widely used in virtual screening,

i.e. data fusion.

Experimental Methods
Testing the applicability of Spoerri’s Authority Effect to

virtual screening requires test datasets containing mole-

cules of known (in)activity in one or more bioassays,

and a range of different measures that can be used to

carry out similarity searches on those datasets. Two

separate datasets were used, these being the MDL Drug

Data Report (MDDR) and World of Molecular Bioactiv-

ity (WOMBAT) databases. The versions used here were

those that we have employed in many previous studies

of virtual screening in this laboratory and that are

described in detail by Arif et al. [31]. In brief, the

MDDR file contained 102,535 molecules, with searches

being carried out for 11 activity classes; and the WOM-

BAT file contained 138,127 molecules, with searches

being carried out for 14 activity classes. The databases

were searched using the two types of data fusion: simi-

larity fusion (SF) and group fusion (GF).

In the SF experiments, ten compounds were randomly

selected from each of the chosen activity classes to act

as the reference structure for a similarity search, with

each reference structure being searched using a total of

25 different similarity measures. These were obtained by

combining five different 2D binary fingerprints with five

different similarity coefficients. The 2D fingerprints used

for describing the reference structure and the database

structures were 166-bit MDL Keys, 1052-bit BCI bit-

strings, 2048-bit Daylight fingerprints, 998-bit Unity fin-

gerprints, and 1024-bit Pipeline Pilot ECFP_4 finger-

prints. The similarity coefficients used to measure the

similarity between the reference structure’s fingerprint

and the database structures’ fingerprints were the

Cosine, Forbes, Russell-Rao, Simple Match and Tani-

moto coefficients [32]. In the GF experiments, 25 com-

pounds were randomly selected from each of the chosen

activity classes to act as the reference structures, and

these were then searched using ECFP_4 fingerprints and

the Tanimoto coefficient; ten such sets of 25 com-

pounds were used for each activity class.

Given a specific reference structure, a similarity search

was carried out using each of the different similarity

measures in turn, yielding a total of 25 rankings (SF) or a

similarity search was carried out using the ECFP_4/Tani-

moto measure for each of the 25 reference structures

(GF). A threshold was then applied to each of the

resulting database rankings to obtain the nearest neigh-

bours of the reference structure, i.e., the top-ranked data-

base structures. The thresholds here were the top-1% and

the top-5% of the rankings. For each of the molecules in a

database, a note was made as to the number of times that

it was identified as a nearest neighbour, so that each

database structure had an associated integer value

between 0 (meaning that it was retrieved in none of the

searches) and 25 (meaning that it was retrieved in all of

the searches). The resulting sets of integers, which are

independent of the order in which the searches were car-

ried out, were then processed to identify the search over-

lap and the search precision: the overlap measures the

extent of the overlap between the search outputs, in

terms of the numbers of molecules retrieved by some

specific number of different searches; and the precision

measures the percentage of the molecules retrieved by

some specific number of different searches that are

active. The nearest-neighbour data was collected for each

reference structure in turn, and the results for each activ-

ity class were obtained by averaging over the set of ten

searches for that class (and some of the results that are

discussed are averaged over the set of 11 (for MDDR) or

14 (for WOMBAT) activity classes).
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