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AbstratWe present an algorithm that determines in polytime whether a graph ontains aneven hole. The algorithm is based on a deomposition theorem for even-hole-free graphsobtained in Part I of this paper. We also give a polytime algorithm to �nd an even holein a graph when one exists.1 IntrodutionIn a graph, a yle is even if it ontains an even number of nodes, and odd otherwise. Ahole is a hordless yle with at least four nodes. A graph that ontains no even hole isalled even-hole-free. (Graph G ontains graph H means that H appears in G as an induedsubgraph. Graph G is H-free means that G does not ontain graph H.)In this part, we present a polytime reognition algorithm for even-hole-free graphs. Thealgorithm builds on a strutural theorem proved in [4℄. The algorithm is not pratial sinethe degree of the polynomial is high: our main ontribution is in showing that this reognitionproblem is in the omplexity lass P. Previously, it was not even known whether this problemwas in NP (it is trivially in o-NP, however). It was known (Bienstok [1℄) that it is NP-omplete to reognize whether a graph ontains an even hole passing through a spei�ednode. On the positive side, Porto [10℄ solved the even hole reognition problem in lineartime for planar graphs and Markossian, Gasparian and Reed [9℄ solved it in polytime fordiamond-and-ap-free graphs. A diamond is a yle of length four with a single hord. A apis a yle of length greater than four with a single hord that forms a triangle with two edgesof the yle. In [5℄ we extended this last result to ap-free graphs. Here we give a solutionfor all graphs.Finding an Even HoleNote that our reognition algorithm for even-hole-free graphs an be used to �nd an evenhole in graph G, if one exists: Let v1; : : : ; vn denote the nodes of G and let H = G. Initeration i, test whether H n vi ontains an even hole. If the answer is yes, set H = H n viand otherwise keep H unhanged. Perform n iterations. At termination, the graph H is thedesired even hole.With 2 alls to the reognition algorithm, we an also hek in polytime whether, givena graph G and a node v of G, all the even holes of G ontain v. By ontrast, as stated above[1℄, given a graph G and a node v of G, it is NP-omplete to hek whether there exists aneven hole that ontains v.CutsetsThe deomposition theorem of [4℄ whih we use here has two types of utsets. We de�nethese now.For S � V (G), we denote by G nS the subgraph obtained from the graph G by removingthe nodes of S and all the edges with at least one node in S. The node set S is a utset ofthe graph G if the graph G nS ontains more onneted omponents than G. For S � V (G),N(S) denotes the set of nodes in V (G) n S with at least one neighbor in S and N [S℄ denotesN(S) [ S. Node set S is a k-star if S is omprised of a lique C of size k and nodes withat least one neighbor in C, i.e. S � N [C℄. We refer to C as the lique enter of S. In this2



paper, we will use k-star utsets, k = 1; 2; 3. We also refer to a 1-star as a star, to a 2-star asa double star and to a 3-star as a triple star. If S is omprised of a lique C and all nodes ofG with at least one neighbor in C, it is alled a full k-star.A graph G has a 2-join V1jV2, with speial sets (A1; A2; B1; B2), if its nodes an bepartitioned into sets V1 and V2 in suh a way that, for i = 1; 2, Vi ontains disjoint, nonemptynode sets Ai and Bi, suh that every node of A1 is adjaent to every node of A2, every nodeof B1 is adjaent to every node of B2, and there are no other adjaenies between V1 and V2.Furthermore jVij > 2 for i = 1; 2, and if Ai and Bi are both of ardinality 1, then the graphindued by Vi is not a hordless path.Star utsets were introdued by Chv�atal [2℄ and 2-joins by Cornu�ejols and Cunningham[8℄. In [6℄ and [3℄, 2-joins, star and double star utsets were used to onstrut reognitionalgorithms for balaned 0; 1 matries and balaned 0;�1 matries. Reently, they were usedto deompose Berge graphs [7℄.Base ClassesThe deomposition theorem of [4℄ shows that every even-hole-free graph exept those intwo base lasses ontains a 2-join or a k-star utset. These two base lasses are the ap-free graphs and basi graphs. Cap-free graphs have been de�ned already. In [5℄, polytimealgorithms are given for reognizing ap-free graphs and for reognizing even-hole-free ap-free graphs. The seond base lass of graphs used in the deomposition theorem of [4℄ is thelass of basi graphs. We do not de�ne basi graphs here. We just note that every basigraph is obtained from the line graph of a tree by adding two adjaent nodes x and y, andas a onsequene we an hek in polytime whether a graph is basi. Sine there is a uniquehordless path between any two nodes in the line graph of a tree, it also follows that we anhek in polytime whether a basi graph is even-hole-free.Deomposition TheoremThe following theorem follows from the main result proved in [4℄. (In [4℄, the result isproved for odd-signable graphs, a lass of graphs that ontains even-hole-free graphs.)Theorem 1.1 A onneted even-hole-free graph is ap-free or basi or ontains a 2-join ora k-star utset, k = 1; 2; 3.Idea of the AlgorithmThe above deomposition theorem is the basis of our reognition algorithm for even-hole-free graphs. Whenever a 2-join or a k-star utset is present in a graph G, we deompose Ginto two or more smaller or simpler graphs, alled bloks. When G ontains a k-star utset,this is done as follows.De�nition 1.2 Let S be a node utset in a graph G and C1; : : : ; Cn the onneted omponentsof G nS. We de�ne the bloks of the deomposition to be graphs G1; : : : ; Gn, where Gi is thesubgraph of G indued by V (Ci) [ S.When G ontains a 2-join, the bloks are de�ned as follows.3



De�nition 1.3 Let V1jV2 be a 2-join of G with speial sets (A1; A2; B1; B2). If A2 and B2are in di�erent onneted omponents of G(V2), de�ne blok G1 to be the subgraph of Gindued by node set V1 [ fa2; b2g, where a2 2 A2 and b2 2 B2. If G(V2) ontains a path fromA2 to B2, let Q be a shortest suh path and de�ne blok G1 to be the subgraph of G induedby node set V1 plus a marker path P2 = a2; : : : ; b2 that is hordless and satis�es the followingproperties. Node a2 is adjaent to all the nodes in A1, node b2 is adjaent to all the nodes inB1 and these are the only adjaenies between P2 and V1. Furthermore, the marker path P2has length 4 if Q has even length, and length 5 otherwise. Blok G2 is de�ned similarly. SeeFigure 1.
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Figure 1: 2-Join DeompositionIf we were to follow the standard paradigm for reating an algorithm from a deompositiontheorem, we would now show that(a) we an �nd in polytime whether a deomposition exists in G;4



(b) G is even-hole-free if and only if all the bloks are;() when the deomposition is applied reursively to the bloks, the total number of bloksreated is polynomial.Unfortunately, although (a) is true for the two utsets of Theorem 1.1, neither (b) nor() holds.The problem with () is that, if we do not take are of dominated nodes properly, we anget an exponential number of bloks even deomposing just with star utsets. (We say that uis dominated by v if u is adjaent to v and N(u) � N [v℄.) Another problem is that we do notknow how to bound the number of bloks if we mix k-star utset and 2-join deompositions.Our solution to () is to do k-star utsets �rst, then 2-joins, and to deal with dominatednodes speially.In Setion 5, we disuss the 2-join deomposition of a graph G that has no k-star utset,k = 1; 2; 3. We show that G is even-hole-free if and only if the two bloks G1 and G2 ofthe deomposition are even-hole-free. Furthermore, we show that the bloks G1 and G2 haveno k-star utsets, k = 1; 2; 3. Finally, if the 2-join deomposition is applied reursively, weshow that only a linear number of bloks is reated overall. By Theorem 1.1, G is even-hole-free if and only if all these bloks belong to a base lass and are even-hole-free. Thisyields a polytime algorithm for heking whether a graph without k-star utsets, k = 1; 2; 3,is even-hole-free.A major diÆulty that needs to be addressed when deomposing by a star, double staror triple star utset is the fat that (b) above does not hold. Consider, for example, a graphG onsisting of an even hole H and a node x with exatly two nonadjaent neighbors in H,say u; v, where both paths of H from u to v have an odd number of edges. If we deomposeG by the star utset N [x℄ onsisting of x and its two neighbors u; v, the two bloks of thedeomposition are even-hole-free, whereas G ontains the even hole H. Thus star utsetdeomposition is not even-hole-free preserving.To address this diÆulty, we �rst apply a ertain leaning proedure to the input graphG. This proedure transforms G into a polynomial family of indued subgraphs of G withthe property that, if G ontains an even hole, then at least one graph in the family ontainsan even hole that will either not be broken by k-star utset deomposition or will be detetedwhile performing the deomposition.Clean GraphsDe�nition 1.4 Let H be an even hole and u 2 V (G) n V (H). We say that u is good w.r.t.H if it has at most three neighbors in H and the graph indued by N(u)\V (H) is onneted.Otherwise, u is alled bad.De�nition 1.5 An even hole H of G is lean if there is no bad node w.r.t. H.De�nition 1.6 Let u be a good node w.r.t. an even hole H. We say that u is of Type giw.r.t. H if jN(u) \ V (H)j = i.De�nition 1.7 A tent w.r.t. an even hole H is either5



� a Type g3 node w.r.t. to H, or� an edge uv suh that node u is a Type g1 node w.r.t. H, node v is a Type g2 node w.r.t.H, the neighbor x of u in H is distint from the neighbors v1; v2 of v in H and x; v1have a ommon neighbor y 6= v2 in H (speial tent).De�nition 1.8 Let H be an even hole and u a Type g3 node w.r.t. H, with neighbors u1; u2and u3 in H suh that u1u2 and u2u3 are edges. Let H 0 be the hole indued by (V (H)nfu2g)[fug. We say that H 0 is obtained from H through a Type g3 node substitution.Consider a speial tent uv w.r.t. an even hole H. Let H 0 be the hole indued by the nodeset (V (H)[fu; vg)nfy; v1g. We say that suh a hole H 0 is obtained from H through a speialtent substitution.A tent substitution is either a Type g3 node substitution or a speial tent substitution.Note that holes H and H 0 are of the same length.
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Figure 2: Speial TentDe�nition 1.9 Let G be a graph ontaining an even hole H. We de�ne CG(H) to be thefamily of all holes of G obtained from H through a sequene of tent substitutions.De�nition 1.10 An even hole H� of G is spotless if all the holes in CG(H�) are lean.De�nition 1.11 A graph G is lean if it is either even-hole-free or it ontains a spotlesssmallest even hole H�.Given a graph G, Setion 4 presents a leaning proedure with the following property: itonstruts in polytime a lean graph G0 that is even-hole-free if and only if G is even-hole-free.The graph G0 onsists of a polynomial number of indued subgraphs of G, at least one ofwhih is lean. The deomposition of lean graphs by k-star utsets is presented in Setion 3.The main result of that setion is that a lean graph G an be deomposed reursively intoa family of bloks that have no k-star utsets and satisfy the following property: (i) eitherG is identi�ed as ontaining an even hole during the deomposition proess or (ii) when thedeomposition proess is ompleted, all bloks in the family are even-hole-free graphs if andonly if G is even-hole-free. 6



Dominated NodesThe other diÆulty with k-star utsets is that () does not hold. As mentioned earlier, ourapproah to () is to remove dominated nodes. We prove in Setion 3 that the total numberof bloks generated by reursive deomposition with k-star utsets is polynomial if one �rstremoves dominated nodes and uses full k-star utsets. For this reason, in our reognitionalgorithm, we will atually use the following re�nement of Theorem 1.1.A gem is a graph on �ve nodes, suh that four of the nodes indue a hordless path oflength three and the �fth node is adjaent to all of the nodes of this path.Theorem 1.12 Let G be a onneted even-hole-free graph. If G ontains no gem or domi-nated node, then G is ap-free or basi or ontains a 2-join or a full k-star utset, k = 1; 2; 3.Proof: Follows from Theorem 1.1 and the next two lemmas. 2Lemma 1.13 Assume G ontains no gem and no 4-hole. Let C be a lique and u 2 V (G)nC.If N [u℄ � N [C℄, then u is dominated by some node in C.Proof: Suppose N [u℄ � N [C℄, but no node of C dominates u. Let K � C be a minimalset suh that N [u℄ � N [K℄, i.e. for eah v 2 K, N [u℄ 6� N [K n fvg℄. Sine u 2 N [K℄, u isadjaent to a node of K, say x. Sine u is not dominated by x there exists v 2 N(u) suhthat v is not adjaent to x. Sine v 2 N [K℄, v is adjaent to some node of K n fxg, sayy. Sine x; y; v; u is not a 4-hole, u is adjaent to y. Sine N [u℄ 6� N [K n x℄, there exists anode w adjaent to u and x but not y. Now either w; x; y; v; u indues a gem or w; x; y; v isa 4-hole. 2Lemma 1.14 Assume G ontains no dominated nodes, no gem and no 4-hole. If G ontainsa k-star utset, k = 1; 2; 3, then G ontains a full k-star utset.Proof: Let C be the lique enter of a k-star utset S of G, where k = 1; 2; 3. SupposeS0 = C [N(C) is not a utset of G. Then some omponent of GnS, say C1, must be entirelyontained in S0 n S. Then u 2 C1 satis�es the onditions of Lemma 1.13 and therefore u isdominated by a node in C, ontraditing the assumption. 2Dominated nodes an be identi�ed in polytime and we will show in Setion 3 that, inlean graphs, their removal is even-hole-preserving. In Setion 3, we also show that, whenG has a gem, there is a rather simple deomposition result. So Theorem 1.12 provides thebasis for our reognition algorithm of even-hole-free graphs. The outline of the algorithm isas follows: hek for 4-holes and a few other graphs that ontain even holes and that anbe identi�ed in polytime (to simplify the analysis, later), then lean G, remove dominatednodes, deompose by full k-star utsets, k = 1; 2; 3, then by 2-joins, and �nally hek that allthe bloks are either basi or ap-free, and ontain no even holes.2 The AlgorithmA wheel (H;x) is a graph indued by a hole H and a node x =2 V (H) having at least threeneighbors in H, say x1; : : : ; xn. A subpath of H onneting xi and xj is a setor if it ontains7



no intermediate node xl, 1 � l � n. A short setor is a setor of length 1, and a long setoris a setor of length at least 2. A wheel is even if it ontains an even number of setors. It iseasy to see that an even wheel always ontains an even hole.A 3PC(x; y) is a graph indued by three hordless paths from node x to y, having noommon or adjaent intermediate nodes. Note that x and y are not adjaent. It is easy tosee that a 3PC(x; y) always ontains an even hole.A 3PC(x1x2x3; y1y2y3) is a graph indued by three hordless paths, P1 = x1; : : : ; y1, P2 =x2; : : : ; y2 and P3 = x3; : : : ; y3, having no ommon nodes and suh that the only adjaeniesbetween nodes of distint paths are the edges of the two liques of size three indued by thedisjoint node sets fx1; x2; x3g and fy1; y2; y3g. It is easy to see that a 3PC(x1x2x3; y1y2y3)always ontains an even hole.A 3PC(x1x2x3; y) is a graph indued by three hordless paths P1 = x1; : : : ; y, P2 =x2; : : : ; y and P3 = x3; : : : ; y, having no ommon nodes other than y and suh that the onlyadjaenies between nodes of Pi n y and Pj n y, for i; j 2 f1; 2; 3g distint, are the edges ofthe lique of size three indued by fx1; x2; x3g.We say that a graphG ontains a 3PC(:; :) if it ontains a 3PC(x; y) for some pair of nodesx; y 2 V (G). We say that a graph G ontains a 3PC(�;�) if for some x1; x2; x3; y1; y2; y3 2V (G) there exists a 3PC(x1x2x3; y1y2y3). Similarly we say that it ontains a 3PC(�; :) if itontains a 3PC(x1x2x3; y) for some x1; x2; x3; y 2 V (G).As mentioned above, an even-hole-free graph annot ontains an even wheel, a 3PC(:; :)nor a 3PC(�;�). Our reognition algorithm for even-hole-free graphs starts by hekingwhether the graph ontains one of the two following strutures (this an be done in polynomialtime).De�nition 2.1 A wheel (H;x) is a short 4-wheel if it ontains four setors and one of thefollowing holds: the wheel has three short setors, or it has two nonadjaent short setors anda setor of length three.De�nition 2.2 A 3PC(:; :) is short if one path has length 2 and one has length 3. A3PC(�;�) is short if one path has length one and one has length two. A short 3PC iseither a short 3PC(:; :) or a short 3PC(�;�).RECOGNITION ALGORITHM FOR EVEN-HOLE-FREE GRAPHSInput: A graph G.Output: YES if G is even-hole-free, and NO otherwise.Step 1: If G ontains a 4-hole, a 6-hole, a short 4-wheel or a short 3PC, output NO.Step 2: Apply the Cleaning Algorithm of Setion 4 to G and let L1 be the output family ofgraphs (so, if G has an even hole, then some graph in L1 has an even hole and is lean).Step 3: Start with L2 = ;. For eah L 2 L1, perform the Node Cutset DeompositionAlgorithm of Setion 3. If the algorithm identi�es L as not being even-hole-free, outputNO. Otherwise, union the output with L2 (so the graphs in L2 have no full k-starutsets, k = 1; 2; 3). 8



Step 4: Start with L3 = ;. For eah L 2 L2, perform the 2-Join Deomposition Algorithmof Setion 5 and union the output with L3 (so the graphs in L3 have no 2-join).Step 5: Start with L4 = L5 = ;. For eah L 2 L3, hek whether L ontains a ap. If itdoes, add L to L4. Otherwise, add L to L5.Step 6: For eah L 2 L4, hek whether L is a basi graph. If some L 2 L4 is not basi,output NO. Otherwise, for eah L 2 L4, hek whether L ontains an even hole. Ifsome L 2 L4 ontains an even hole, output NO. Otherwise, go to Step 7.Step 7: For eah L 2 L5, hek whether L ontains an even hole. If some L 2 L5 ontainsan even hole, output NO. Otherwise, output YES.The Cleaning Algorithm, the Node Cutset Deomposition Algorithm and the 2-Join De-omposition Algorithm will be shown to be polynomial in the next three setions. Steps 6and 7 hek ap-free and basi graphs. This an be performed in polytime, as pointed outalready. So, the above reognition algorithm an be implemented to run in polynomial time.In the next three setions, we will show that the following statements are equivalent.(i) G is even-hole-free,(ii) all the graphs in L1 are even-hole-free,(iii) all the graphs in L2 are even-hole-free,(iv) all the graphs in L3 are even-hole-free.We will also show that the graphs in L3 do not ontain a 4-hole, a dominated node, agem, a full k-star utset, k = 1; 2; 3; nor a 2-join. So, by Theorem 1.12, if G is even-hole-free,all the graphs in L3 must be either ap-free and even-hole-free, or basi and even-hole-free.The algorithm heks this in Steps 6 and 7. This establishes the validity of the algorithm(subjet to being able to perform Steps 2, 3 and 4 as laimed).3 k-Star Cutsets in Clean GraphsThroughout this setion, unless otherwise stated, we assume that G is a lean graph withspotless smallest even hole H�. In addition, we assume that G ontains no 4-hole, no short4-wheel and no short 3PC.Lemma 3.1 If node u is dominated by node v, then G n fug ontains a hole in CG(H�).Proof: Assume that H� ontains u. Let u1 and u2 be the neighbors of u in H�. Sine u isdominated by v, v is adjaent to u, u1 and u2. Sine H� is lean, v is of Type g3 w.r.t. H�,and hene the hole indued by the node set (V (H�) n fug)[fvg is in CG(H�) and in G n fug.2 Before proving the main results of this setion, let us prove the following useful lemma.Lemma 3.2 Suppose C is a lique and C � S � N [C℄ is a utset breaking all the holes ofCG(H�). Then, for eah H 2 CG(H�), V (H) \ C = ;.9



Proof: Suppose H 2 CG(H�) is hosen suh that the set P = V (H) \ C has maximumardinality. As H is broken by S, there exists a node x 2 V (H) \ S that has no neighbor inP . Let w be a neighbor of x in C. Now, if P 6= ;, then w must be a Type g3 node w.r.t. H.After substituting w into H, we would get a hole in CG(H�) having more nodes from C thanH, a ontradition. 2This lemma, together with the de�nition of CG(H�), implies the following.Corollary 3.3 Suppose C is a lique and C � S � N [C℄ is a utset breaking all the holes ofCG(H�). Then, for eah H 2 CG(H�), the tents w.r.t. H are disjoint from C.In the deomposition algorithm, we treat the deomposition of gems in a speial way. Letus onsider this ase �rst.Lemma 3.4 Let G be an even-hole-free graph and fx; y0; y; z; z0g a node set that indues agem, suh that y0; y; z; z0 is a hordless path. Then S = (N(x) [N(y) [N(z)) n fy0; z0g is atriple star utset breaking y0 from z0.Proof: Suppose not. Then, in GnS, let P be a hordless path onneting y0 to z0. The nodesof P together with y and z indue a hole H. Node x has four neighbors on H, so (H;x) isan even wheel. 2Remark 3.5 If a triple star utset S from Lemma 3.4 is suh that the onneted omponentsof GnS that ontain y0 and z0 respetively are both of size greater than 1, then N(x)[N(y)[N(z) is a full triple star utset.Lemma 3.6 Let fx; y0; y; z; z0g be a node set that indues a gem, suh that y0; y; z; z0 is ahordless path. Let S = N(x) [ N(y) [ N(z) n fy0; z0g and C1 (resp. C2) be the onnetedomponent of G n S that ontains y0 (resp. z0). If jC1j = 1 (resp. jC2j = 1), then G n fy0g(resp. G n fz0g) ontains a hole in CG(H�).Proof: Suppose that jC1j = 1. If H� does not ontain y0 then we are done, so suppose itdoes. Let H� = y0; h1; : : : ; hn; y0. Then sine N(y0) � S, h1; hn 2 S.Case 1: h1 or hn is in fx; yg.W.l.o.g. assume that h1 2 fx; yg. Assume h1 = x. Sine H� is a hole, hn does notoinide with y and it annot be a neighbor of x. Sine hn 2 S, it must be a neighbor of yor z. If hn is a neighbor of z then y0; x; z; hn; y0 is a 4-hole. Hene hn is a neighbor of y. Butthen y is of Type g3 w.r.t. H� and so the hole indued by the node set (V (H�) n fy0g)[ fygis in CG(H�) and in G n fy0g.When h1 = y, the same argument holds by interhanging the roles of x and y.Case 2: h1; hn 2 S n fx; y; zgAssume �rst that one of the nodes x or y, is adjaent to both nodes h1 and hn. Assumew.l.o.g. that x is adjaent to both h1 and hn. Then x is of Type g3 w.r.t. H� and the holeindued by the node set (V (H�) n fy0g) [ fxg is in CG(H�) and in G n fy0g.If x is adjaent to h1 but not to hn, and y is adjaent to hn but not to h1, then sinethe node set V (H�) [ fx; yg annot indue a short 4-wheel, x or y must have a neighbor in10



V (H�) n fy0; h1; hng. W.l.o.g. assume that x has a neighbor in V (H�) n fy0; h1; hng. SineH� is lean, x is adjaent to h2. Sine the hole indued by (V (H�) n fh1g) [ fxg is lean,nodes h3; : : : ; hn�1 are not adjaent to y or x. But then the hole indued by the node set(V (H�) n fy0; h1g) [ fx; yg is in CG(H�) and in G n fy0g.So we may assume that one of h1 or hn is adjaent to z. Assume w.l.o.g. that hn isadjaent to z. Then y is adjaent to hn, sine otherwise y0; y; z; hn; y0 is a 4-hole. Also x isadjaent to hn, sine otherwise y0; x; z; hn; y0 is a 4-hole. Node z annot be adjaent to h1,sine H� is lean and of length greater than 4. Hene h1 is adjaent to either x or y. Butthen one of x or y is adjaent to both h1 and hn, whih is not possible. 2The above result is all we need when G ontains a gem. So, for the next result, we willassume that G ontains no gem.De�nition 3.7 A 3PC(x; y), with paths P1, P2 and P3, is deomposition detetable w.r.t.the node utset S if one of the following holds:(i) P1 is of length 2 or 3, V (P1) � S and the intermediate nodes of P2 and P3 are in twodi�erent omponents of G n S.(ii) P1 is of length 3, V (P1) � S and there are three distint omponents of G n S, C1, C2and C3, suh that for some z 2 S n fx; yg, the intermediate nodes of P2 are ontainedin V (C1) [ V (C2) [ fzg and the intermediate nodes of P3 are ontained in V (C3).A 3PC(x1x2x3; y1y2y3), with the three paths P1, P2 and P3, is deomposition detetablew.r.t. the node utset S if fx1; x2; x3; y1; y2; y3g � S, P1 is an edge and the intermediatenodes of P2 and P3 are ontained in two di�erent omponents of G n S.A deomposition detetable 3PC is either a deomposition detetable 3PC(:; :) or a de-omposition detetable 3PC(�;�).In order to show that we end up with a polynomial number of piees when we deomposea graph using our node utsets, we need to re�ne the bloks. Let S be a k-star utset,k = 1; 2; 3, with lique enter C. Let C1; : : : ; Cn be the onneted omponents of G n Sand G1; : : : ; Gn the bloks of the deomposition. We de�ne the re�ned bloks G01; : : : ; G0n asfollows: for i = 1; : : : ; n, remove from Gi all nodes of S n C that do not have a neighbor inCi.Theorem 3.8 Suppose that G ontains no 4-hole, no short 3PC, no gem and that G is alean graph with spotless smallest even hole H�. When deomposing G with a full k-starutset S = N [C℄, k = 1; 2; 3; then either some hole in CG(H�) is entirely ontained in one ofthe re�ned bloks of the deomposition or there exists a deomposition detetable 3PC w.r.t.S.Proof: Consider the following two ases.Case 1: All the holes of CG(H�) are broken by S.Then, by Lemma 3.2, for eah H 2 CG(H�), V (H)\C = ;. Furthermore, by Corollary 3.3,no node of C is of Type g3. Let C = fv1; : : : ; vkg, where k = jCj. Denote by P1; : : : ; Pm the11



onneted omponents of G(V (H)\S). As H is broken by S, m � 2. On the other hand, asH is lean, eah node of C is adjaent to at most one path P1; : : : ; Pm. Hene 2 � m � k � 3.Case 1.1: m = k = 3.Then we may assume that V (Pi) = N(vi) \ V (H), i = 1; 2; 3.If all the nodes of C are of Type g2 w.r.t. H, let ui and wi be the neighbors of vi in H andassume w.l.o.g. that the nodes u1; w1; u2; w2; u3; w3 appear in this order when traversing H.Let Q1 be the w1u2-subpath of H that does not ontain u1; w2; u3; w3. Let Q2 (respetivelyQ3) be the w2u3-subpath (respetively w3u1-subpath) of H that does not ontain nodes ofQ1. Sine H is an even hole, at least one of the three paths Qi is of odd length, say Q1.But then the hole indued by V (Q1) [ fv1; v2g is an even hole of length smaller than H,ontraditing our hoie of H.If all the nodes of C are of Type g1 w.r.t. H, let ui be the neighbor of vi in H. Let Q1be the u1u2-subpath of H that does not ontain u3. De�ne Q2 and Q3 in a similar fashion.Sine H is broken by S, some onneted omponent of G nS ontains the intermediate nodesof one of these paths, say Q1, but not of the other two paths. So we get a deompositiondetetable 3PC(u1; u2) satisfying (i) or (ii) of De�nition 3.7.If C has both Type g1 and Type g2 nodes w.r.t. H, assume w.l.o.g. that v1 is of Type g1and v2 is of Type g2. Sine H is a smallest even hole, v1v2 is a speial tent w.r.t. H.Now a tent substitution would produe a smallest even hole in CG(H�) that intersets C,ontraditing Corollary 3.3.Case 1.2: m = 2.First, suppose that k = 3. Assume that N [v1℄\V (H) = V (P1) and N [fv2; v3g℄\V (H) =V (P2), where jN [v2℄ \ V (H)j � jN [v3℄ \ V (H)j. If v2 and v3 both have a neighbor in H butdo not have a ommon neighbor in H, then G ontains a 4-hole. Hene, sine v2 and v3 areof Type g1 or g2 or v3 does not have a neighbor in H, jV (P2)j � 3. If jV (P2)j = 3, thenG(P2 [ fv2; v3g) is a gem. It follows that V (P2) = N [v2℄ \ V (H).Now, if v1 and v2 are of the same type, we get a deomposition detetable 3PC(�;�)or 3PC(:; :). If one is of Type g1 and the other of Type g2, v1v2 is a speial tent. But thisontradits Corollary 3.3.If k = 2, the arguments from the previous paragraph hold.Case 2: A blok Gi ontains a hole of CG(H�).Suppose H 2 CG(H�) is a hole in Gi suh that V (H) \ C has maximum ardinality. IfH 62 G0i, it follows from the de�nition of re�ned blok that some node x2 2 V (H) \ N(C)has no neighbor in H nN [C℄. So, there exists a hordless path P 0 = x1; x2; x3 in H suh thatx1; x2 2 N(C) and x1 is adjaent to some w1 2 C n V (H). If V (H) \ C 6= ; or w1 2 N(x3),then w1 is of Type g3 and, after substituting w1 into H, we would obtain a hole of CG(H�)in Gi with larger intersetion with C than H, a ontradition. It follows that, for eahH 2 CG(H�), V (H) \ C = ; and w1x3 is not an edge.By the hoie of x2, this implies x3 2 N(C). In fat, by the same argument, no node ofC is of Type g3 w.r.t. H. As G is 4-hole-free and gem-free, x2 is adjaent to neither w1 norw3. So x2 is adjaent to some node w2 2 C. Sine G is 4-hole-free, w2 is adjaent to both x1and x3. Hene w2 is of Type g3 w.r.t. H, a ontradition. 2
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NODE CUTSET DECOMPOSITION ALGORITHMInput: A graph G that does not ontain a 4-hole, a short 3PC nor a short 4-wheel.Output: Either G is identi�ed as not being even-hole-free, or a list L of indued subgraphsof G with the following properties:� The graphs in L do not ontain a gem, a full k-star utset, k = 1; 2; 3, nor anydominated nodes.� If the input graph G ontains an even hole and is lean, with spotless smallest evenhole H�, then one of the graphs in the list ontains a hole in CG(H�).Step 1: Initialize M = fGg, L = ;.Step 2: If M is empty, return L and stop. Otherwise, remove a graph F from M. If F hasno hordless path of length 4, go to Step 2. Otherwise, remove all dominated nodesfrom F and go to Step 3.Step 3: If F ontains a gem fx; y0; y; z; z0g, suh that y0; y; z; z0 is a hordless path, go toStep 4. If F ontains a full k-star utset S, k = 1; 2; 3, go to Step 5. Otherwise, add Fto L and go to Step 2.Step 4: If S = (N(x)[N(y)[N(z))nfy0; z0g is not a utset breaking y0 from z0, go to Step6. If the onneted omponent of F nS that ontains y0 is of size 1, add graph F n fy0gto M and go to Step 2. If the onneted omponent of F n S that ontains z0 is of size1, add graph F n fz0g to M and go to Step 2. Otherwise, let S = N(x) [N(y) [N(z)and go to Step 5.Step 5: Chek whether there exists a deomposition detetable 3PC(:; :) or 3PC(�;�)w.r.t. S. If yes, go to Step 6. Otherwise, onstrut the re�ned bloks of deompo-sition by S, add them to M and go to Step 2.Step 6: Return that G is not even-hole-free and stop.Lemma 3.9 The Node Cutset Deomposition Algorithm produes the desired output.Proof: First suppose that the algorithm terminates in Step 6. Then by Lemma 3.4 and thefat that 3PC(:; :)'s and 3PC(�;�)'s ontain even holes, the algorithm orretly identi�esG as not being even-hole-free. Now suppose that the algorithm outputs the list L, i.e. thealgorithm does not terminate in Step 6. Then learly, by Steps 2 and 3, the graphs in L donot ontain any dominated node, gem or full k-star utset, k = 1; 2; 3. Now further assumethat the input graph G is lean and ontains a spotless smallest even hole H�. We want toshow that some graph in list L ontains a hole in CG(H�).Let F be a graph taken o� listM in Step 2. It is enough to show that if F ontains a holein CG(H�) then at least one of the graphs that gets put on list M or L in Steps 3, 4 and 5also ontains a hole in CG(H�). This follows from Lemma 3.1, Lemma 3.6 and Theorem 3.8.2 13



Lemma 3.10 The number of indued subgraphs in list L produed by the Node Cutset De-omposition Algorithm is bounded by jV (G)j5.Proof: Let F be a graph taken o� list M in Step 2. Suppose that F is deomposed in Step5 by a full k-star utset S, k = 1; 2; 3. Let C1; : : : ; Cn be the onneted omponents of F n Sand let F1; : : : ; Fn be the re�ned bloks of deomposition by S. Let C be the lique enter ofS.Claim: No two of the graphs F1; : : : ; Fn ontain the same hordless path of length 4.Proof of Claim: Let P be a hordless path of length 4 and suppose that P appears in F1and F2. Then V (P ) � V (F1) \ S and V (P ) � V (F2) \ S. Sine V (P ) � S, it ontains twononadjaent nodes a; b 2 S n C, suh that there exists a hordless path P 0 from a to b thatuses only nodes in C as intermediate nodes. Sine a 2 V (F1) \ V (F2), by de�nition of there�ned bloks, a has neighbors in both C1 and C2. Similarly b has neighbors in both C1 andC2. Note that by de�nition of S, nodes of C do not have neighbors in C1 and C2. But nowthere is a 3PC(a; b) that uses P 0 and paths in C1 and C2. This 3PC(:; :) is deompositiondetetable w.r.t. S and hene would have been deteted in Step 5. This ompletes the proofof the laim.By Step 2, the algorithm only adds to L subgraphs of G that have a hordless path oflength 4. So, it follows from the laim that the number of graphs in L is at most jV (G)j5. 24 CleaningThis setion is devoted to the onstrution of the Cleaning Algorithm. We assume throughoutthis setion that G ontains no 4-hole, no 6-hole, no short 4-wheel and no short 3PC (reallDe�nitions 2.1 and 2.2). The Cleaning Algorithm will take as input the graph G and produea polynomial family L of indued subgraphs of G suh that, if G ontains an even hole, thenat least one of the graphs in L ontains an even hole and is lean. Given a hole H, a nodev 62 H is strongly adjaent to H if v has at least two neighbors in H. Reall that an evenhole H is lean if it has no bad strongly adjaent nodes (De�nitions 1.4 and 1.5).Lemma 4.1 Let u be a bad node w.r.t. a smallest even hole H of G. Then either u hasexatly two neighbors in H and these nodes are nonadjaent, or (H;u) is an even wheel andall the setors of the wheel are odd.Proof: If u has two neighbors in H, then they are nonadjaent sine u is bad. So assumethat u has at least three neighbors in H. If u has an odd number of neighbors in H, thensine H is an even hole, one of the setors of the wheel (H;u) must be even. That setortogether with u indues an even hole and sine that hole annot be smaller than H, u mustbe of Type g3, ontraditing the assumption that u is bad. By a similar argument, if u hasan even number of neighbors in H, then all the setors of (H;u) must be odd. 2De�nition 4.2 Let v be a bad node w.r.t. a smallest even hole H of G. For i = 1; 2; 3,we say that v is of Type bi w.r.t. H if V (H) \ N(v) indues a graph G0 with exatly twoonneted omponents, jV (G0)j � 4 and the largest onneted omponent of G0 has exatly inodes (see Figure 3). Otherwise, we all v a Type b4 node w.r.t. H.14



Figure 3: Bad nodes of Type b1, Type b2 and Type b3Suppose H is a smallest even hole in G and v1 and v2 are two nonadjaent bad nodesw.r.t. H. Consider the following three types of subpaths of H.e-path We all a subpath Qi of H an edge-path (or e-path) if one of its endnodes is adjaentto v1, the other is adjaent to v2, at most one endnode is adjaent to both v1; v2, andno intermediate node of Qi is adjaent to v1 or v2.n-path We all a subpath Pi of H a node-path (or n-path) if it is a maximal path with thefollowing property: the endnodes of Pi are adjaent to v1 and no node of Pi is adjaentto v2, or the endnodes of Pi are adjaent to v2 and no node of Pi is adjaent to v1. Notethat an n-path an have length 0.z-path We all a subpath P0 of H a zero-path (or z-path) if it is a maximal path with all thenodes adjaent to both v1 and v2. As G is 4-hole-free, there is at most one z-path.Furthermore, if the z-path exists, it has at most two nodes.We onstrut the graph H 0 from H de�ned as follows:Contrat eah e-path Qi of H to a single edge qi.Contrat eah n-path Pi of H to a single node pi.If H has a z-path P0, ontrat it to a single node p0 alled the z-node of H 0.Sine H has at least one node adjaent to v1 but not v2 and another adjaent to v2 butnot v1, the graph H 0 has at least two nodes distint from the z-node. Moreover, if H 0 hasno z-node, it has at least four nodes. To see this, note that, sine H has no z-path, it musthave an even number of e-paths. If H has exatly two e-paths, then V (H)[fv1; v2g ontainsan even hole smaller than H. So H has at least four e-paths and hene H 0 has at least fournodes.We all an edge or a node of H 0 even (odd) if the orresponding path of H has even (odd)number of edges. We all an edge or a node of H 0 real if the orresponding path of H is anedge or a node respetively. Note that real edges are odd and real nodes are even.15



Lemma 4.3 Let qi and qi+1 be two onseutive edges of H 0 suh that their ommon endnodepi is distint from p0. Then qi and qi+1 have the same parity if and only if pi is odd. Moreover,the edges of H 0 inident with p0 are odd.Proof: Indeed, otherwise either (H; v1) or (H; v2) would have an even setor, ontraditingLemma 4.1. 2Lemma 4.4 Suppose that H 0 has a z-node p0 and that qi = pipi+1 is an even edge. Then qihas a real endnode that is adjaent to p0 by a real edge. Moreover, p0 is a real node and H 0has at least four edges.Proof: By Lemma 4.3, p0 is not an endnode of qi. If P0 has a node u0 that is adjaent toneither endnode of Qi, then V (Qi) [ fu0; v1; v2g indues an even hole. Sine H is a smallesteven hole of G, V (H) n V (Qi) ontains three nodes. But now, sine v1 and v2 are bad w.r.t.H, they are of Type b1. This implies that G ontains a 4-hole, a ontradition. Hene, wemay assume w.l.o.g. that pi is a real node and is adjaent to p0 by a real edge. As v1 and v2are bad nodes w.r.t. H, it follows that pi+1 is not adjaent to p0 in H 0. Hene, sine everynode of P0 must be adjaent to an endnode of Qi, p0 is a real node. Finally, sine v1 and v2are bad, H 0 has at least four edges. 2Lemma 4.5 Let qi and qj be two nononseutive edges of H 0 with the same parity. Supposethat p0 is not an endnode of qi nor qj. Then qi and qj have real endnodes that are adjaentby a real edge.Proof: Suppose not. Sine V (Qi)[V (Qj)[fv1; v2g does not indue a smaller even hole thanH, it follows that H 0 has four edges, say i = 1 and j = 3, the paths Q2 and Q4 eah havelength 2, and v1, v2 are both of Type b1. Sine G has no short 3PC(:; :), both Q1 and Q3have length greater 1. It follows that V (Q2) [ V (Q4) [ fv1; v2g is an 8-hole. Sine H is asmallest hole, Q1 and Q3 both have length 2. But now V (Q1) [ V (Q2) forms a 6-hole withv1 or v2, ontraditing the assumption that G ontains no 6-hole. 2Lemma 4.6 If pi is a node of H 0 that is not adjaent to p0, then either pi is even or Pi isan edge.Proof: The result holds when i = 0, so we assume now i 6= 0. Suppose pi is odd. Then, byLemma 4.3, the two edges of H 0 that have pi as a ommon endnode, say qi and qi+1, musthave the same parity. So, if Pi is not an edge, V (Qi) [ V (Qi+1) [ fv1; v2g indues a smallereven hole than H. 2Theorem 4.7 Let v1 and v2 be nonadjaent bad nodes w.r.t. a smallest even hole H of G.Then either v1 and v2 have a ommon neighbor in H, or exatly one of v1; v2 is of Type b2w.r.t. H.Proof: Let H 0 be de�ned from H as above. Assume v1 and v2 have no ommon neighbor inH. Then H 0 has no z-node. Let p1; : : : ; pm be the nodes of H 0 appearing in this order whentraversing H 0 and assume w.l.o.g. that v1 is adjaent to p1. Then pk is adjaent to vi if and16



only if k � i (mod 2). Furthermore, m is even sine p1pm is an edge and p1 is adjaent to v1,whih implies that pm is adjaent to v2.Case 1: m � 6.It follows from Lemma 4.5 that H 0 annot have three onseutive even edges. HeneH 0 has two odd edges, the endnodes of whih are not adjaent by a real edge. But thisontradits Lemma 4.5.Case 2: m = 4.Suppose v1 is not a Type b2 node w.r.t. H. Then, by Lemmas 4.1 and 4.6, both p1 andp3 must be even. Now, if p2 and p4 are also even, then by Lemma 4.3, the edges of H 0 mustbe alternately odd and even. Thus H 0 has two odd edges whose endnodes are not adjaentby a real edge, ontraditing Lemma 4.5. Hene v2 is of Type b2.If both v1 and v2 are of Type b2, then all the nodes of H 0 are odd and, by Lemma 4.3,all the edges of H 0 must have the same parity. But then, any two nonadjaent edges of H 0ontradit Lemma 4.5. 2Lemma 4.8 Let H be a Type b2 node free smallest even hole and let v1 and v2 be twononadjaent bad nodes w.r.t. H. Then H = u0; u1; : : : ; ur where v1 and v2 are both adjaentto u0. If v1 and v2 have exatly one ommon neighbor in H, then w.l.o.g. v1 is adjaent tou1 and the two setors of (H; v1) with ommon endnode u1, ontain all the neighbors of v2 inH. Otherwise, v1 and v2 are both adjaent to u1 and w.l.o.g. the two setors of (H; v1) withommon endnode u1, ontains all the neighbors of v2 in H.Proof: By Theorem 4.7, H has a z-path. Consider H 0 = p0; p1; : : : ; pm obtained from Has before, where p0 is the z-node. Assume w.l.o.g. that qi = pipi+1 where 0 � i � m andm + 1 � 0. Furthermore, assume w.l.o.g. that v1 is adjaent to p1, i.e. the endnodes of P1are adjaent to v1. By Lemmas 4.3 and 4.4, all the edges of H 0 are odd, exept maybe q1and qm�1.Case 1: H 0 has an even edge.W.l.o.g. q1 is even. By Lemma 4.4, q0 is a real edge, both p0 and p1 are real nodes andm � 3. If m = 3, we are done. Assume m = 4. As p0 and p1 are real nodes, Lemma 4.1implies that p3 must be odd. But then, by Lemma 4.6, v1 would be of Type b2. Hene m � 5.As both q2 and q3 are odd by Lemma 4.3, it follows that p3 is odd. Hene, by Lemma 4.5applied to q2 and q4, q4 is even. But then q1 and q4 ontradit Lemma 4.5.Case 2: All the edges of H 0 are odd.By Lemma 4.3, p2 is odd. If m � 4, then the pair q1 and q3 ontradits Lemma 4.5. Ifm = 3, then, by Lemmas 4.1 and 4.6, v2 would be of Type b2 w.r.t. H. Hene m = 2 and,by Lemma 4.1 applied to H and v2, P0 has two nodes u0 and u1. So we are done. 2This lemma implies the next result.Theorem 4.9 Let H be a Type b2 node free smallest even hole. Let v1 be a Type b3 nodew.r.t. H and N(v1) \ V (H) = fu1; u2; u3; u4g, where u2 is adjaent to u1 and u3. If v2 is abad node w.r.t. H, then N(v2) \ fu2; u4; v1g 6= ;.
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PROCEDURE BADInput: A graph G that does not ontain a 4-hole, a 6-hole, a short 4-wheel nor a short 3PC.Output: A family L of indued subgraphs of G that satis�es the following: If G ontains asmallest even hole H, then, for some G0 2 L ontaining H, the family CG0(H) has noType b2 nodes. Moreover, if there is a Type b1 or b3 node w.r.t. H but no Type b2node w.r.t. a hole in CG(H), then H is a spotless smallest even hole in some graphG00 2 L.Step 1: Set L = fGg.Step 2: For every (P1; P2; u), where P1 = x0; x1; x2; x3 and P2 = y0; y1; y2; y3 are disjointhordless paths in G and u 2 N(x1) \N(y1), add to L the graphs obtained from G byremoving the node set N(fx1; x2; y1; y2; ug) n (V (P1) [ V (P2)).Theorem 4.10 Proedure BAD produes the desired output.Proof: Let u be a Type bi node w.r.t. a smallest even hole H, where i � 3. TakeP1 = x0; x1; x2; x3 and P2 = y0; y1; y2; y3 to be disjoint subgraphs of H suh that N(u) \fx1; x2; y1; y2g has maximum ardinality. Denote by G0 the graph G n (N(fx1; x2; y1; y2; ug) n(V (P1) [ V (P2))). Then G0 2 L and H � G0.Claim: In G, node u is a Type bi node w.r.t. all the holes in CG0(H).Proof of Claim: Indeed, in G0, the nodes x1; x2; y1 and y2 have degree 2. Sine they belongto H, they also belong to all the holes in CG0(H). It follows that P1 and P2 are subpaths inall the holes of CG0(H). This ompletes the proof of the laim.By Theorem 4.7, if i = 2, then every hole in CG0(H) is Type b2 node free. By Theorem 4.9,if i = 3 and all holes in CG(H) are Type b2 node free, then H is a spotless smallest even holein G0. Finally, by Theorem 4.7, if i = 1 and all holes in CG(H) are Type b2 node free, thenH is a spotless smallest even hole in G0. 2Lemma 4.11 Let H be a Type b2 node free smallest even hole and v1, v2 and v3 be threepairwise nonadjaent bad nodes w.r.t. H. Then there exists a node u 2 V (H) that is adjaentto v1, v2 and v3.Proof: By Theorem 4.7, there exists a node u 2 V (H) that is adjaent to v1 and v2. Supposev3 is not adjaent to u.As v1 and v2 are two nonadjaent bad nodes w.r.t. H, by Lemma 4.8, we may letH = u0; u1; : : : ; um where u = u0, node u1 is adjaent to v1 (and possibly v2) and the twosetors of (H; v1) with ommon endnode u1 ontain all the neighbors of v2 in H. Considerthe following two ases.Case 1: v3 is adjaent to u1.As v3 is not adjaent to u0, and v1 is adjaent to u0 but not to u2, it follows fromLemma 4.8 that the two setors of v1 sharing u0 ontain all the neighbors of v3 in H. ByTheorem 4.7, nodes v2 and v3 have a ommon neighbor in H. The only possibility is nodeu1. So u1 satis�es the lemma. 18



Case 2: v3 is not adjaent to u1.Suppose that v1, v2 and v3 do not have a ommon neighbor in H. Let ui be adjaent tov1 and v3, and let uj be adjaent to v2 and v3. Then i > j. First assume that ui = um. Itfollows from Lemma 4.8 applied to v1 and v3 that N(v1) \ V (H) = fu0; u1; um�1; umg. Butthen (H; v1) is a short 4-wheel, a ontradition.It follows that i < m. Then i = j+1, otherwise the set fui; uj ; v1; v2; v3; u0g would induea 6-hole. If v3 is not adjaent to uj�1, then by Lemma 4.8, the two setors of (H; v3) sharingui must ontain all the neighbors of v2. But then v3 is not adjaent to ui+1 and the two setorsof (H; v3) sharing uj must ontain all the neighbors of v1 in H, a ontradition. Hene v3is adjaent to both uj�1 and ui+1. Now, by Lemma 4.8, the setors of (H; v3) sharing ui+1(uj�1) ontain all the neighbors of v1 (v2). So (H; v3) is a short 4-wheel, a ontradition. 2Theorem 4.12 Let H be a Type b2 node free smallest even hole. If there exist three nonad-jaent bad nodes w.r.t. H, then there exists a node u in H suh that all the bad nodes w.r.t.H are adjaent to node u or to one of the neighbors of u in H.Proof: Suppose v1, v2 and v3 are three nonadjaent bad nodes w.r.t. H and u is a ommonneighbor in H (suh a node exists by Lemma 4.11). Let u1; u2 denote the neighbors of u inH. Suppose v is a bad node w.r.t. H that is not adjaent to a node in fu; u1; u2g. Then,v is adjaent to at most one of the nodes v1; v2; v3, else G ontains a 4-hole. Say v is notadjaent to v1 and v2. Now, by Lemma 4.11, nodes v1; v2; v have a ommon neighbor in H,say w. But then w; v1; u; v2 is a 4-hole, a ontradition. 2For a node set S, denote by �(S) the ardinality of a largest stable set in S.Theorem 4.13 Let H be a Type b2 node free smallest even hole and S be the set of all badnodes w.r.t. H.a. If �(S) = 1, then there are two nonadjaent nodes u1; u2 in H suh that either S = N 0where N 0 = N(u1)\N(u2), or there exists a 2 SnN 0 with the property that, if N denotesthe set of nodes of Gn (N 0[fag) adjaent to all nodes in N 0[fag, then jV (H)\N j � 3and S � N [N 0 [ fag.b. If �(S) = 2, then there are two nonadjaent nodes u1; u2 in H, and a third node w1 inH (not neessarily distint from u1 or u2) suh that, if A = S n N(w1) and N 00 =(N(u1)\N(u2)) nN(w1), then either �(A nN 00) � 1, or there exists a node a 2 A nN 00and a node v1 adjaent to u1, u2 and w1 with the property that, if N is the set ofnodes of G n (N 00 [ fa; v1g) that are adjaent to all the nodes in N 00 [ fa; v1g, thenjV (H) \N j � 3 and �(A n (N [N 00 [ fag)) � 1.Proof: a. Let u1 and u2 be two nodes of H suh that(i) the shortest path of H onneting u1 and u2 has at least three edges,(ii) N 0 = N(u1) \N(u2) has maximum ardinality.By (i), N 0 � S. If N 0 = S, we are done. So, suppose a 2 S n N 0. Denote by N thenodes of Gn (N 0[fag) adjaent to all nodes in N 0[fag. Then, sine S is a lique ontainingN 0 [ fag, S � N [N 0 [ fag. 19



If jV (H) \N j � 4, then H would ontain two nodes x1 and x2 satisfying (i) and havingmore ommon neighbors in S than u1 and u2, whih ontradits (ii).b. Suppose v1; v2 2 S are nonadjaent.By Theorem 4.7, nodes v1 and v2 have a ommon neighbor in H, say w1. Let A be theset of bad nodes that are not adjaent to w1. As G is 4-hole free, eah node of A is adjaentto exatly one of v1; v2. For i = 1; 2, denote by Ai the set of nodes of A adjaent to vi. ThenA1 \ A2 = ; and A1 [ A2 = A. As �(S) = 2, it follows that both A1 and A2 are liques(possibly empty). Now assume that u1 and u2 are two nodes of H suh that(i) v1 is adjaent to both u1 and u2,(ii) the shortest path in H onneting u1 and u2 has at least three edges,(iii) N 00 = (N(u1) \N(u2)) nN(w1) has maximum ardinality.As v1 is a bad node w.r.t. H, suh a pair of nodes u1; u2 always exists. (ii) and (iii)imply that N 00 � A. As G is 4-hole free and N(v1) \ A2 = ;, it follows that N 00 � A1. IfA1 = N 00, then A nN 00 = A2, so �(A n N 00) � 1 and we are done. So, suppose a 2 A1 n N 00.Denote by N the nodes of G n (N 00 [fa; v1g) adjaent to all the nodes in N 00 [fa; v1g. Then,sine A1 is a lique ontaining N 00 [ fag, it follows that A1 � N [ N 00 [ fag, and hene�(A n (N [N 00 [ fag)) � 1.If jV (H) \N j � 4, then N would ontain two nodes x1 and x2 satisfying (i) and (ii) andhaving more ommon neighbors in A1 than u1 and u2, whih ontradits (iii). 2PROCEDURE b4Input: A graph G that does not ontain a 4-hole, a 6-hole, a short 4-wheel nor a short 3PC.Output: A family L of indued subgraphs of G that satis�es the following: If G ontains asmallest even hole H suh that CG(H) is Type bi node free for i = 1; 2; 3, then H is aspotless smallest even hole in some G0 2 L.Step 1: Set L = L2 = fGg and L1 = L3 = ;.Step 2: For every hordless path P = w0; w1; w2; w3; w4 in G, add to L the graph obtainedfrom G by removing the node set (S3i=1N(wi)) n V (P ).Step 3a: For every hordless path P = w0; w1; w2 in G and v1 6= w0; w2 adjaent to w1, addto L1 the graph obtained from G by removing the node set N(w1) n fw0; w2; v1g.For k = 1 to 2, dobeginStep 3b: For every L 2 Lk and for every nonadjaent u1; u2 2 V (L), add to Lk+1 the graphobtained from L by removing the node set N(u1) \N(u2).Step3: For every L 2 Lk and for every nonadjaent u1; u2 2 V (L), let N 0 = N(u1)\N(u2).For every a 2 V (L)nN 0, let N denote the set of nodes of Ln(N 0[fag) that are adjaentto all the nodes in N 0 [ fag. For i = 0; 1; 2; 3, let Ni denote the family of all subsets ofN with ardinality jN j � i. For every M 2 Ni, add to Lk+1 the graph obtained from Lby removing the node set M [N 0 [ fag.end 20



Step 4: Add to L all the graphs in L3.Theorem 4.14 Proedure b4 produes the desired output.Proof: Let H be a smallest even hole in G that is Type b2 node free, and S be the set of allbad nodes w.r.t. H.If �(S) � 3, then, by Theorem 4.12, Step 2 produes a graph G0 in L where H is lean.If �(S) = 1, then, by Theorem 4.13a, Steps 3b and 3 applied to G 2 L2 when k = 2,produes a graph G0 2 L3 where H is lean.Finally, if �(S) = 2, then Step 3a produes a graph L 2 L1 where the nodes of G inN(w1) n fw0; w2; v1g are removed. The bad nodes that remain are v1 and A = S nN(w1). ByTheorem 4.13b, Steps 3b and 3 applied to L when k = 1 produe a graph in L2 that ontainsH and suh that the set A2 of remaining bad nodes w.r.t. H satis�es �(A2) � 1 (Note thatN 0 in Step 3 (k=1) of the algorithm is equal to N 00 [ fv1g as de�ned in Theorem 4.13bwhenever v1 is adjaent to u1 and u2.) Now, by Theorem 4.13a, Steps 3b and 3 when k = 2produe some graph G0 2 L3 where H is lean.So, in all ases, the algorithm produes a graph G0 in L where H is lean. To ompletethe proof it remains to show that, if CG(H) is Type bi node free for i = 1; 2; 3, then H is aspotless smallest even hole in G0. This follows from the next two laims.Claim 1: If H� is a lean smallest even hole and CG(H�) is Type bi node free, for i = 1; 2; 3,then any hole obtained from H� through one speial tent substitution is also lean.Proof of Claim 1: Let xy be a speial tent w.r.t. H�, with intermediate paths P1 and P2,where P1 is of length 2, and let H be the hole indued by the node set V (P2)[fx; yg. W.l.o.g.assume that x is of Type g2 w.r.t. H�, with neighbors x1 and x2 in H�, and node y has aunique neighbor y1 in H�. Let p1 be the intermediate node of P1, and w.l.o.g. let x2 and y1be the endnodes of P1. We will show that the strongly adjaent nodes to H are of Type g2or g3.Suppose not and let u be a strongly adjaent node to H that is not of Type g2 or g3.Then u must have at least one neighbor in P2. Let u1 be the neighbor of u in P2 that islosest to x1, and let P 0 be the x1u1-subpath of P2. Sine H� is lean, u is either not stronglyadjaent to H� or is of Type g2 or g3 w.r.t. H�. Also u must be adjaent to a node in fx; yg,so we have the following three ases to onsider.Case 1: Node u is adjaent to both x and y.First assume that u is adjaent to y1. Then u must have at least two neighbors in P2,sine otherwise u is of Type g3 w.r.t. H. If u has two neighbors in P2 then u1 is adjaent toy1 and (H;u) is a short 4-wheel. If u has three neighbors in P2 then it is of Type g3 w.r.t.H� and the hole indued by the node set V (P 0) [ fx; ug is even of length smaller than H�,ontraditing our hoie of H�. Hene u is not adjaent to y1. By a similar argument u is notadjaent to x1 either. Sine u must have a neighbor in P2 and sine it is either not stronglyadjaent to H� or it is of Type g2 or g3 w.r.t. H�, this implies that u does not have anyneighbors in P1. Node u1 is not adjaent to y1, sine otherwise u; y; y1; u1; u is a 4-hole. LetH 0 be the hole indued by the node set V (P 0) [ V (P1) [ fy; ug. But now (H 0; x) is a short4-wheel.Case 2: Node u is adjaent to x but not to y.21



Node u is not adjaent to y1, sine otherwise u; x; y; y1; u is a 4-hole. If u is adjaent to x1then u is of Type g3 w.r.t. H�, with all neighbors in P2. But then (H;u) is a short 4-wheel.Hene u is not adjaent to x1 nor y1, whih implies that it annot have any neighbors in P1.But now there is a short 3PC(x; y1), where two of the paths are x; P1; y1 and x; y; y1 and thethird path passes through u.Case 3: Node u is adjaent to y but not to x.Node u is not adjaent to x1, sine otherwise u; y; x; x1; u is a 4-hole. If u is adjaent to y1then u is of Type g3 w.r.t. H�, with all neighbors in P2. But then (H;u) is a short 4-wheel.Hene u is not adjaent to x1 nor y1, whih implies that it annot have any neighbors in P1.If u is of Type g1 or g3 w.r.t. H�, then u is of Type b1 or b3 w.r.t. H, ontraditing theassumption that CG(H�) is Type b1 and b3 node free. Sine H� is lean, u must be of Typeg2 w.r.t. H�, ontraditing Lemma 4.1 applied to H and u.Claim 2: If H� is a lean smallest even hole and CG(H�) is Type bi node free, for i = 1; 2; 3,then any hole obtained from H� through one Type g3 node substitution is also lean.Proof of Claim 2: Let x be a Type g3 node w.r.t. H�, with neighbors x1, x2 and x3 in H�.Assume that x2 is the middle neighbor of x in H� and let H be the hole obtained from H�by substituting x for x2. We will show that the strongly adjaent nodes to H are of Type g2or g3. Let u be a strongly adjaent node to H. We onsider the following two ases.Case 1: Node u is not adjaent to x.Then u annot be adjaent to both x1 and x3, sine otherwise x; x1; u; x3; x is a 4-hole.Sine u is strongly adjaent to H, it is also strongly adjaent to H�. Sine H� is lean, uis of Type g2 or g3 w.r.t. H�. But then, sine u is not adjaent to both x1 and x3, u is ofType g2 or g3 w.r.t. H as well.Case 2: Node u is adjaent to x.If u is not adjaent to x1 nor x3 then it is also not adjaent to x2, sine otherwise uwould be a bad strongly adjaent node w.r.t. H�. By Lemma 4.1 applied to H and u, nodeu annot be of Type g2 w.r.t. H�, and hene it is of Type g1 or g3 w.r.t. H�. But then uis of Type b1 or b3 w.r.t. H, ontraditing the assumption that CG(H�) is Type b1 and b3node free. Therefore u must be adjaent to x1 or x3.First assume that u is adjaent to both x1 and x3. Then u must also be adjaent to x2,sine otherwise u; x1; x2; x3; u is a 4-hole. Sine H� is lean, u is of Type g3 w.r.t. H� andhene w.r.t. H as well.Now assume that u is adjaent to x1 but not to x3. Note that sine H� is lean, u anhave at most three neighbors in V (H�) n fx2g. If u has two neighbors in V (H�) n fx2g, thenu is of Type g2 or g3 w.r.t. H� and hene of Type g3 w.r.t. H. If u has three neighbors inV (H�) n fx2g, then (H;u) is a short 4-wheel. This ompletes the proof of Claim 2 and of thetheorem. 2CLEANING ALGORITHMInput: A graph G that does not ontain a 4-hole, a 6-hole, a short 4-wheel nor a short 3PC.Output: A family L of indued subgraphs of G suh that, if G ontains an even hole, thensome G0 2 L ontains a spotless smallest even hole.22



Step 1: Set L = fGg.Step 2: Apply Proedure BAD to G and let L0 be the resulting output family.Step 3: Apply Proedure BAD to eah graph in L0 and union the output with L.Step 4: Apply Proedure b4 to eah of the graphs in L0 and union the output with L.If G ontains an even hole then, after Step 2, L0 ontains a graph G0 with a smallest evenhole H suh that CG0(H) is Type b2 node free. Now, if H has a Type b1 or b3 node in G0,we get the desired output in L after Step 3 and otherwise we get it after Step 4. So theCleaning Algorithm produes the desired output. The size of the output an be estimated tobe O(n25).5 2-Join DeompositionsIn this setion, we assume that G does not ontain a 4-hole, a dominated node, a gem nor afull k-star utset, k = 1; 2; 3. So, by Lemma 1.14, G ontains no k-star utset.Let V1jV2 be a 2-join with speial sets (A1; A2; B1; B2). For i = 1; 2, let Pi be the family ofhordless paths P = x1; : : : ; xn where x1 2 Ai, xn 2 Bi and xj 2 Vi n (Ai[Bi), 2 � j � n�1.Lemma 5.1 The sets Pi are nonempty and ontain no path of length 1, for i = 1; 2.Proof: Let u 2 A1 and v 2 B1.First, suppose that there is no path in V1 from A1 to B1. Then, sine jV1j > 2, eitherfug [A2 or fvg [B2 is a star utset. Hene P1 6= ;. Similarly, P2 6= ;.Now, if uv is an edge, then no node of A2 an be adjaent to a node of B2 (sine G is4-hole-free). As P2 6= ;, it follows that V2 n (A2 [B2) 6= ;. But then fu; vg [A2 [B2 wouldbe a double star utset. 2The bloks of a 2-join deomposition are graphs G1 and G2 de�ned as follows. Blok G1onsists of the subgraph of G indued by node set V1 plus a marker path P2 = a2; : : : ; b2 thatis hordless and satis�es the following properties. Node a2 is adjaent to all the nodes in A1,node b2 is adjaent to all the nodes in B1 and these are the only adjaenies between P2 andthe nodes of V1. Furthermore, let Q 2 P2. The marker path P2 has length 4 if Q has evenlength, and length 5 otherwise. Blok G2 is de�ned similarly.Theorem 5.2 Let G1 and G2 be the bloks of a 2-join deomposition of G. Then, G iseven-hole-free if and only if G1 and G2 are even-hole-free.Proof: First assume that G1 or G2 has an even hole, say G1 does. Replaing in G1 the markerpath P2 by a path Q 2 P2 of the same parity yields a graph G01 that ontains an even hole.Sine G01 is a subgraph of G, this hole is also an even hole of G.Conversely, suppose that G ontains an even hole. If P1 (resp. P2) has paths of di�erentparities then, learly, G2 (resp. G1) has an even hole. If all the paths of P1 [ P2 have thesame parity, then both G1 and G2 have even holes. So, we may assume that all the pathsof P1 are odd and all the paths of P2 are even. But then eah even hole H of G must beontained in V1 [A2 [B2 or V2 [A1 [B1. Hene H belongs either to G1 or G2. 223



Lemma 5.3 If G does not ontain a full k-star utset, k = 1; 2; 3, then neither do the bloksof a 2-join deomposition of G.Proof: Let G1 and G2 be the bloks of a 2-join deomposition of G and suppose that one ofthem, say G1, ontains a full k-star utset S, k = 1; 2; 3. We will obtain a ontradition byshowing that this implies that G also ontains a full k-star utset. We onsider the followingthree ases.Case 1: S = N [x℄If x is not a node of the marker path P2, then S is also a utset in G. First assume that xoinides with a2 or b2, say x = a2. Sine P2 is not an edge, the nodes of B1 are all ontainedin the same omponent of G1nS. Let u be a node of G1nS that is not in the same omponentas B1. But then N(a) [ fag, where a 2 A2, is a full star utset in G breaking u from B1.Now assume that x is an intermediate node of P2. Note that the graph indued by the nodeset V1[fa2; b2g is onneted sine otherwise G would have a star utset. Hene x is adjaentto a2 or b2, say a2. Let u 2 A1 and v 2 B1 be the endnodes of a path in P1. Sine P2 isof length greater than 2, the nodes of B1 [ fug are all ontained in the same omponent ofG1 nS. Let y be a node of G1 nS that is not in the same omponent as B1. Then N(u)[fugis a full star utset in G breaking y from v.Case 2: S = N(x) [N(y)If P2 ontains neither x nor y, then S is also a utset in G. If P2 ontains both x and y,then sine P2 is of length greater than 3, either N(x)[fxg or N(y)[fyg is a full star utsetin G1, and we are done by Case 1. So assume w.l.o.g. that x = a2 and y 2 A1. Let u be anode of A2. Then N(u) [N(y) is a full double star utset in G.Case 3: S = N(x) [N(y) [N(z)If P2 does not ontain a node in fx; y; zg, then S is also a utset in G. So w.l.o.g. assumethat x = a2 and y; z 2 A1. But then N(x) [N(y) is a full double star utset in G. 2We now present an algorithm that deomposes a graph using 2-joins.Remark 5.4 In [8℄, a set of foring rules is given that deides in polytime whether a pair ofedges a1a2 and b1b2 belong to a 2-join with speial sets (A1; A2; B1; B2) suh that for i = 1; 2ai 2 Ai and bi 2 Bi. The algorithm either outputs suh a 2-join or it onludes that no suh2-join exists. We outline here this algorithm for the sake of ompleteness. As pointed outto us by Jim Geelen and Paul Seymour, these foring rules an be formulated as a 2-SATproblem, thus providing an alternate, and elegant, proof that a 2-join an be found in polytime.Let a1; a2; b1; b2; u be �ve distint nodes suh that a1a2 and b1b2 are edges but neithera1b2 nor a2b1 is an edge and u is adjaent to at most one of the nodes a2; b2 (possibly none).The following rules yield a 2-join V1jV2 with a1; b1; u 2 V1 and a2; b2 2 V2 or show that nosuh 2-join exists.During the algorithm, the nodes h in V1 are partitioned into three sets:� Node h belongs to A1 if it is adjaent to a2 but not b2,� Node h belongs to B1 if it is adjaent to b2 but not a2,� Node h belongs to S1 if it is adjaent to neither a2 nor b2.24



The ase where some node h in V1 is adjaent to both a2 and b2 will not be permitted.Initially, a1; b1; u are in V1 and all the other nodes of G are in V2. Foring rules are usedto move nodes from V2 to V1 as follows.� If v 2 V2 is adjaent to at least one node in S1, add v to V1 and delete it from V2,� If v 2 V2 is adjaent to at least one node in A1 [B1 and N(v) \ (A1 [B1) 6= A1 or B1,then add v to V1 and delete it from V2.If some node v moved from V2 to V1 is adjaent to both a2 and b2, then the algorithmterminates sine no 2-join with a1; b1; u 2 V1 and a2; b2 2 V2 exists. If this situation neverours, we ontinue moving nodes from V2 to V1 until no foring rule applies. At this stage,denote by A2 the nodes of V2 adjaent to A1, by B2 those adjaent to B2 and by S2 the rest.The only adjaenies between nodes of V1 and V2 are between node sets A1, A2 and betweenB1, B2. There are three possibilities.� If jV2j = 2 or if jA2j = jB2j = 1 and V2 indues a path, then no 2-join exists witha1; b1; u 2 V1 and a2; b2 2 V2.� If the �rst ase does not our and if jA1j � 2 or jB1j � 2 or jA1j = jB1j = 1 but V1does not indue a path, then V1jV2 is a 2-join with speial sets (A1; A2; B1; B2).� Finally, when neither of the above two ases our, then jA1j = jB1j = 1 and V1 induesa path. For eah h 2 V2, move h from V2 to V1 and use the above foring rules to �nda 2-join with a1; b1; u; h 2 V1 and a2; b2 2 V2. If this fails for all h 2 V2, then no 2-joinexists with a1; b1; u 2 V1 and a2; b2 2 V2.Remark 5.5 Construting bloks of a 2-join deomposition an be done in polynomial time.By Remarks 5.4 and 5.5, one an see that every step of the following algorithm an beimplemented to run in polynomial time.2-JOIN DECOMPOSITION ALGORITHMInput: A graph G that does not ontain a 4-hole, a gem, a full k-star utset, k = 1; 2; 3; norany dominated nodes.Output: A list L of graphs, with the following properties:� The graphs in L do not ontain a 4-hole, a gem, a full k-star utset, k = 1; 2; 3; a2-join nor any dominated nodes.� G is even-hole-free if and only if all the graphs in L are even-hole-free.Step 1: Let L0 = fGg and L = ;.Step 2: If L0 = ;, stop. Otherwise, remove a graph F from L0. Let L00 be the set of allffa1; b1; ug; fa2; b2gg where a1; b1; a2; b2; u are �ve distint nodes of F with the propertythat a1b1 and a2b2 are edges but not a2b1 nor a1b2, and node u is adjaent to at mostone of the nodes a2; b2. 25



Step 3: If L00 = ;, add F to L and go to Step 2. Otherwise, remove ffa1; b1; ug; fa2; b2ggfrom L00.Step 4: Chek whether there is a 2-join V1jV2 with speial sets (A1; A2; B1; B2) suh thatu 2 V1, for i = 1; 2, ai 2 Ai and bi 2 Bi. If there is suh a 2-join, go to Step 5.Otherwise, go to Step 3.Step 5: Construt the bloks of the 2-join deomposition, add them to L0 and go to Step 2.Remark 5.6 The number of graphs in list L produed by the 2-Join Deomposition Algorithmis O(jV (G)j). This is easily seen by observing that in eah 2-join deomposition, the sum ofthe number of nodes in the two bloks is at most 12 more than the number of nodes in theoriginal graph. If we stop doing 2-join deompositions when the size of the bloks is smallerthan 24, then the number of bloks reated is only linear in the number of nodes in the originalgraph.Lemma 5.7 The 2-Join Deomposition Algorithm produes the desired output.Proof: By onstruting bloks of a 2-join deomposition we do not reate any gems, dominatednodes nor any 4-holes. So by Lemma 5.3, at every point in the algorithm the graphs in L0have the property that they do not ontain a 4-hole, a gem, a full k-star utset, k = 1; 2; 3;nor any dominated nodes. By the onstrution of L, the graphs in L do not ontain a 4-hole,a gem, a full k-star utset, k = 1; 2; 3; a 2-join nor any dominated nodes. Furthermore, byTheorem 5.2, G is even-hole-free if and only if all the graphs in L are even-hole-free. 2Aknowledgment: We are grateful to the two referees for numerous improvements inthe presentation. Speial thanks to Grigor Gasparyan for simplifying the proofs in Setion 4.Referenes[1℄ D. Bienstok, On omplexity of testing for odd holes and indued odd paths, DisreteMathematis 90 (1991) 85-92.[2℄ V. Chv�atal, Star-utsets and perfet graphs, Journal of Combinatorial Theory B 39(1985) 189-199.[3℄ M. Conforti, G. Cornu�ejols, A. Kapoor and K. Vu�skovi�, Balaned 0;�1 matries, PartsI and II, Journal of Combinatorial Theory B 81 (2001) 243-306.[4℄ M. Conforti, G. Cornu�ejols, A. Kapoor and K. Vu�skovi�, Even-hole-free graphs, Part I:Deomposition Theorem, Journal of Graph Theory 39 (2002) 6-49.[5℄ M. Conforti, G. Cornu�ejols, A. Kapoor and K. Vu�skovi�, Even and odd holes in ap-freegraphs, Journal of Graph Theory 30 (1999) 289-308.[6℄ M. Conforti, G. Cornu�ejols and M.R. Rao, Deomposition of balaned 0; 1 matries,Journal of Combinatorial Theory B 77 (1999) 292-406.26
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