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Triangulated Neighborhoods in Even-hole-free Graphs

Murilo V. G. da Silva * and Kristina Vugkovié

July 2005; revised July 2006

Abstract

An even-hole-free graph is a graph that does not contain, as an induced subgraph,
a chordless cycle of even length. A graph is triangulated if it does not contain any
chordless cycle of length greater than three, as an induced subgraph. We prove that
every even-hole-free graph has a node whose neighborhood is triangulated. This implies
that in an even-hole-free graph, with n nodes and m edges, there are at most n + 2m
maximal cliques. It also yields an O(n?m) algorithm that generates all maximal cliques
of an even-hole-free graph. In fact these results are obtained for a larger class of graphs
that contains even-hole-free graphs.

Keywords: even-hole-free graphs, triangulated graphs, structural characterization,
generating all maximal cliques.

1 Introduction

We say that a graph G contains a graph H, if H is isomorphic to an induced subgraph of G.
A graph G is H-free if it does not contain H. A hole is a chordless cycle of length at least
four. A hole is even (resp. odd) if it contains even (resp. odd) number of nodes. An n-hole
is a hole of length n. A graph is said to be triangulated if it does not contain any hole.

We sign a graph by assigning 0, 1 weights to its edges in such a way that, for every triangle
in the graph, the sum of the weights of its edges is odd. A graph G is odd-signable if there
is a signing of its edges so that, for every hole in G, the sum of the weights of its edges is
odd. Clearly every even-hole-free graph is odd-signable, since we can get a correct signing by
assigning a weight of 1 to every edge of the graph.

The graphs that are odd-signable and do not contain a 4-hole are studied in [7], where
a decomposition theorem is proved for them. This decomposition theorem is used in [8] to
obtain a polynomial time recognition algorithm for even-hole-free graphs.

For x € V(G), N(x) denotes the set of nodes of G that are adjacent to x, and Nz] =
N(z)U{z}. For V! C V(G), G]V'] denotes the subgraph of G induced by V'. For z € V(G),
the graph G[N(z)] is called the neighborhood of x.

The main result of this paper is the following structural characterization of odd-signable
graphs that do not contain a 4-hole.
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Theorem 1.1 FEvery 4-hole-free odd-signable graph has a node whose neighborhood is trian-
gulated.

Exactly the same characterization of 4-hole-free Berge graphs (i.e. graphs that do not
contain a 4-hole nor an odd hole) is obtained by Parfenoff, Roussel and Rusu in [15]. Note
that 4-hole-free graphs in general need not have this property, see Figure 1.

Figure 1: A 4-hole-free graph that has no vertex whose neighborhood is triangulated.

A graph is Berge if it does not contain an odd hole nor the complement of an odd hole.
A square-3PC(-,-) is a graph that consists of three paths between two nodes such that any
two of the paths induce a hole, and at least two of the paths are of length 2. A graph G
is even-signable if there is a signing of its edges so that for every hole in GG, the sum of the
weights of its edges is even. In [13] Maffray, Trotignon and Vuskovi¢ show that every square-
3PC(-,-)-free even-signable graph has a node whose neighborhood does not contain a long
hole (where a long hole is a hole of length greater than 4). This result is used in [13] to obtain
a combinatorial algorithm of complexity O(n”) for finding a clique of maximum weight in
square-3PC(-, -)-free Berge graphs. Note that this class of graphs generalizes both 4-hole-free
Berge graphs and claw-free Berge graphs (where a claw is a graph on nodes x,a,b, ¢ with
three edges xa, xb, xc). We show in this paper that key ideas from [13] extend to 4-hole-free
odd-signable graphs.

Using Theorem 1.1 one can obtain an efficient algorithm for generating all the maximal
cliques in 4-hole-free odd-signable graphs (and in particular even-hole-free graphs). This we
describe in Section 2. Theorem 1.1 is proved in Section 3.

Recently Addario-Berry, Chudnovsky, Havet, Reed and Seymour [1] have proved a
stronger property of even-hole-free graphs, namely that every even-hole-free graph has a
bisimplicial vertex (i.e. a vertex whose neighborhood partitions into two cliques). This char-
acterization immediately yields that for an even-hole-free graph G, x(G) < 2w(G) — 1, where
X(G) is the chromatic number of G and w(G) is the size of the largest clique in G (observe
that if v is a bisimplicial vertex of G, then its degree is at most 2w(G) — 2, and hence G
can be colored with at most 2w(G) — 1 colors). The two characterizations of even-hole-free
graphs were discovered independently and at about the same time. The proof of the char-
acterization in [1] is over 40 pages long. Our weaker characterization is enough to obtain an



efficient algorithm for generating all maximal cliques of even-hole-free graphs, and its proof
is very short.

2 Generating all the maximal cliques of a 4-hole-free odd-
signable graph

For a graph G let k denote the number of maximal cliques in G, n the number of nodes in
G and m the number of edges of G. Farber [10] shows that there are O(n?) maximal cliques
in any 4-hole-free graph. Tsukiyama, Ide, Ariyoshi and Shirakawa [19] give an O(nmk)
algorithm for generating all maximal cliques of a graph, and Chiba and Nishizeki [2] im-
prove this complexity to O(m!®k). The complexity is further improved for dense graphs
by the O(M(n)k) algorithm of Makino and Uno [14], where M (n) denotes the time needed
to multiply two n X n matrices. Note that Coppersmith and Winograd show that matrix
multiplication can be done in O(n*37®) time [9]. So one can generate all the maximal cliques
of a 4-hole-free graph in time O(m!n?) or O(n*37).

We now show that Theorem 1.1 implies that there are at most n + 2m maximal cliques in
a 4-hole-free odd-signable graph, and it yields an algorithm that generates all the maximal
cliques of a 4-hole-free odd-signable graph in time O(n?m). In particular, in a weighted
graph, a maximum weight clique can be found in time O(n?m).

Let C be any class of graphs closed under taking induced subgraphs, such that for every
G in C, G has a node whose neighborhood is triangulated. Consider the following algorithm
for generating all maximal cliques of graphs in C.

Find a node z; of G whose neighborhood is triangulated (if no such node exists, G is
not in C, or in particular, G is not 4-hole-free odd-signable graph by Theorem 1.1). Let
G1 = G[N[r]] and G! = G \ {z1}. Every maximal clique of G belongs to G; or G'.
Recursively construct triangulated graphs G1,...,G,, as follows. For ¢ > 2, find a node x; of
G~ whose neighborhood is triangulated and let G; = G[Ngi-1[x;]] and G* = G\ {z;} =
G\{xl,...,xi}.

Clearly every maximal clique of G belongs to exactly one of the graphs G1,...,G,. A
triangulated graph on n vertices has at most n maximal cliques [11]. So for i = 1,...,n,
graph G; has at most 1 4 d(z;) maximal cliques (where d(x) denotes the degree of vertex x).
It follows that the number of maximal cliques of G is at most > ;" (1 + d(z;)) = n + 2m.

Checking whether a graph is triangulated can be done in time O(n + m) (using lexico-
graphic breadth-first search [16]). So finding a vertex with triangulated neighborhood can be
done in time O(}_ ¢y () (d(x) +m)) = O(nm). Hence constructing the graphs G1,...,Gy
takes time O(n?m).

Generating all maximal cliques in a triangulated graph can be done in time O(n + m)
(see, for example, [12]). Hence the overall complexity of generating all maximal cliques in a
4-hole-free odd-signable graph is dominated by the construction of the sequence Gy, ..., Gy,
i.e. it is O(n*m).

Note that this algorithm is robust in Spinrad’s sense [17]: given any graph G, the algorithm
either verifies that G is not in C (or in particular that G is not a 4-hole-free odd-signable
graph) or it generates all the maximal cliques of G. Note that, when G is not in C, the
algorithm might still generate all the maximal cliques of G.



3 Proof of Theorem 1.1

For a graph G, let V(G) denote its node set. For simplicity of notation we will sometimes
write G instead of V(G), when it is clear from the context that we want to refer to the node
set of G. Also a singleton set {z} will sometimes be denoted with just x. For example,
instead of “u € V(G) \ {z}”, we will write “u € G\ z”.

Let x,y be two distinct nodes of G. A 3PC(x,y) is a graph induced by three chordless
x,y-paths, such that any two of them induce a hole. We say that a graph G contains a
3PC(-,-) if it contains a 3PC(z,y) for some z,y € V(G). 3PC(-,-)’s are also known as thetas
(for example in [5]).

Let x1,x9,x3,Y1, Y2, y3 be six distinct nodes of G such that {x1,z9, 23} and {y1,y2,y3}
induce triangles. A 3PC(x1x2x3,y1y2y3) is a graph induced by three chordless paths P, =
Tl,... Y1, Po = x9,...,y2 and P3 = x3,...,¥ys3, such that any two of them induce a hole.
We say that a graph G contains a 3PC(A, A) if it contains a 3PC/(z1x923, y1y2y3) for some
x1,T2,%3,Y1,Y2,y3 € V(G). 3PC(A,A)’s are also known as prisms (for example in [4]).

A wheel, denoted by (H,x), is a graph induced by a hole H and a node = ¢ V(H) having
at least three neighbors in H, say x1,...,x,. Node x is the center of the wheel. We say that
the wheel (H,z) is even when n is even.

It is easy to see that even wheels, 3PC(-,-)’s and 3PC(A, A)’s cannot be contained in
even-hole-free graphs. In fact they cannot be contained in odd-signable graphs. The following
characterization of odd-signable graphs, given in [6], states that the converse is also true. It
is in fact an easy consequence of a theorem of Truemper [18].

Theorem 3.1 A graph is odd-signable if and only if it does not contain an even wheel, a
3PC(-,-) nor a 3PC(A, A).

The fact that odd-signable graphs do not contain even wheels, 3PC(-,-)’s and
3PC(A,A)’s will be used throughout the rest of the paper.

In the next three lemmas we assume that G is a 4-hole-free odd-signable graph, = a node
of G that is not adjacent to every other node of G, C a connected component of G \ N[z,
and H a hole of N(x). Note that H is an odd hole, else (H,z) is an even wheel.

Lemma 3.2 If node u of C1 has a neighbor in H then u is one of the following two types:
e Type 1: u has exactly one neighbor in H.

e Type 2: u has exactly two neighbors in H, and they are adjacent.
Proof: If u has two nonadjecent neighbors a and b in H, then {a, b, u,x} induces a 4-hole. O

Let T3 be a graph on 3 nodes that has exactly one edge.

Let x1,x2,x3,y be four distinct nodes of G such that z1,x9,x3 induce a triangle. A
3PC(x1x9ws,y) is a graph induced by three chordless paths Py = z1,...,y, P» = z9,...,y
and P3 = x3,...,y, such that any two of them induce a hole. We say that a graph G contains
a 3PC(A,-) if it contains a 3PC(z1x2x3,y) for some x1,x9, 23,y € V(G). 3PC(A,-)’s are
also known as pyramids (for example in [3]).



Lemma 3.3 If H contains a T° all of whose nodes have neighbors in C1, then Cy contains
a path P, of length greater than 0, such that P U H induces a 3PC(A,-), and the nodes of H
that have a neighbor in P induce a T3.

Proof: Let C be a smallest subset of C such that G[C] is connected and H = hy, ..., hy, h
contains a T° all of whose nodes have neighbors in C. W.lo.g. hi,he and h;, 3 < i < n,
have neighbors in C'. Let P = pq,...,pr be a shortest path of C such that p; is adjacent to
h1 and pg is adjacent to hs. Note that no intermediate node of P is adjacent to hy or hs.
Also possibly k = 1.

Claim 1: No node of {hy, ..., h,_1} has a neighbor in P.

Proof of Claim 1: Suppose not. Then by minimality of C', h; has a neighbor in P and w.l.o.g.
no node of {h;y1,...,h,—1} has a neighbor in P. By Lemma 3.2, p1,px ¢ N(h;)) N P. In
particular k£ > 1.

First suppose N (h,)NP # &. By Lemma 3.2, h,,py, is not an edge. If N(h,)NP = p; then
{x, hp, ha, h1 }UP induces an even wheel with center hi. So h,, has a neighbor in P\ {p1, px}.
If h;h,, is not an edge, then since all of hy, hy, h; have neighbors in P \ pg, the minimality of
C' is contradicted. So h;h,, is an edge of G. But then all of h;, h,,, he have neighbors in P\ p;
and the minimality of C' is contradicted. So N(h,) N P = @.

Let p, be the node of P with highest index adjacent to h;. Let H' be the hole induced
by {hi,...;hn, h1, h2,Dky -y D} Since (H',z) cannot be an even wheel, it follows that
hi, ..., hp, h1, he is an even subpath of H. Let ps be the node of P with lowest index adjacent
to h;. Then {x, h;, ..., hy, h1,p1,...,ps} induces an even wheel with center x. This completes
the proof of Claim 1.

By Claim 1, h; is not adjacent to a node of P. But h; has a neighbor in C, and since C
is connected, let Q = ¢1, ..., q; be a chordless path in C' such that ¢; is adjacent to h; and ¢
has a neighbor in P.

Claim 2: No node of {hy,...,hy,—1} has a neighbor in (PUQ) \ ¢1.

Proof of Claim 2: Suppose that some h; € {h4,...,h,—1} has a neighbor in (PU Q) \ ¢1.
Then all of hy, ho, hj have neighbors in (PUQ) \ ¢, contradicting the minimality of C'. This
completes the proof of Claim 2.

Claim 3: ¢; is of type 1 w.r.t. H.

Proof of Claim 3: By Lemma 3.2 ¢ is of type 1 or type 2. Suppose ¢ is of type 2. We now
prove that N(q1) N H is either {hs, hy} or {h,—_1,h,}. Assume not. Then ¢; is adjacent to
neither hs nor h,. W.lo.g. N(q1) N H = {h;,hi—1} and i # 4. If N(q;) N P # py, then (P U
Q) \ p1 is connected and all of h;, h;_1, ho have neighbors in it, contradicting the minimality
of C. So N(q;) " P = p;. If £ > 1, then all of h;, h;—1,h; have neighbors in (P U Q) \ pg,
contradicting the minimality of C'. So k = 1, and hence by Lemma 3.2, N(p1)NH = {hqy, ha}.
Since H is odd, the two subpaths of H, hs,...,h;—1 and h,, ..., h,, h1 have different parities.



W.lo.g. hg,...,hj—1 is odd, i.e. i is even. By Claim 2, no node of {hy4,...,h,—1} has a
neighbor in (PUQ) \ ¢1. If hs has no neighbor in @ then Q U P U {ha,...,h;—1,x} contains
an even wheel with center z. So hg must have a neighbor in Q). But then h;, h;_1, h3 all have
neighbors in @ (note that hgh;_; is not an edge since i—1 is odd greater than 3) contradicting
the minimality of C'. So N(q1) N H is either {hg, hy} or {h,—_1,hy}.

W.lo.g. N(g1)NH = {hs,hs}. If N(q)NP # p, then since all of hy, h3, hy have neighbors
in (PUQ) \ p, the minimality of C is contradicted. So N(q;) N P = py.

If N(h1) NQ # @, then since all of hq, h3, hy have neighbors in @, the minimality of C is
contradicted. So N(h;) N Q = 2.

Now suppose that N(h,) N Q # @. If & > 1, then since all of hg,hs,h, have neigh-
bors in (P U Q) \ p1, the minimality of C' is contradicted. So k = 1. Let ¢, be the
neighbor of h, with highest index. If ho does not have neighbor in ¢,,qyt1,...,q;, then
{@rqr41s -y q, 01, 01, ho, hy, z} induces an even wheel with center hy. So N(hy) N Q # <.
But then since hs, h3, h, have neighbors in ), the minimality of C' is contradicted. Therefore,
N(h,)NQ = @. So, by Claim 2, no node of hs, ..., hy,, h1 has a neighbor in Q.

Suppose N(hy) N Q # &. Let g, be the neighbor of hy in @ with lowest index. Then
(H\ h3) U{z,q,...,q} induces an even wheel with center z. Therefore, N(ho)NQ = @. If
k> 1, then QU (H \ hg) U {pk, z} induces an even wheel with center z. So k = 1. Let g5 be
the node of @ with highest index adjacent to hs. Then {p1,qs,...,q,h1,h2, hs, 2} induces
an even wheel with center hs. This completes the proof of Claim 3.

Claim 4: N(q;) N P = p;y or p.

Proof of Claim 4: Assume not. Then k > 1, and both (PUQ) \ p1 and (P U Q) \ pi are
connected. N(h1)NQ = @, else all of hy, ha, h; have neighbors in (P U Q) \ p1, contradicting
the minimality of C. Similarly, N(hy) N Q = @.

We now show that hs has no neighbor in PUQ). Suppose it does. Then by Lemma 3.2, hj
has a neighbor in (PUQ) \ p1. If i # 4, then since all ho, hg, h; have neighbors in (PUQ) \ p1,
the minimality of C' is contradicted. So i = 4. If N(h3) N (P UQ) # pg, then all of hy, hs, hy
have neighbors in (P UQ) \ pk, contradicting the minimality of C. So N(h3) N (PUQ) = pg.
But then PUQ U {ha, hs, hy, z} contains an even wheel with center hs. Therefore, hg has no
neighbor in P U @, and similarly neither does h,,.

By minimality of C, N(¢;) N P is either a single vertex or two adjacent vertices of P. If
N(q)NP = {a,b}, where ab € E(G), then PUQU{z, hy, ha, h;} induces a 3PC(qab, xhihs).
If N(¢;) N P = {a}, then PUQ U {h1,ha,...,h;} induces a 3PC(a, hy). This completes the
proof of Claim 4.

By Claim 4, w.l.o.g. N(q;) NP = py.
Claim 5: h; does not have a neighbor in (P U Q) \ p1.
Proof of Claim 5: If k > 1, the claim follows from the minimality of C. Now suppose k =1
and N(h1) NQ # @. If hy has a neighbor in @, then all of hy, ha, h; have a neighbor in @,

contradicting the minimality of C. So hs does not have a neighbor in Q.
Suppose hy,, has a neighbor in ). Note that by Claim 3, such a neighbor is in @\ ¢;. Then



hs cannot have a neighbor in @, else all of h,,, hi, h3 have neighbors in @), contradicting the
minimality of C. But then (Q \ ¢1) U (H \ h1) U {z,p1} contains an even wheel with center
x. So h, does not have a neighbor in Q.

Suppose hz has a neighbor in . By Claim 3, such a neighbor is in @ \ ¢;. Then
(Q\ q1) U (H \ he) Ux contains an even wheel with center x. So h3 does not have a neighbor
in Q.

Let H' be the hole induced by {p1,hs,....,h;} U Q, and H” the hole induced by
{z,p1,he,h;} UQ. Then either (H' hy) or (H" hy) is an even wheel. This completes the
proof of Claim 5.

Claim 6: N(h,)N(PUQ) = 2.

Proof of Claim 6: Assume not. If hg has a neighbor in PUQ then, by Claim 3, all of hs, h3, hy,
have a neighbor in (PUQ) \ q1, contradicting the minimality of C. So N(h3)N(PUQ) = @.
Let R be a shortest path from hg to h, in the graph induced by PU(Q \ ¢1) U{hg, hy}. Then
by Claims 2 and 3, RU (H \ h1) Uz induces an even wheel with center z. This completes
the proof of Claim 6.

Claim 7: N(hs) N (PUQ) = 2.

Proof of Claim 7: Assume not. Let R be a shortest path from hy to hs in the graph induced
by (PUQ®)\ ¢1. Then RU (H \ hy) Uz induces an even wheel with center x. This completes
the proof of Claim 7.

If £ > 1 then the graph induced by H U Q U py contains a 3PC(ha, h;). So k = 1. By
symmetry and Claim 5, hy does not have a neighbor in @), and hence P U @ U H induces a
3PC(A,"). 0

Lemma 3.4 There exists a node of H that has no neighbor in C.

Proof: Let H = hq, ..., hy, h1 and suppose that every node of H has a neighbor in C7. Recall
that since (H, z) cannot be an even wheel, H is of odd length. So H contains a T all of whose
nodes have neighbors in C;. By Lemma 3.3, C contains a path P = pq,...,pg, kK > 1, such
that PU H induces w.l.o.g. a 3PC(hihapg, h;), 3 <i < n. If i is odd, then {z, hg,...,h; } UP
induces an even wheel with center x. So ¢ is even.

Let Q = ¢i,...,q; be a path in C; defined as follows: ¢; is adjacent to h; € H \ {h1, ho, h;}
where j is odd, ¢; is adjacent to a node of P and no proper subpath of () has this property.
We may assume that P and @ are chosen so that |P U Q)| is minimized.

By the choice of P and @, N(q;) N P is either one single vertex or two adjacent vertices
of P, and h; has no neighbor in @ \ ¢;. Note that since n is odd, the two subpaths of H,
ho,...,h;and h;, ..., h,, hy are both of even length, so we may assume w.l.o.g. that 2 < j < i.

Claim 1: At least one node of {ho,...,h;_1} (resp. {hji1,..., hy}) has a neighbor in Q.

Proof of Claim 1: First suppose that no node of H\{h1, h;} has a neighbor in (). Let p;s be the
node of P with highest index adjacent to ¢;. If j > 3, then {z, ho, ..., hj, s, ..., pr } UQ induces



an even wheel with center . So j = 3. If N(h1) N Q = & then {x, hy, ha, hs, ps, ..., Pk} U Q
induces an even wheel with center hy. So N(h1) N Q # @. Let g, be the node of @ with
lowest index adjacent to hy. Then (H \ ho)U{x,q,..., ¢} induces an even wheel with center
x. So at least one node of H \ {h1, h;} has a neighbor in Q.

Next suppose that no node of {hg,...,hj_1} has a neighbor in Q). Let p, be the node of
P with highest index adjacent to ¢;. If j > 3 then {z,ho,...,hj,ps,...,pr} U @ induces an
even wheel with center x. So j = 3. Let hjs be the node of {hj1,..., hy,} Wwith lowest index
adjacent to a node of ). By definition of @) and Lemma 3.2, j’ is even. Let g, be the node
of @ with lowest index adjacent to hj. If 7' > 4 then {z, hj,...,hjs,q1, ..., ¢, } induces an even
wheel with center z. So j' = 4. If N(h1)NQ = & then {x, hy, ho, hs, ps, ..., pr } UQ induces an
even wheel with center hy. So N(h1)NQ # @. In fact, by Lemma 3.2, N(h1)N(Q \ q¢1) # <.
Suppose N(hy) N Q # q1. Let R be a shortest path from hg to h; in the graph induced
by (Q\ ¢1) U {hi,hs}. Then {z,h1,...,hs} U R induces an even wheel with center x. So
N(h4)NQ = q1. Suppose N(q) NP # py or i > 4. Then {x, ho, hs, hy, ps, ..., pr } U Q induces
an even wheel with center hs. So N(q;) NP = p; and ¢ = 4. Let R be a shortest path from p;
to hy in the graph induced by Q U {p1,h1}. Then PU RU{hq, hy, 2z} induces a 3PC(p1, hq).
Therefore at least one node of {hs, ..., hj_1} has a neighbor in Q.

Finally suppose that no node of {hji1,...,h,} has a neighbor in Q. Let hj be a node
of ha,...,hj_1 such that N(h;) N Q # @ and the path from hj to h; in the graph induced
by PUQ U {h;, hj} is minimized. By definition of @ and Lemma 3.2, j' is even. Suppose
N(h1)NQ # @. Let R be a shortest path from h; to h; in the graph induced by QU {hq, h;}.
Then (H \ {h2,...,hj—1}) U RUz induces an even wheel with center z. So N(h1) N Q = @.
Suppose N(q;) N P # pi. Let R be a shortest path from h; to hj in the graph induced
by PU QU {h;,hj}. Note that by definition of @ and hj and by Lemma 3.2, no node of
{h2,...,hj_1} has a neighbor in R. Then (H \ {hj41,...,hi—1}) U RU x induces an even
wheel with center z. So N(g) NP = p. But then (H \ {ho,...,h;—1}) U P UQ induces a
3PC(pk, h;). This completes the proof of Claim 1.

By Claim 1 at least two nodes, say hj and hj», of H \ {hi,h;} have a neighbor in Q.
Note that by definition of @ and Lemma 3.2, j/ and j” are both even. W.lo.g. j' < j < j”.
Let R = 71,...,7 be a shortest path in the graph induced by @ where N(h;j) N R = r; and
N(hj»)NR =1 W.lLo.g and by Lemma 3.2 no other node from H \ {h;, h;} has a neighbor
in R.

If N(hi)N R = @, then (H \ {hji41,...,hjn_1}) URUz induces an even wheel with center
xz. So N(hi1) N R # @. Suppose j° # 2. Let R’ be a shortest path from h; to hj in the
graph induced by R U {hy,h;}. Then {z, hy, ..., h;} U R’ induces an even wheel with center
x. Therefore j' = 2.

Suppose that N(hy)NR = ry. Then by Lemma 3.2, N(r1)NH = {hy, ha}. If 1, = ¢1, then
by Lemma 3.2, N(r)NH = {hj, hj;1}, and hence HUR induces a 3PC(hihory, hji1hjre). So
T+ # q1, and hence N (r¢) N H = {h;»}. Therefore H U R induces a 3PC(hihar1, hjr). Let R’
be a shortest path from ¢; to a node of R in the graph induced by Q. Since |RUR'| < |PUQ),
the choice of P and @ is contradicted.

So N(h1)N(R\r1) # 0. Let r5 be the node of R with highest index adjacent to hy. If h; has
no neighbor in g, ..., 7, then {a, hy,..., hjn,7s, ..., 7} induces an even wheel with center x.
So hj does have a neighbor in 7y, ...,r, i.e. 7, = ¢1. By Lemma 3.2, N(ry) N H = {hj, hj»},



where j” = j+1. Note that ¢ > j+1 and rs # ¢;. But then (H\{hs,... , h;})UPU{rs,... 7}
induces a 3PC(hy, h;). O

Note that the above lemma does not work if we allow 4-holes. Consider the odd-signable
graph in Figure 2 (one can see that this graph is odd-signable by assigning 0 to the three
bold edges and 1 to all the other edges). Let H be the 5-hole induced by the neighborhood of
node x. Then every node of H has a neighbor in the unique connected component obtained
by removing N(z) U x.

Figure 2: An odd-signable graph for which Lemma 3.4 does not work.

Let F be a class of graphs. We say that a graph G is F-free if G does not contain (as an
induced subgraph) any of the graphs from F.

A class F of graphs satisfies property (*) w.r.t. a graph G if the following holds: for every
node z of G such that G \ N[z] # &, and for every connected component C of G \ N[z], if
F € F is contained in G[N(z)], then there exists a node of F' that has no neighbor in C.

The following theorem is proved in [13]. For completeness we include its proof here.

Theorem 3.5 (Maffray, Trotignon and Vuskovié¢ [13]) Let F be a class of graphs such that
for every F € F, no node of F is adjacent to all the other nodes of F. If F satisfies property
(*) w.r.t. a graph G, then G has a node whose neighborhood is F-free.

Proof: Let F be a class of graphs such that for every F' € F, no node of F is adjacent to
all the other nodes of F'. Assume that F satisfies property (*) w.r.t. G, and suppose that
for every x € V(G), G[N(x)] is not F-free. Then G is not a clique (since every graph of F
contains nonadjacent nodes) and hence it contains a node x that is not adjacent to all other
nodes of G. Let C1,...,C) be the connected components of G\ N[z], with |Cy| > ... > |Cy].
Choose z so that for every y € V(G) the following holds: if CY,...,C} are the connected
components of G\ N[y| with |C{| > ... > |C/], then

e |Cy| > |CY|, or

° |Cl| = |C%‘ and ‘02‘ > ‘Og‘, or



o ...
o |01| = |C%|7 ; |Ck’—1| = |ng_1| and |Ck’| > |O]Zg/|7 or
o fori=1,...,k, |Ci|=|C!|l and k = L.

Let N = N(z) and C =C1U...UCy. Fori=1,...,k, let N; be the set of nodes of N
that have a neighbor in C;.

Claim 1: Ny € Ny C ... C N and for every i = 1,...,k — 1, every node of (N \ N;) U
(Ciy1U...UCYy) is adjacent to every node of N;.

Proof of Claim 1: We argue by induction. First we show that every node of (N \ N1)U (CyU
...UCy) is adjacent to every node of Nj. Assume not and let y € (N \ N;)U (CoU...UCy)
be such that it is not adjacent to z € N;. Clearly y has no neighbor in C7, but z does. So
G\ N|y| contains a connected component that contains Cy U z, contradicting the choice of x.
Now let ¢ > 1 and assume that N; C ... C N;_; and every node of (N\N;_1)U(C;U...UC})
is adjacent to every node of N;_1. Since every node of C; is adjacent to every node of N;_1,
it follows that N;—1 C NNV;. Suppose that there exists a node y € (N \ N;) U (Ci41 U...UCy)
that is not adjacent to a node z € N;. Then z € N; \ N;_1 and z has a neighbor in C;. Also
y is adjacent to all nodes in N;_; and no node of C; U ... U C;. So there exist connected
components of G \ Ny], Cf,...,C} such that C; = CY,...,C;_y = C/ | and C; U z is
contained in C’f’ . This contradicts the choice of . This completes the proof of Claim 1.

Since G[N] is not F-free, it contains F' € F. By property (*), a node y of F' has no
neighbor in Cf. By Claim 1, y is adjacent to every node of N, and no node of N \ Ni
has a neighbor in C. So (since every node of F' has a non-neighbor in F') F' must contain
another node z € N \ Ng, nonadjacent to y. But then C,...,Cy are connected components
of G\ N[y] and z is contained in (G \ N[y]) \ C, so y contradicts the choice of z. O

Proof of Theorem 1.1: Let G be a 4-hole-free odd-signable graph. Let F be the set of all
holes. By Lemma 3.4, F satisfies property (*) w.r.t. G. So by Theorem 3.5, G has a node
whose neighborhood is F-free, i.e. triangulated. O

4 Final remarks

In a graph G, for any node z, let Cy,...,Cy be the connected components of G\ N[z], with
|C1] > ... > |Ck|, and let the numerical vector (|C4],...,|Ck|) be associated with z. The
nodes of GG can thus be ordered according to the lexicographic ordering of the numerical
vectors associated with them. Say that a node x is lex-mazximal if the associated numerical
vector is lexicographically maximal over all nodes of G. Theorem 3.5 actually shows that for
a lex-maximal node x, N(x) is F-free. This implies the following.

Theorem 4.1 Let G be a 4-hole-free odd-signable graph, and let x be a lex-mazximal node of
G. Then the neighborhood of x is triangulated.
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Possibly a more efficient algorithm for listing all maximal cliques can be constructed by
searching for a lex-maximal node.

Lemma 3.4 also proves the following decomposition theorem. (H,x) is a universal wheel
if x is adjacent to all the nodes of H. A node set S is a star cutset of a connected graph G
if for some x € S, S C Nz| and G \ S is disconnected.

Theorem 4.2 Let G be a 4-hole-free odd-signable graph. If G contains a universal wheel,
then G has a star cutset.

Proof: Let (H,x) be a universal wheel of G. If G = N|[z], then for any two nonadjacent nodes
a and b of H, N[z]\ {a,b} is a star cutset of G. So assume G \ N|z] contains a connected
component C;. By Lemma 3.4, a node a € H has no neighbor in C;. But then N[z]\ a is a
star cutset of GG that separates a from Cj. a

In [7] universal wheels in 4-hole-free odd-signable graphs are decomposed with triple star
cutsets, i.e. node cutsets S such that for some triangle {1, z2,23} €S, S C N(x1)UN(x2)U
N (xg)
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