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Triangulated Neighborhoods in Even-hole-free Graphs

Murilo V. G. da Silva ∗ and Kristina Vušković †

July 2005; revised July 2006

Abstract

An even-hole-free graph is a graph that does not contain, as an induced subgraph,
a chordless cycle of even length. A graph is triangulated if it does not contain any
chordless cycle of length greater than three, as an induced subgraph. We prove that
every even-hole-free graph has a node whose neighborhood is triangulated. This implies
that in an even-hole-free graph, with n nodes and m edges, there are at most n + 2m
maximal cliques. It also yields an O(n2m) algorithm that generates all maximal cliques
of an even-hole-free graph. In fact these results are obtained for a larger class of graphs
that contains even-hole-free graphs.

Keywords: even-hole-free graphs, triangulated graphs, structural characterization,
generating all maximal cliques.

1 Introduction

We say that a graph G contains a graph H, if H is isomorphic to an induced subgraph of G.
A graph G is H-free if it does not contain H. A hole is a chordless cycle of length at least
four. A hole is even (resp. odd) if it contains even (resp. odd) number of nodes. An n-hole
is a hole of length n. A graph is said to be triangulated if it does not contain any hole.

We sign a graph by assigning 0, 1 weights to its edges in such a way that, for every triangle
in the graph, the sum of the weights of its edges is odd. A graph G is odd-signable if there
is a signing of its edges so that, for every hole in G, the sum of the weights of its edges is
odd. Clearly every even-hole-free graph is odd-signable, since we can get a correct signing by
assigning a weight of 1 to every edge of the graph.

The graphs that are odd-signable and do not contain a 4-hole are studied in [7], where
a decomposition theorem is proved for them. This decomposition theorem is used in [8] to
obtain a polynomial time recognition algorithm for even-hole-free graphs.

For x ∈ V (G), N(x) denotes the set of nodes of G that are adjacent to x, and N [x] =
N(x)∪ {x}. For V ′ ⊆ V (G), G[V ′] denotes the subgraph of G induced by V ′. For x ∈ V (G),
the graph G[N(x)] is called the neighborhood of x.

The main result of this paper is the following structural characterization of odd-signable
graphs that do not contain a 4-hole.
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Theorem 1.1 Every 4-hole-free odd-signable graph has a node whose neighborhood is trian-
gulated.

Exactly the same characterization of 4-hole-free Berge graphs (i.e. graphs that do not
contain a 4-hole nor an odd hole) is obtained by Parfenoff, Roussel and Rusu in [15]. Note
that 4-hole-free graphs in general need not have this property, see Figure 1.

Figure 1: A 4-hole-free graph that has no vertex whose neighborhood is triangulated.

A graph is Berge if it does not contain an odd hole nor the complement of an odd hole.
A square-3PC(·, ·) is a graph that consists of three paths between two nodes such that any
two of the paths induce a hole, and at least two of the paths are of length 2. A graph G
is even-signable if there is a signing of its edges so that for every hole in G, the sum of the
weights of its edges is even. In [13] Maffray, Trotignon and Vušković show that every square-
3PC(·, ·)-free even-signable graph has a node whose neighborhood does not contain a long
hole (where a long hole is a hole of length greater than 4). This result is used in [13] to obtain
a combinatorial algorithm of complexity O(n7) for finding a clique of maximum weight in
square-3PC(·, ·)-free Berge graphs. Note that this class of graphs generalizes both 4-hole-free
Berge graphs and claw-free Berge graphs (where a claw is a graph on nodes x, a, b, c with
three edges xa, xb, xc). We show in this paper that key ideas from [13] extend to 4-hole-free
odd-signable graphs.

Using Theorem 1.1 one can obtain an efficient algorithm for generating all the maximal
cliques in 4-hole-free odd-signable graphs (and in particular even-hole-free graphs). This we
describe in Section 2. Theorem 1.1 is proved in Section 3.

Recently Addario-Berry, Chudnovsky, Havet, Reed and Seymour [1] have proved a
stronger property of even-hole-free graphs, namely that every even-hole-free graph has a
bisimplicial vertex (i.e. a vertex whose neighborhood partitions into two cliques). This char-
acterization immediately yields that for an even-hole-free graph G, χ(G) ≤ 2ω(G)− 1, where
χ(G) is the chromatic number of G and ω(G) is the size of the largest clique in G (observe
that if v is a bisimplicial vertex of G, then its degree is at most 2ω(G) − 2, and hence G
can be colored with at most 2ω(G) − 1 colors). The two characterizations of even-hole-free
graphs were discovered independently and at about the same time. The proof of the char-
acterization in [1] is over 40 pages long. Our weaker characterization is enough to obtain an
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efficient algorithm for generating all maximal cliques of even-hole-free graphs, and its proof
is very short.

2 Generating all the maximal cliques of a 4-hole-free odd-

signable graph

For a graph G let k denote the number of maximal cliques in G, n the number of nodes in
G and m the number of edges of G. Farber [10] shows that there are O(n2) maximal cliques
in any 4-hole-free graph. Tsukiyama, Ide, Ariyoshi and Shirakawa [19] give an O(nmk)
algorithm for generating all maximal cliques of a graph, and Chiba and Nishizeki [2] im-
prove this complexity to O(m1.5k). The complexity is further improved for dense graphs
by the O(M(n)k) algorithm of Makino and Uno [14], where M(n) denotes the time needed
to multiply two n × n matrices. Note that Coppersmith and Winograd show that matrix
multiplication can be done in O(n2.376) time [9]. So one can generate all the maximal cliques
of a 4-hole-free graph in time O(m1.5n2) or O(n4.376).

We now show that Theorem 1.1 implies that there are at most n+2m maximal cliques in
a 4-hole-free odd-signable graph, and it yields an algorithm that generates all the maximal
cliques of a 4-hole-free odd-signable graph in time O(n2m). In particular, in a weighted
graph, a maximum weight clique can be found in time O(n2m).

Let C be any class of graphs closed under taking induced subgraphs, such that for every
G in C, G has a node whose neighborhood is triangulated. Consider the following algorithm
for generating all maximal cliques of graphs in C.

Find a node x1 of G whose neighborhood is triangulated (if no such node exists, G is
not in C, or in particular, G is not 4-hole-free odd-signable graph by Theorem 1.1). Let
G1 = G[N [x1]] and G1 = G \ {x1}. Every maximal clique of G belongs to G1 or G1.
Recursively construct triangulated graphs G1, . . . , Gn as follows. For i ≥ 2, find a node xi of
Gi−1 whose neighborhood is triangulated and let Gi = G[NGi−1 [xi]] and Gi = Gi−1 \ {xi} =
G \ {x1, . . . , xi}.

Clearly every maximal clique of G belongs to exactly one of the graphs G1, . . . , Gn. A
triangulated graph on n vertices has at most n maximal cliques [11]. So for i = 1, . . . , n,
graph Gi has at most 1 + d(xi) maximal cliques (where d(x) denotes the degree of vertex x).
It follows that the number of maximal cliques of G is at most

∑n
i=1(1 + d(xi)) = n + 2m.

Checking whether a graph is triangulated can be done in time O(n + m) (using lexico-
graphic breadth-first search [16]). So finding a vertex with triangulated neighborhood can be
done in time O(

∑
x∈V (G)(d(x) + m)) = O(nm). Hence constructing the graphs G1, . . . , Gn

takes time O(n2m).
Generating all maximal cliques in a triangulated graph can be done in time O(n + m)

(see, for example, [12]). Hence the overall complexity of generating all maximal cliques in a
4-hole-free odd-signable graph is dominated by the construction of the sequence G1, . . . , Gn,
i.e. it is O(n2m).

Note that this algorithm is robust in Spinrad’s sense [17]: given any graph G, the algorithm
either verifies that G is not in C (or in particular that G is not a 4-hole-free odd-signable
graph) or it generates all the maximal cliques of G. Note that, when G is not in C, the
algorithm might still generate all the maximal cliques of G.
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3 Proof of Theorem 1.1

For a graph G, let V (G) denote its node set. For simplicity of notation we will sometimes
write G instead of V (G), when it is clear from the context that we want to refer to the node
set of G. Also a singleton set {x} will sometimes be denoted with just x. For example,
instead of “u ∈ V (G) \ {x}”, we will write “u ∈ G \ x”.

Let x, y be two distinct nodes of G. A 3PC(x, y) is a graph induced by three chordless
x, y-paths, such that any two of them induce a hole. We say that a graph G contains a
3PC(·, ·) if it contains a 3PC(x, y) for some x, y ∈ V (G). 3PC(·, ·)’s are also known as thetas
(for example in [5]).

Let x1, x2, x3, y1, y2, y3 be six distinct nodes of G such that {x1, x2, x3} and {y1, y2, y3}
induce triangles. A 3PC(x1x2x3, y1y2y3) is a graph induced by three chordless paths P1 =
x1, . . . , y1, P2 = x2, . . . , y2 and P3 = x3, . . . , y3, such that any two of them induce a hole.
We say that a graph G contains a 3PC(∆,∆) if it contains a 3PC(x1x2x3, y1y2y3) for some
x1, x2, x3, y1, y2, y3 ∈ V (G). 3PC(∆,∆)’s are also known as prisms (for example in [4]).

A wheel, denoted by (H,x), is a graph induced by a hole H and a node x 6∈ V (H) having
at least three neighbors in H, say x1, . . . , xn. Node x is the center of the wheel. We say that
the wheel (H,x) is even when n is even.

It is easy to see that even wheels, 3PC(·, ·)’s and 3PC(∆,∆)’s cannot be contained in
even-hole-free graphs. In fact they cannot be contained in odd-signable graphs. The following
characterization of odd-signable graphs, given in [6], states that the converse is also true. It
is in fact an easy consequence of a theorem of Truemper [18].

Theorem 3.1 A graph is odd-signable if and only if it does not contain an even wheel, a
3PC(·, ·) nor a 3PC(∆,∆).

The fact that odd-signable graphs do not contain even wheels, 3PC(·, ·)’s and
3PC(∆,∆)’s will be used throughout the rest of the paper.

In the next three lemmas we assume that G is a 4-hole-free odd-signable graph, x a node
of G that is not adjacent to every other node of G, C1 a connected component of G \ N [x],
and H a hole of N(x). Note that H is an odd hole, else (H,x) is an even wheel.

Lemma 3.2 If node u of C1 has a neighbor in H then u is one of the following two types:

• Type 1: u has exactly one neighbor in H.

• Type 2: u has exactly two neighbors in H, and they are adjacent.

Proof: If u has two nonadjecent neighbors a and b in H, then {a, b, u, x} induces a 4-hole. 2

Let T 3 be a graph on 3 nodes that has exactly one edge.
Let x1, x2, x3, y be four distinct nodes of G such that x1, x2, x3 induce a triangle. A

3PC(x1x2x3, y) is a graph induced by three chordless paths P1 = x1, . . . , y, P2 = x2, . . . , y
and P3 = x3, . . . , y, such that any two of them induce a hole. We say that a graph G contains
a 3PC(∆, ·) if it contains a 3PC(x1x2x3, y) for some x1, x2, x3, y ∈ V (G). 3PC(∆, ·)’s are
also known as pyramids (for example in [3]).
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Lemma 3.3 If H contains a T 3 all of whose nodes have neighbors in C1, then C1 contains
a path P , of length greater than 0, such that P ∪H induces a 3PC(∆, ·), and the nodes of H
that have a neighbor in P induce a T 3.

Proof: Let C be a smallest subset of C1 such that G[C] is connected and H = h1, . . . , hn, h1

contains a T 3 all of whose nodes have neighbors in C. W.l.o.g. h1, h2 and hi, 3 < i < n,
have neighbors in C. Let P = p1, ..., pk be a shortest path of C such that p1 is adjacent to
h1 and pk is adjacent to h2. Note that no intermediate node of P is adjacent to h1 or h2.
Also possibly k = 1.

Claim 1: No node of {h4, ..., hn−1} has a neighbor in P .

Proof of Claim 1: Suppose not. Then by minimality of C, hi has a neighbor in P and w.l.o.g.
no node of {hi+1, ..., hn−1} has a neighbor in P . By Lemma 3.2, p1, pk /∈ N(hi) ∩ P . In
particular k > 1.

First suppose N(hn)∩P 6= ∅. By Lemma 3.2, hnpk is not an edge. If N(hn)∩P = p1 then
{x, hn, h2, h1}∪P induces an even wheel with center h1. So hn has a neighbor in P \{p1, pk}.
If hihn is not an edge, then since all of h1, hn, hi have neighbors in P \ pk, the minimality of
C is contradicted. So hihn is an edge of G. But then all of hi, hn, h2 have neighbors in P \p1

and the minimality of C is contradicted. So N(hn) ∩ P = ∅.
Let pr be the node of P with highest index adjacent to hi. Let H ′ be the hole induced

by {hi, ..., hn, h1, h2, pk, ..., pr}. Since (H ′, x) cannot be an even wheel, it follows that
hi, ..., hn, h1, h2 is an even subpath of H. Let ps be the node of P with lowest index adjacent
to hi. Then {x, hi, ..., hn, h1, p1, ..., ps} induces an even wheel with center x. This completes
the proof of Claim 1.

By Claim 1, hi is not adjacent to a node of P . But hi has a neighbor in C, and since C
is connected, let Q = q1, ..., ql be a chordless path in C such that q1 is adjacent to hi and ql

has a neighbor in P .

Claim 2: No node of {h4, . . . , hn−1} has a neighbor in (P ∪ Q) \ q1.

Proof of Claim 2: Suppose that some hj ∈ {h4, . . . , hn−1} has a neighbor in (P ∪ Q) \ q1.
Then all of h1, h2, hj have neighbors in (P ∪Q) \ q1, contradicting the minimality of C. This
completes the proof of Claim 2.

Claim 3: q1 is of type 1 w.r.t. H.

Proof of Claim 3: By Lemma 3.2 q1 is of type 1 or type 2. Suppose q1 is of type 2. We now
prove that N(q1) ∩ H is either {h3, h4} or {hn−1, hn}. Assume not. Then q1 is adjacent to
neither h3 nor hn. W.l.o.g. N(q1) ∩ H = {hi, hi−1} and i 6= 4. If N(ql) ∩ P 6= p1, then (P ∪
Q) \ p1 is connected and all of hi, hi−1, h2 have neighbors in it, contradicting the minimality
of C. So N(ql) ∩ P = p1. If k > 1, then all of hi, hi−1, h1 have neighbors in (P ∪ Q) \ pk,
contradicting the minimality of C. So k = 1, and hence by Lemma 3.2, N(p1)∩H = {h1, h2}.
Since H is odd, the two subpaths of H, h2, . . . , hi−1 and hi, . . . , hn, h1 have different parities.
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W.l.o.g. h2, . . . , hi−1 is odd, i.e. i is even. By Claim 2, no node of {h4, . . . , hn−1} has a
neighbor in (P ∪ Q) \ q1. If h3 has no neighbor in Q then Q ∪ P ∪ {h2, ..., hi−1, x} contains
an even wheel with center x. So h3 must have a neighbor in Q. But then hi, hi−1, h3 all have
neighbors in Q (note that h3hi−1 is not an edge since i−1 is odd greater than 3) contradicting
the minimality of C. So N(q1) ∩ H is either {h3, h4} or {hn−1, hn}.

W.l.o.g. N(q1)∩H = {h3, h4}. If N(ql)∩P 6= pk, then since all of h1, h3, h4 have neighbors
in (P ∪ Q) \ pk, the minimality of C is contradicted. So N(ql) ∩ P = pk.

If N(h1) ∩Q 6= ∅, then since all of h1, h3, h4 have neighbors in Q, the minimality of C is
contradicted. So N(h1) ∩ Q = ∅.

Now suppose that N(hn) ∩ Q 6= ∅. If k > 1, then since all of h2, h3, hn have neigh-
bors in (P ∪ Q) \ p1, the minimality of C is contradicted. So k = 1. Let qr be the
neighbor of hn with highest index. If h2 does not have neighbor in qr, qr+1, ..., ql, then
{qr, qr+1, ..., ql, p1, h1, h2, hn, x} induces an even wheel with center h1. So N(h2) ∩ Q 6= ∅.
But then since h2, h3, hn have neighbors in Q, the minimality of C is contradicted. Therefore,
N(hn) ∩ Q = ∅. So, by Claim 2, no node of h5, ..., hn, h1 has a neighbor in Q.

Suppose N(h2) ∩ Q 6= ∅. Let qr be the neighbor of h2 in Q with lowest index. Then
(H \ h3) ∪ {x, q1, . . . , qr} induces an even wheel with center x. Therefore, N(h2)∩Q = ∅. If
k > 1, then Q ∪ (H \ h3) ∪ {pk, x} induces an even wheel with center x. So k = 1. Let qs be
the node of Q with highest index adjacent to h3. Then {p1, qs, . . . , ql, h1, h2, h3, x} induces
an even wheel with center h2. This completes the proof of Claim 3.

Claim 4: N(ql) ∩ P = p1 or pk.

Proof of Claim 4: Assume not. Then k > 1, and both (P ∪ Q) \ p1 and (P ∪ Q) \ pk are
connected. N(h1)∩Q = ∅, else all of h1, h2, hi have neighbors in (P ∪Q) \ p1, contradicting
the minimality of C. Similarly, N(h2) ∩ Q = ∅.

We now show that h3 has no neighbor in P ∪Q. Suppose it does. Then by Lemma 3.2, h3

has a neighbor in (P ∪Q)\p1. If i 6= 4, then since all h2, h3, hi have neighbors in (P ∪Q)\p1,
the minimality of C is contradicted. So i = 4. If N(h3) ∩ (P ∪ Q) 6= pk, then all of h1, h3, h4

have neighbors in (P ∪Q) \ pk, contradicting the minimality of C. So N(h3)∩ (P ∪Q) = pk.
But then P ∪Q∪ {h2, h3, h4, x} contains an even wheel with center h3. Therefore, h3 has no
neighbor in P ∪ Q, and similarly neither does hn.

By minimality of C, N(ql) ∩ P is either a single vertex or two adjacent vertices of P . If
N(ql)∩P = {a, b}, where ab ∈ E(G), then P ∪Q∪{x, h1, h2, hi} induces a 3PC(qlab, xh1h2).
If N(ql) ∩ P = {a}, then P ∪ Q ∪ {h1, h2, . . . , hi} induces a 3PC(a, h2). This completes the
proof of Claim 4.

By Claim 4, w.l.o.g. N(ql) ∩ P = pk.

Claim 5: h1 does not have a neighbor in (P ∪ Q) \ p1.

Proof of Claim 5: If k > 1, the claim follows from the minimality of C. Now suppose k = 1
and N(h1) ∩ Q 6= ∅. If h2 has a neighbor in Q, then all of h1, h2, hi have a neighbor in Q,
contradicting the minimality of C. So h2 does not have a neighbor in Q.

Suppose hn has a neighbor in Q. Note that by Claim 3, such a neighbor is in Q\q1. Then
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h3 cannot have a neighbor in Q, else all of hn, h1, h3 have neighbors in Q, contradicting the
minimality of C. But then (Q \ q1) ∪ (H \ h1) ∪ {x, p1} contains an even wheel with center
x. So hn does not have a neighbor in Q.

Suppose h3 has a neighbor in Q. By Claim 3, such a neighbor is in Q \ q1. Then
(Q \ q1)∪ (H \ h2)∪ x contains an even wheel with center x. So h3 does not have a neighbor
in Q.

Let H ′ be the hole induced by {p1, h2, ..., hi} ∪ Q, and H ′′ the hole induced by
{x, p1, h2, hi} ∪ Q. Then either (H ′, h1) or (H ′′, h1) is an even wheel. This completes the
proof of Claim 5.

Claim 6: N(hn) ∩ (P ∪ Q) = ∅.

Proof of Claim 6: Assume not. If h3 has a neighbor in P ∪Q then, by Claim 3, all of h2, h3, hn

have a neighbor in (P ∪Q) \ q1, contradicting the minimality of C. So N(h3)∩ (P ∪Q) = ∅.
Let R be a shortest path from h2 to hn in the graph induced by P ∪ (Q\ q1)∪{h2, hn}. Then
by Claims 2 and 3, R ∪ (H \ h1) ∪ x induces an even wheel with center x. This completes
the proof of Claim 6.

Claim 7: N(h3) ∩ (P ∪ Q) = ∅.

Proof of Claim 7: Assume not. Let R be a shortest path from h1 to h3 in the graph induced
by (P ∪Q) \ q1. Then R∪ (H \ h2) ∪ x induces an even wheel with center x. This completes
the proof of Claim 7.

If k > 1 then the graph induced by H ∪ Q ∪ pk contains a 3PC(h2, hi). So k = 1. By
symmetry and Claim 5, h2 does not have a neighbor in Q, and hence P ∪ Q ∪ H induces a
3PC(∆, ·). 2

Lemma 3.4 There exists a node of H that has no neighbor in C1.

Proof: Let H = h1, ..., hn, h1 and suppose that every node of H has a neighbor in C1. Recall
that since (H,x) cannot be an even wheel, H is of odd length. So H contains a T 3 all of whose
nodes have neighbors in C1. By Lemma 3.3, C1 contains a path P = p1, ..., pk, k > 1, such
that P ∪H induces w.l.o.g. a 3PC(h1h2pk, hi), 3 < i < n. If i is odd, then {x, h2, ..., hi} ∪P
induces an even wheel with center x. So i is even.

Let Q = q1, ..., ql be a path in C1 defined as follows: q1 is adjacent to hj ∈ H \{h1, h2, hi}
where j is odd, ql is adjacent to a node of P and no proper subpath of Q has this property.
We may assume that P and Q are chosen so that |P ∪ Q| is minimized.

By the choice of P and Q, N(ql) ∩ P is either one single vertex or two adjacent vertices
of P , and hj has no neighbor in Q \ q1. Note that since n is odd, the two subpaths of H,
h2, . . . , hi and hi, . . . , hn, h1 are both of even length, so we may assume w.l.o.g. that 2 < j < i.

Claim 1: At least one node of {h2, ..., hj−1} (resp. {hj+1, ..., hn}) has a neighbor in Q.

Proof of Claim 1: First suppose that no node of H\{h1, hj} has a neighbor in Q. Let ps be the
node of P with highest index adjacent to ql. If j > 3, then {x, h2, ..., hj , ps, ..., pk}∪Q induces
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an even wheel with center x. So j = 3. If N(h1) ∩ Q = ∅ then {x, h1, h2, h3, ps, ..., pk} ∪ Q
induces an even wheel with center h2. So N(h1) ∩ Q 6= ∅. Let qr be the node of Q with
lowest index adjacent to h1. Then (H \h2)∪{x, q1, . . . , qr} induces an even wheel with center
x. So at least one node of H \ {h1, hj} has a neighbor in Q.

Next suppose that no node of {h2, ..., hj−1} has a neighbor in Q. Let ps be the node of
P with highest index adjacent to ql. If j > 3 then {x, h2, ..., hj , ps, ..., pk} ∪ Q induces an
even wheel with center x. So j = 3. Let hj′ be the node of {hj+1, ..., hn} with lowest index
adjacent to a node of Q. By definition of Q and Lemma 3.2, j′ is even. Let qr be the node
of Q with lowest index adjacent to hj′ . If j′ > 4 then {x, hj , ..., hj′ , q1, ..., qr} induces an even
wheel with center x. So j′ = 4. If N(h1)∩Q = ∅ then {x, h1, h2, h3, ps, ..., pk}∪Q induces an
even wheel with center h2. So N(h1)∩Q 6= ∅. In fact, by Lemma 3.2, N(h1)∩ (Q \ q1) 6= ∅.
Suppose N(h4) ∩ Q 6= q1. Let R be a shortest path from h4 to h1 in the graph induced
by (Q \ q1) ∪ {h1, h4}. Then {x, h1, ..., h4} ∪ R induces an even wheel with center x. So
N(h4)∩Q = q1. Suppose N(ql)∩P 6= p1 or i > 4. Then {x, h2, h3, h4, ps, ..., pk} ∪Q induces
an even wheel with center h3. So N(ql)∩P = p1 and i = 4. Let R be a shortest path from p1

to h1 in the graph induced by Q∪ {p1, h1}. Then P ∪R ∪ {h1, h4, x} induces a 3PC(p1, h1).
Therefore at least one node of {h2, ..., hj−1} has a neighbor in Q.

Finally suppose that no node of {hj+1, ..., hn} has a neighbor in Q. Let hj′ be a node
of h2, ..., hj−1 such that N(hj′) ∩ Q 6= ∅ and the path from hj′ to hi in the graph induced
by P ∪ Q ∪ {hi, hj′} is minimized. By definition of Q and Lemma 3.2, j′ is even. Suppose
N(h1)∩Q 6= ∅. Let R be a shortest path from hj to h1 in the graph induced by Q∪{h1, hj}.
Then (H \ {h2, ..., hj−1}) ∪ R ∪ x induces an even wheel with center x. So N(h1) ∩ Q = ∅.
Suppose N(ql) ∩ P 6= pk. Let R be a shortest path from hi to hj′ in the graph induced
by P ∪ Q ∪ {hi, hj′}. Note that by definition of Q and hj′ and by Lemma 3.2, no node of
{h2, . . . , hj′−1} has a neighbor in R. Then (H \ {hj′+1, ..., hi−1}) ∪ R ∪ x induces an even
wheel with center x. So N(ql) ∩ P = pk. But then (H \ {h2, ..., hj−1}) ∪ P ∪ Q induces a
3PC(pk, hi). This completes the proof of Claim 1.

By Claim 1 at least two nodes, say hj′ and hj′′ , of H \ {h1, hj} have a neighbor in Q.
Note that by definition of Q and Lemma 3.2, j′ and j′′ are both even. W.l.o.g. j′ < j < j′′.
Let R = r1, ..., rt be a shortest path in the graph induced by Q where N(hj′) ∩ R = r1 and
N(hj′′)∩R = rt. W.l.o.g and by Lemma 3.2 no other node from H \ {h1, hj} has a neighbor
in R.

If N(h1)∩R = ∅, then (H \ {hj′+1, ..., hj′′−1})∪R∪x induces an even wheel with center
x. So N(h1) ∩ R 6= ∅. Suppose j′ 6= 2. Let R′ be a shortest path from h1 to hj′ in the
graph induced by R ∪ {h1, hj′}. Then {x, h1, ..., h

′
j} ∪ R′ induces an even wheel with center

x. Therefore j′ = 2.
Suppose that N(h1)∩R = r1. Then by Lemma 3.2, N(r1)∩H = {h1, h2}. If rt = q1, then

by Lemma 3.2, N(rt)∩H = {hj , hj+1}, and hence H∪R induces a 3PC(h1h2r1, hj+1hjrt). So
rt 6= q1, and hence N(rt)∩H = {hj′′}. Therefore H ∪R induces a 3PC(h1h2r1, hj′′). Let R′

be a shortest path from q1 to a node of R in the graph induced by Q. Since |R∪R′| < |P ∪Q|,
the choice of P and Q is contradicted.

So N(h1)∩(R\r1) 6= ∅. Let rs be the node of R with highest index adjacent to h1. If hj has
no neighbor in rs, . . . , rt, then {x, h1, . . . , hj′′ , rs, . . . , rt} induces an even wheel with center x.
So hj does have a neighbor in rs, . . . , rt, i.e. rt = q1. By Lemma 3.2, N(rt) ∩ H = {hj , hj′′},
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where j′′ = j+1. Note that i ≥ j+1 and rs 6= ql. But then (H \{h2, . . . , hj})∪P ∪{rs, . . . , rt}
induces a 3PC(h1, hi). 2

Note that the above lemma does not work if we allow 4-holes. Consider the odd-signable
graph in Figure 2 (one can see that this graph is odd-signable by assigning 0 to the three
bold edges and 1 to all the other edges). Let H be the 5-hole induced by the neighborhood of
node x. Then every node of H has a neighbor in the unique connected component obtained
by removing N(x) ∪ x.

x

Figure 2: An odd-signable graph for which Lemma 3.4 does not work.

Let F be a class of graphs. We say that a graph G is F-free if G does not contain (as an
induced subgraph) any of the graphs from F .

A class F of graphs satisfies property (*) w.r.t. a graph G if the following holds: for every
node x of G such that G \ N [x] 6= ∅, and for every connected component C of G \ N [x], if
F ∈ F is contained in G[N(x)], then there exists a node of F that has no neighbor in C.

The following theorem is proved in [13]. For completeness we include its proof here.

Theorem 3.5 (Maffray, Trotignon and Vušković [13]) Let F be a class of graphs such that
for every F ∈ F , no node of F is adjacent to all the other nodes of F . If F satisfies property
(*) w.r.t. a graph G, then G has a node whose neighborhood is F-free.

Proof: Let F be a class of graphs such that for every F ∈ F , no node of F is adjacent to
all the other nodes of F . Assume that F satisfies property (*) w.r.t. G, and suppose that
for every x ∈ V (G), G[N(x)] is not F-free. Then G is not a clique (since every graph of F
contains nonadjacent nodes) and hence it contains a node x that is not adjacent to all other
nodes of G. Let C1, . . . , Ck be the connected components of G \N [x], with |C1| ≥ . . . ≥ |Ck|.
Choose x so that for every y ∈ V (G) the following holds: if Cy

1 , . . . , Cy
l are the connected

components of G \ N [y] with |Cy
1 | ≥ . . . ≥ |Cy

l |, then

• |C1| > |Cy
1 |, or

• |C1| = |Cy
1 | and |C2| > |Cy

2 |, or
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• . . .

• |C1| = |Cy
1 |, . . . , |Ck−1| = |Cy

k−1| and |Ck| > |Cy
k |, or

• for i = 1, . . . , k, |Ci| = |Cy
i | and k = l.

Let N = N(x) and C = C1 ∪ . . . ∪ Ck. For i = 1, . . . , k, let Ni be the set of nodes of N
that have a neighbor in Ci.

Claim 1: N1 ⊆ N2 ⊆ . . . ⊆ Nk and for every i = 1, . . . , k − 1, every node of (N \ Ni) ∪
(Ci+1 ∪ . . . ∪ Ck) is adjacent to every node of Ni.

Proof of Claim 1: We argue by induction. First we show that every node of (N \N1)∪ (C2 ∪
. . . ∪Ck) is adjacent to every node of N1. Assume not and let y ∈ (N \N1)∪ (C2 ∪ . . . ∪Ck)
be such that it is not adjacent to z ∈ N1. Clearly y has no neighbor in C1, but z does. So
G \N [y] contains a connected component that contains C1 ∪ z, contradicting the choice of x.

Now let i > 1 and assume that N1 ⊆ . . . ⊆ Ni−1 and every node of (N\Ni−1)∪(Ci∪. . .∪Ck)
is adjacent to every node of Ni−1. Since every node of Ci is adjacent to every node of Ni−1,
it follows that Ni−1 ⊆ Ni. Suppose that there exists a node y ∈ (N \ Ni) ∪ (Ci+1 ∪ . . . ∪ Ck)
that is not adjacent to a node z ∈ Ni. Then z ∈ Ni \ Ni−1 and z has a neighbor in Ci. Also
y is adjacent to all nodes in Ni−1 and no node of C1 ∪ . . . ∪ Ci. So there exist connected
components of G \ N [y], Cy

1 , . . . , Cy
l such that C1 = Cy

1 , . . . , Ci−1 = Cy
i−1 and Ci ∪ z is

contained in Cy
i . This contradicts the choice of x. This completes the proof of Claim 1.

Since G[N ] is not F-free, it contains F ∈ F . By property (*), a node y of F has no
neighbor in Ck. By Claim 1, y is adjacent to every node of Nk, and no node of N \ Nk

has a neighbor in C. So (since every node of F has a non-neighbor in F ) F must contain
another node z ∈ N \ Nk, nonadjacent to y. But then C1, . . . , Ck are connected components
of G \ N [y] and z is contained in (G \ N [y]) \ C, so y contradicts the choice of x. 2

Proof of Theorem 1.1: Let G be a 4-hole-free odd-signable graph. Let F be the set of all
holes. By Lemma 3.4, F satisfies property (*) w.r.t. G. So by Theorem 3.5, G has a node
whose neighborhood is F-free, i.e. triangulated. 2

4 Final remarks

In a graph G, for any node x, let C1, . . . , Ck be the connected components of G \N [x], with
|C1| ≥ . . . ≥ |Ck|, and let the numerical vector (|C1|, . . . , |Ck|) be associated with x. The
nodes of G can thus be ordered according to the lexicographic ordering of the numerical
vectors associated with them. Say that a node x is lex-maximal if the associated numerical
vector is lexicographically maximal over all nodes of G. Theorem 3.5 actually shows that for
a lex-maximal node x, N(x) is F-free. This implies the following.

Theorem 4.1 Let G be a 4-hole-free odd-signable graph, and let x be a lex-maximal node of
G. Then the neighborhood of x is triangulated.
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Possibly a more efficient algorithm for listing all maximal cliques can be constructed by
searching for a lex-maximal node.

Lemma 3.4 also proves the following decomposition theorem. (H,x) is a universal wheel
if x is adjacent to all the nodes of H. A node set S is a star cutset of a connected graph G
if for some x ∈ S, S ⊆ N [x] and G \ S is disconnected.

Theorem 4.2 Let G be a 4-hole-free odd-signable graph. If G contains a universal wheel,
then G has a star cutset.

Proof: Let (H,x) be a universal wheel of G. If G = N [x], then for any two nonadjacent nodes
a and b of H, N [x] \ {a, b} is a star cutset of G. So assume G \ N [x] contains a connected
component C1. By Lemma 3.4, a node a ∈ H has no neighbor in C1. But then N [x] \ a is a
star cutset of G that separates a from C1. 2

In [7] universal wheels in 4-hole-free odd-signable graphs are decomposed with triple star
cutsets, i.e. node cutsets S such that for some triangle {x1, x2, x3} ⊆ S, S ⊆ N(x1)∪N(x2)∪
N(x3).
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[13] F. Maffray, N. Trotignon and K. Vušković, Algorithms for square-3PC(·, ·)-free Berge
graphs, preprint (2005), submitted.

[14] K. Makino and T. Uno, New algorithm for enumerating all maximal cliques, Algorithm
Theory - SWAT 2004, edited by T. Hagerup and J. Katajainen, LNCS 3111 (2004)
260-272.

[15] I. Parfenoff, F. Roussel and I. Rusu, Triangulated neighborhoods in C4-free Berge graphs,
Proceedings of WG’99, LNCS 1665 (1999) 402-412.

[16] D.J. Rose, R.E. Tarjan and G.S. Leuker, Algorithmic aspects of vertex elimination on
graphs, SIAM J. Comput. 5 (1976) 266-283.

[17] J. Spinrad, Efficient Graph Representations, Field Institute Monographs 19, American
Mathematical Society, Providence (2003).

[18] K. Truemper, Alpha-balanced graphs and matrices and GF(3)-representability of ma-
troids, Journal of Combinatorial Theory B 32 (1982) 112-139.

[19] S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa, A new algorithm for generating all
the maximal independent sets, SIAM J. Comput. 6 (1977) 505-517.

12


