

This is a repository copy of Triangulated neighborhoods in even-hole-free graphs.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/74353/

#### Article:

da Silva, MV and Vuskovic, K (2007) Triangulated neighborhoods in even-hole-free graphs. Discrete Mathematics, 307 (9-10). 1065 - 1073 . ISSN 0012-365X

https://doi.org/10.1016/j.disc.2006.07.027

**Reuse** See Attached

#### Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.



eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

# Triangulated Neighborhoods in Even-hole-free Graphs

Murilo V. G. da Silva \* and Kristina Vušković <sup>†</sup>

July 2005; revised July 2006

#### Abstract

An even-hole-free graph is a graph that does not contain, as an induced subgraph, a chordless cycle of even length. A graph is triangulated if it does not contain any chordless cycle of length greater than three, as an induced subgraph. We prove that every even-hole-free graph has a node whose neighborhood is triangulated. This implies that in an even-hole-free graph, with n nodes and m edges, there are at most n + 2mmaximal cliques. It also yields an  $O(n^2m)$  algorithm that generates all maximal cliques of an even-hole-free graph. In fact these results are obtained for a larger class of graphs that contains even-hole-free graphs.

*Keywords:* even-hole-free graphs, triangulated graphs, structural characterization, generating all maximal cliques.

### 1 Introduction

We say that a graph G contains a graph H, if H is isomorphic to an induced subgraph of G. A graph G is H-free if it does not contain H. A hole is a chordless cycle of length at least four. A hole is even (resp. odd) if it contains even (resp. odd) number of nodes. An *n*-hole is a hole of length n. A graph is said to be triangulated if it does not contain any hole.

We sign a graph by assigning 0, 1 weights to its edges in such a way that, for every triangle in the graph, the sum of the weights of its edges is odd. A graph G is odd-signable if there is a signing of its edges so that, for every hole in G, the sum of the weights of its edges is odd. Clearly every even-hole-free graph is odd-signable, since we can get a correct signing by assigning a weight of 1 to every edge of the graph.

The graphs that are odd-signable and do not contain a 4-hole are studied in [7], where a decomposition theorem is proved for them. This decomposition theorem is used in [8] to obtain a polynomial time recognition algorithm for even-hole-free graphs.

For  $x \in V(G)$ , N(x) denotes the set of nodes of G that are adjacent to x, and  $N[x] = N(x) \cup \{x\}$ . For  $V' \subseteq V(G)$ , G[V'] denotes the subgraph of G induced by V'. For  $x \in V(G)$ , the graph G[N(x)] is called the *neighborhood* of x.

The main result of this paper is the following structural characterization of odd-signable graphs that do not contain a 4-hole.

<sup>\*</sup>School of Computing, University of Leeds, Leeds LS2 9JT, UK. murilo@comp.leeds.ac.uk.

<sup>&</sup>lt;sup>†</sup>School of Computing, University of Leeds, Leeds LS2 9JT, UK. vuskovi@comp.leeds.ac.uk. This work was supported in part by EPSRC grant EP/C518225/1.

**Theorem 1.1** Every 4-hole-free odd-signable graph has a node whose neighborhood is triangulated.

Exactly the same characterization of 4-hole-free Berge graphs (i.e. graphs that do not contain a 4-hole nor an odd hole) is obtained by Parfenoff, Roussel and Rusu in [15]. Note that 4-hole-free graphs in general need not have this property, see Figure 1.



Figure 1: A 4-hole-free graph that has no vertex whose neighborhood is triangulated.

A graph is *Berge* if it does not contain an odd hole nor the complement of an odd hole. A square-3PC( $\cdot, \cdot$ ) is a graph that consists of three paths between two nodes such that any two of the paths induce a hole, and at least two of the paths are of length 2. A graph G is even-signable if there is a signing of its edges so that for every hole in G, the sum of the weights of its edges is even. In [13] Maffray, Trotignon and Vušković show that every square- $3PC(\cdot, \cdot)$ -free even-signable graph has a node whose neighborhood does not contain a long hole (where a long hole is a hole of length greater than 4). This result is used in [13] to obtain a combinatorial algorithm of complexity  $\mathcal{O}(n^7)$  for finding a clique of maximum weight in square- $3PC(\cdot, \cdot)$ -free Berge graphs. Note that this class of graphs generalizes both 4-hole-free Berge graphs and claw-free Berge graphs (where a claw is a graph on nodes x, a, b, c with three edges xa, xb, xc). We show in this paper that key ideas from [13] extend to 4-hole-free odd-signable graphs.

Using Theorem 1.1 one can obtain an efficient algorithm for generating all the maximal cliques in 4-hole-free odd-signable graphs (and in particular even-hole-free graphs). This we describe in Section 2. Theorem 1.1 is proved in Section 3.

Recently Addario-Berry, Chudnovsky, Havet, Reed and Seymour [1] have proved a stronger property of even-hole-free graphs, namely that every even-hole-free graph has a bisimplicial vertex (i.e. a vertex whose neighborhood partitions into two cliques). This characterization immediately yields that for an even-hole-free graph G,  $\chi(G) \leq 2\omega(G) - 1$ , where  $\chi(G)$  is the chromatic number of G and  $\omega(G)$  is the size of the largest clique in G (observe that if v is a bisimplicial vertex of G, then its degree is at most  $2\omega(G) - 2$ , and hence Gcan be colored with at most  $2\omega(G) - 1$  colors). The two characterizations of even-hole-free graphs were discovered independently and at about the same time. The proof of the characterization in [1] is over 40 pages long. Our weaker characterization is enough to obtain an efficient algorithm for generating all maximal cliques of even-hole-free graphs, and its proof is very short.

## 2 Generating all the maximal cliques of a 4-hole-free oddsignable graph

For a graph G let k denote the number of maximal cliques in G, n the number of nodes in G and m the number of edges of G. Farber [10] shows that there are  $\mathcal{O}(n^2)$  maximal cliques in any 4-hole-free graph. Tsukiyama, Ide, Ariyoshi and Shirakawa [19] give an  $\mathcal{O}(nmk)$  algorithm for generating all maximal cliques of a graph, and Chiba and Nishizeki [2] improve this complexity to  $\mathcal{O}(m^{1.5}k)$ . The complexity is further improved for dense graphs by the  $\mathcal{O}(M(n)k)$  algorithm of Makino and Uno [14], where M(n) denotes the time needed to multiply two  $n \times n$  matrices. Note that Coppersmith and Winograd show that matrix multiplication can be done in  $\mathcal{O}(m^{1.5}n^2)$  or  $\mathcal{O}(n^{4.376})$ .

We now show that Theorem 1.1 implies that there are at most n + 2m maximal cliques in a 4-hole-free odd-signable graph, and it yields an algorithm that generates all the maximal cliques of a 4-hole-free odd-signable graph in time  $\mathcal{O}(n^2m)$ . In particular, in a weighted graph, a maximum weight clique can be found in time  $\mathcal{O}(n^2m)$ .

Let  $\mathcal{C}$  be any class of graphs closed under taking induced subgraphs, such that for every G in  $\mathcal{C}$ , G has a node whose neighborhood is triangulated. Consider the following algorithm for generating all maximal cliques of graphs in  $\mathcal{C}$ .

Find a node  $x_1$  of G whose neighborhood is triangulated (if no such node exists, G is not in  $\mathcal{C}$ , or in particular, G is not 4-hole-free odd-signable graph by Theorem 1.1). Let  $G_1 = G[N[x_1]]$  and  $G^1 = G \setminus \{x_1\}$ . Every maximal clique of G belongs to  $G_1$  or  $G^1$ . Recursively construct triangulated graphs  $G_1, \ldots, G_n$  as follows. For  $i \geq 2$ , find a node  $x_i$  of  $G^{i-1}$  whose neighborhood is triangulated and let  $G_i = G[N_{G^{i-1}}[x_i]]$  and  $G^i = G^{i-1} \setminus \{x_i\} =$  $G \setminus \{x_1, \ldots, x_i\}$ .

Clearly every maximal clique of G belongs to exactly one of the graphs  $G_1, \ldots, G_n$ . A triangulated graph on n vertices has at most n maximal cliques [11]. So for  $i = 1, \ldots, n$ , graph  $G_i$  has at most  $1 + d(x_i)$  maximal cliques (where d(x) denotes the degree of vertex x). It follows that the number of maximal cliques of G is at most  $\sum_{i=1}^{n} (1 + d(x_i)) = n + 2m$ .

Checking whether a graph is triangulated can be done in time  $\mathcal{O}(n+m)$  (using lexicographic breadth-first search [16]). So finding a vertex with triangulated neighborhood can be done in time  $\mathcal{O}(\sum_{x \in V(G)} (d(x) + m)) = \mathcal{O}(nm)$ . Hence constructing the graphs  $G_1, \ldots, G_n$ takes time  $\mathcal{O}(n^2m)$ .

Generating all maximal cliques in a triangulated graph can be done in time  $\mathcal{O}(n+m)$  (see, for example, [12]). Hence the overall complexity of generating all maximal cliques in a 4-hole-free odd-signable graph is dominated by the construction of the sequence  $G_1, \ldots, G_n$ , i.e. it is  $\mathcal{O}(n^2m)$ .

Note that this algorithm is *robust* in Spinrad's sense [17]: given any graph G, the algorithm either verifies that G is not in  $\mathcal{C}$  (or in particular that G is not a 4-hole-free odd-signable graph) or it generates all the maximal cliques of G. Note that, when G is not in  $\mathcal{C}$ , the algorithm might still generate all the maximal cliques of G.

#### 3 Proof of Theorem 1.1

For a graph G, let V(G) denote its node set. For simplicity of notation we will sometimes write G instead of V(G), when it is clear from the context that we want to refer to the node set of G. Also a singleton set  $\{x\}$  will sometimes be denoted with just x. For example, instead of " $u \in V(G) \setminus \{x\}$ ", we will write " $u \in G \setminus x$ ".

Let x, y be two distinct nodes of G. A 3PC(x, y) is a graph induced by three chordless x, y-paths, such that any two of them induce a hole. We say that a graph G contains a  $3PC(\cdot, \cdot)$  if it contains a 3PC(x, y) for some  $x, y \in V(G)$ .  $3PC(\cdot, \cdot)$ 's are also known as *thetas* (for example in [5]).

Let  $x_1, x_2, x_3, y_1, y_2, y_3$  be six distinct nodes of G such that  $\{x_1, x_2, x_3\}$  and  $\{y_1, y_2, y_3\}$ induce triangles. A  $3PC(x_1x_2x_3, y_1y_2y_3)$  is a graph induced by three chordless paths  $P_1 = x_1, \ldots, y_1, P_2 = x_2, \ldots, y_2$  and  $P_3 = x_3, \ldots, y_3$ , such that any two of them induce a hole. We say that a graph G contains a  $3PC(\Delta, \Delta)$  if it contains a  $3PC(x_1x_2x_3, y_1y_2y_3)$  for some  $x_1, x_2, x_3, y_1, y_2, y_3 \in V(G)$ .  $3PC(\Delta, \Delta)$ 's are also known as prisms (for example in [4]).

A wheel, denoted by (H, x), is a graph induced by a hole H and a node  $x \notin V(H)$  having at least three neighbors in H, say  $x_1, \ldots, x_n$ . Node x is the *center* of the wheel. We say that the wheel (H, x) is *even* when n is even.

It is easy to see that even wheels,  $3PC(\cdot, \cdot)$ 's and  $3PC(\Delta, \Delta)$ 's cannot be contained in even-hole-free graphs. In fact they cannot be contained in odd-signable graphs. The following characterization of odd-signable graphs, given in [6], states that the converse is also true. It is in fact an easy consequence of a theorem of Truemper [18].

**Theorem 3.1** A graph is odd-signable if and only if it does not contain an even wheel, a  $3PC(\cdot, \cdot)$  nor a  $3PC(\Delta, \Delta)$ .

The fact that odd-signable graphs do not contain even wheels,  $3PC(\cdot, \cdot)$ 's and  $3PC(\Delta, \Delta)$ 's will be used throughout the rest of the paper.

In the next three lemmas we assume that G is a 4-hole-free odd-signable graph, x a node of G that is not adjacent to every other node of G,  $C_1$  a connected component of  $G \setminus N[x]$ , and H a hole of N(x). Note that H is an odd hole, else (H, x) is an even wheel.

**Lemma 3.2** If node u of  $C_1$  has a neighbor in H then u is one of the following two types:

- Type 1: u has exactly one neighbor in H.
- Type 2: u has exactly two neighbors in H, and they are adjacent.

*Proof:* If u has two nonadjecent neighbors a and b in H, then  $\{a, b, u, x\}$  induces a 4-hole.  $\Box$ 

Let  $T^3$  be a graph on 3 nodes that has exactly one edge.

Let  $x_1, x_2, x_3, y$  be four distinct nodes of G such that  $x_1, x_2, x_3$  induce a triangle. A  $3PC(x_1x_2x_3, y)$  is a graph induced by three chordless paths  $P_1 = x_1, \ldots, y, P_2 = x_2, \ldots, y$  and  $P_3 = x_3, \ldots, y$ , such that any two of them induce a hole. We say that a graph G contains a  $3PC(\Delta, \cdot)$  if it contains a  $3PC(x_1x_2x_3, y)$  for some  $x_1, x_2, x_3, y \in V(G)$ .  $3PC(\Delta, \cdot)$ 's are also known as *pyramids* (for example in [3]).

**Lemma 3.3** If H contains a  $T^3$  all of whose nodes have neighbors in  $C_1$ , then  $C_1$  contains a path P, of length greater than 0, such that  $P \cup H$  induces a  $3PC(\Delta, \cdot)$ , and the nodes of Hthat have a neighbor in P induce a  $T^3$ .

*Proof:* Let C be a smallest subset of  $C_1$  such that G[C] is connected and  $H = h_1, \ldots, h_n, h_1$  contains a  $T^3$  all of whose nodes have neighbors in C. W.l.o.g.  $h_1, h_2$  and  $h_i, 3 < i < n$ , have neighbors in C. Let  $P = p_1, \ldots, p_k$  be a shortest path of C such that  $p_1$  is adjacent to  $h_1$  and  $p_k$  is adjacent to  $h_2$ . Note that no intermediate node of P is adjacent to  $h_1$  or  $h_2$ . Also possibly k = 1.

**Claim 1**: No node of  $\{h_4, ..., h_{n-1}\}$  has a neighbor in *P*.

Proof of Claim 1: Suppose not. Then by minimality of C,  $h_i$  has a neighbor in P and w.l.o.g. no node of  $\{h_{i+1}, ..., h_{n-1}\}$  has a neighbor in P. By Lemma 3.2,  $p_1, p_k \notin N(h_i) \cap P$ . In particular k > 1.

First suppose  $N(h_n) \cap P \neq \emptyset$ . By Lemma 3.2,  $h_n p_k$  is not an edge. If  $N(h_n) \cap P = p_1$  then  $\{x, h_n, h_2, h_1\} \cup P$  induces an even wheel with center  $h_1$ . So  $h_n$  has a neighbor in  $P \setminus \{p_1, p_k\}$ . If  $h_i h_n$  is not an edge, then since all of  $h_1, h_n, h_i$  have neighbors in  $P \setminus p_k$ , the minimality of C is contradicted. So  $h_i h_n$  is an edge of G. But then all of  $h_i, h_n, h_2$  have neighbors in  $P \setminus p_1$  and the minimality of C is contradicted. So  $N(h_n) \cap P = \emptyset$ .

Let  $p_r$  be the node of P with highest index adjacent to  $h_i$ . Let H' be the hole induced by  $\{h_i, ..., h_n, h_1, h_2, p_k, ..., p_r\}$ . Since (H', x) cannot be an even wheel, it follows that  $h_i, ..., h_n, h_1, h_2$  is an even subpath of H. Let  $p_s$  be the node of P with lowest index adjacent to  $h_i$ . Then  $\{x, h_i, ..., h_n, h_1, p_1, ..., p_s\}$  induces an even wheel with center x. This completes the proof of Claim 1.

By Claim 1,  $h_i$  is not adjacent to a node of P. But  $h_i$  has a neighbor in C, and since C is connected, let  $Q = q_1, ..., q_l$  be a chord less path in C such that  $q_1$  is adjacent to  $h_i$  and  $q_l$  has a neighbor in P.

**Claim 2**: No node of  $\{h_4, \ldots, h_{n-1}\}$  has a neighbor in  $(P \cup Q) \setminus q_1$ .

Proof of Claim 2: Suppose that some  $h_j \in \{h_4, \ldots, h_{n-1}\}$  has a neighbor in  $(P \cup Q) \setminus q_1$ . Then all of  $h_1, h_2, h_j$  have neighbors in  $(P \cup Q) \setminus q_1$ , contradicting the minimality of C. This completes the proof of Claim 2.

Claim 3:  $q_1$  is of type 1 w.r.t. H.

Proof of Claim 3: By Lemma 3.2  $q_1$  is of type 1 or type 2. Suppose  $q_1$  is of type 2. We now prove that  $N(q_1) \cap H$  is either  $\{h_3, h_4\}$  or  $\{h_{n-1}, h_n\}$ . Assume not. Then  $q_1$  is adjacent to neither  $h_3$  nor  $h_n$ . W.l.o.g.  $N(q_1) \cap H = \{h_i, h_{i-1}\}$  and  $i \neq 4$ . If  $N(q_l) \cap P \neq p_1$ , then  $(P \cup Q) \setminus p_1$  is connected and all of  $h_i, h_{i-1}, h_2$  have neighbors in it, contradicting the minimality of C. So  $N(q_l) \cap P = p_1$ . If k > 1, then all of  $h_i, h_{i-1}, h_1$  have neighbors in  $(P \cup Q) \setminus p_k$ , contradicting the minimality of C. So k = 1, and hence by Lemma 3.2,  $N(p_1) \cap H = \{h_1, h_2\}$ . Since H is odd, the two subpaths of  $H, h_2, \ldots, h_{i-1}$  and  $h_i, \ldots, h_n, h_1$  have different parities. W.l.o.g.  $h_2, \ldots, h_{i-1}$  is odd, i.e. *i* is even. By Claim 2, no node of  $\{h_4, \ldots, h_{n-1}\}$  has a neighbor in  $(P \cup Q) \setminus q_1$ . If  $h_3$  has no neighbor in Q then  $Q \cup P \cup \{h_2, \ldots, h_{i-1}, x\}$  contains an even wheel with center *x*. So  $h_3$  must have a neighbor in *Q*. But then  $h_i, h_{i-1}, h_3$  all have neighbors in *Q* (note that  $h_3h_{i-1}$  is not an edge since i-1 is odd greater than 3) contradicting the minimality of *C*. So  $N(q_1) \cap H$  is either  $\{h_3, h_4\}$  or  $\{h_{n-1}, h_n\}$ .

W.l.o.g.  $N(q_1) \cap H = \{h_3, h_4\}$ . If  $N(q_l) \cap P \neq p_k$ , then since all of  $h_1, h_3, h_4$  have neighbors in  $(P \cup Q) \setminus p_k$ , the minimality of C is contradicted. So  $N(q_l) \cap P = p_k$ .

If  $N(h_1) \cap Q \neq \emptyset$ , then since all of  $h_1, h_3, h_4$  have neighbors in Q, the minimality of C is contradicted. So  $N(h_1) \cap Q = \emptyset$ .

Now suppose that  $N(h_n) \cap Q \neq \emptyset$ . If k > 1, then since all of  $h_2, h_3, h_n$  have neighbors in  $(P \cup Q) \setminus p_1$ , the minimality of C is contradicted. So k = 1. Let  $q_r$  be the neighbor of  $h_n$  with highest index. If  $h_2$  does not have neighbor in  $q_r, q_{r+1}, ..., q_l$ , then  $\{q_r, q_{r+1}, ..., q_l, p_1, h_1, h_2, h_n, x\}$  induces an even wheel with center  $h_1$ . So  $N(h_2) \cap Q \neq \emptyset$ . But then since  $h_2, h_3, h_n$  have neighbors in Q, the minimality of C is contradicted. Therefore,  $N(h_n) \cap Q = \emptyset$ . So, by Claim 2, no node of  $h_5, ..., h_n, h_1$  has a neighbor in Q.

Suppose  $N(h_2) \cap Q \neq \emptyset$ . Let  $q_r$  be the neighbor of  $h_2$  in Q with lowest index. Then  $(H \setminus h_3) \cup \{x, q_1, \ldots, q_r\}$  induces an even wheel with center x. Therefore,  $N(h_2) \cap Q = \emptyset$ . If k > 1, then  $Q \cup (H \setminus h_3) \cup \{p_k, x\}$  induces an even wheel with center x. So k = 1. Let  $q_s$  be the node of Q with highest index adjacent to  $h_3$ . Then  $\{p_1, q_s, \ldots, q_l, h_1, h_2, h_3, x\}$  induces an even wheel with center  $h_2$ . This completes the proof of Claim 3.

Claim 4:  $N(q_l) \cap P = p_1$  or  $p_k$ .

Proof of Claim 4: Assume not. Then k > 1, and both  $(P \cup Q) \setminus p_1$  and  $(P \cup Q) \setminus p_k$  are connected.  $N(h_1) \cap Q = \emptyset$ , else all of  $h_1, h_2, h_i$  have neighbors in  $(P \cup Q) \setminus p_1$ , contradicting the minimality of C. Similarly,  $N(h_2) \cap Q = \emptyset$ .

We now show that  $h_3$  has no neighbor in  $P \cup Q$ . Suppose it does. Then by Lemma 3.2,  $h_3$  has a neighbor in  $(P \cup Q) \setminus p_1$ . If  $i \neq 4$ , then since all  $h_2, h_3, h_i$  have neighbors in  $(P \cup Q) \setminus p_1$ , the minimality of C is contradicted. So i = 4. If  $N(h_3) \cap (P \cup Q) \neq p_k$ , then all of  $h_1, h_3, h_4$  have neighbors in  $(P \cup Q) \setminus p_k$ , contradicting the minimality of C. So  $N(h_3) \cap (P \cup Q) = p_k$ . But then  $P \cup Q \cup \{h_2, h_3, h_4, x\}$  contains an even wheel with center  $h_3$ . Therefore,  $h_3$  has no neighbor in  $P \cup Q$ , and similarly neither does  $h_n$ .

By minimality of C,  $N(q_l) \cap P$  is either a single vertex or two adjacent vertices of P. If  $N(q_l) \cap P = \{a, b\}$ , where  $ab \in E(G)$ , then  $P \cup Q \cup \{x, h_1, h_2, h_i\}$  induces a  $3PC(q_lab, xh_1h_2)$ . If  $N(q_l) \cap P = \{a\}$ , then  $P \cup Q \cup \{h_1, h_2, \dots, h_i\}$  induces a  $3PC(a, h_2)$ . This completes the proof of Claim 4.

By Claim 4, w.l.o.g.  $N(q_l) \cap P = p_k$ .

**Claim 5**:  $h_1$  does not have a neighbor in  $(P \cup Q) \setminus p_1$ .

Proof of Claim 5: If k > 1, the claim follows from the minimality of C. Now suppose k = 1 and  $N(h_1) \cap Q \neq \emptyset$ . If  $h_2$  has a neighbor in Q, then all of  $h_1, h_2, h_i$  have a neighbor in Q, contradicting the minimality of C. So  $h_2$  does not have a neighbor in Q.

Suppose  $h_n$  has a neighbor in Q. Note that by Claim 3, such a neighbor is in  $Q \setminus q_1$ . Then

 $h_3$  cannot have a neighbor in Q, else all of  $h_n, h_1, h_3$  have neighbors in Q, contradicting the minimality of C. But then  $(Q \setminus q_1) \cup (H \setminus h_1) \cup \{x, p_1\}$  contains an even wheel with center x. So  $h_n$  does not have a neighbor in Q.

Suppose  $h_3$  has a neighbor in Q. By Claim 3, such a neighbor is in  $Q \setminus q_1$ . Then  $(Q \setminus q_1) \cup (H \setminus h_2) \cup x$  contains an even wheel with center x. So  $h_3$  does not have a neighbor in Q.

Let H' be the hole induced by  $\{p_1, h_2, ..., h_i\} \cup Q$ , and H'' the hole induced by  $\{x, p_1, h_2, h_i\} \cup Q$ . Then either  $(H', h_1)$  or  $(H'', h_1)$  is an even wheel. This completes the proof of Claim 5.

Claim 6:  $N(h_n) \cap (P \cup Q) = \emptyset$ .

Proof of Claim 6: Assume not. If  $h_3$  has a neighbor in  $P \cup Q$  then, by Claim 3, all of  $h_2, h_3, h_n$  have a neighbor in  $(P \cup Q) \setminus q_1$ , contradicting the minimality of C. So  $N(h_3) \cap (P \cup Q) = \emptyset$ . Let R be a shortest path from  $h_2$  to  $h_n$  in the graph induced by  $P \cup (Q \setminus q_1) \cup \{h_2, h_n\}$ . Then by Claims 2 and 3,  $R \cup (H \setminus h_1) \cup x$  induces an even wheel with center x. This completes the proof of Claim 6.

Claim 7:  $N(h_3) \cap (P \cup Q) = \emptyset$ .

Proof of Claim 7: Assume not. Let R be a shortest path from  $h_1$  to  $h_3$  in the graph induced by  $(P \cup Q) \setminus q_1$ . Then  $R \cup (H \setminus h_2) \cup x$  induces an even wheel with center x. This completes the proof of Claim 7.

If k > 1 then the graph induced by  $H \cup Q \cup p_k$  contains a  $3PC(h_2, h_i)$ . So k = 1. By symmetry and Claim 5,  $h_2$  does not have a neighbor in Q, and hence  $P \cup Q \cup H$  induces a  $3PC(\Delta, \cdot)$ .

**Lemma 3.4** There exists a node of H that has no neighbor in  $C_1$ .

Proof: Let  $H = h_1, ..., h_n, h_1$  and suppose that every node of H has a neighbor in  $C_1$ . Recall that since (H, x) cannot be an even wheel, H is of odd length. So H contains a  $T^3$  all of whose nodes have neighbors in  $C_1$ . By Lemma 3.3,  $C_1$  contains a path  $P = p_1, ..., p_k, k > 1$ , such that  $P \cup H$  induces w.l.o.g. a  $3PC(h_1h_2p_k, h_i), 3 < i < n$ . If i is odd, then  $\{x, h_2, ..., h_i\} \cup P$  induces an even wheel with center x. So i is even.

Let  $Q = q_1, ..., q_l$  be a path in  $C_1$  defined as follows:  $q_1$  is adjacent to  $h_j \in H \setminus \{h_1, h_2, h_i\}$ where j is odd,  $q_l$  is adjacent to a node of P and no proper subpath of Q has this property. We may assume that P and Q are chosen so that  $|P \cup Q|$  is minimized.

By the choice of P and Q,  $N(q_l) \cap P$  is either one single vertex or two adjacent vertices of P, and  $h_j$  has no neighbor in  $Q \setminus q_1$ . Note that since n is odd, the two subpaths of H,  $h_2, \ldots, h_i$  and  $h_i, \ldots, h_n, h_1$  are both of even length, so we may assume w.l.o.g. that 2 < j < i.

**Claim 1**: At least one node of  $\{h_2, ..., h_{j-1}\}$  (resp.  $\{h_{j+1}, ..., h_n\}$ ) has a neighbor in Q.

Proof of Claim 1: First suppose that no node of  $H \setminus \{h_1, h_j\}$  has a neighbor in Q. Let  $p_s$  be the node of P with highest index adjacent to  $q_l$ . If j > 3, then  $\{x, h_2, ..., h_j, p_s, ..., p_k\} \cup Q$  induces

an even wheel with center x. So j = 3. If  $N(h_1) \cap Q = \emptyset$  then  $\{x, h_1, h_2, h_3, p_s, ..., p_k\} \cup Q$ induces an even wheel with center  $h_2$ . So  $N(h_1) \cap Q \neq \emptyset$ . Let  $q_r$  be the node of Q with lowest index adjacent to  $h_1$ . Then  $(H \setminus h_2) \cup \{x, q_1, ..., q_r\}$  induces an even wheel with center x. So at least one node of  $H \setminus \{h_1, h_j\}$  has a neighbor in Q.

Next suppose that no node of  $\{h_2, ..., h_{j-1}\}$  has a neighbor in Q. Let  $p_s$  be the node of P with highest index adjacent to  $q_l$ . If j > 3 then  $\{x, h_2, ..., h_j, p_s, ..., p_k\} \cup Q$  induces an even wheel with center x. So j = 3. Let  $h_{j'}$  be the node of  $\{h_{j+1}, ..., h_n\}$  with lowest index adjacent to a node of Q. By definition of Q and Lemma 3.2, j' is even. Let  $q_r$  be the node of Q with lowest index adjacent to  $h_{j'}$ . If j' > 4 then  $\{x, h_j, ..., h_{j'}, q_1, ..., q_r\}$  induces an even wheel with center x. So j' = 4. If  $N(h_1) \cap Q = \emptyset$  then  $\{x, h_1, h_2, h_3, p_s, ..., p_k\} \cup Q$  induces an even wheel with center  $h_2$ . So  $N(h_1) \cap Q \neq \emptyset$ . In fact, by Lemma 3.2,  $N(h_1) \cap (Q \setminus q_1) \neq \emptyset$ . Suppose  $N(h_4) \cap Q \neq q_1$ . Let R be a shortest path from  $h_4$  to  $h_1$  in the graph induced by  $(Q \setminus q_1) \cup \{h_1, h_4\}$ . Then  $\{x, h_1, ..., h_4\} \cup R$  induces an even wheel with center x. So  $N(q_l) \cap P \neq p_1$  or i > 4. Then  $\{x, h_2, h_3, h_4, p_s, ..., p_k\} \cup Q$  induces an even wheel with center  $h_3$ . So  $N(q_l) \cap P = p_1$  and i = 4. Let R be a shortest path from  $p_1$  to  $h_1$  in the graph induced by  $Q \cup \{p_1, h_1\}$ . Then  $P \cup R \cup \{h_1, h_4, x\}$  induces a  $3PC(p_1, h_1)$ . Therefore at least one node of  $\{h_2, ..., h_{j-1}\}$  has a neighbor in Q.

Finally suppose that no node of  $\{h_{j+1}, ..., h_n\}$  has a neighbor in Q. Let  $h_{j'}$  be a node of  $h_2, ..., h_{j-1}$  such that  $N(h_{j'}) \cap Q \neq \emptyset$  and the path from  $h_{j'}$  to  $h_i$  in the graph induced by  $P \cup Q \cup \{h_i, h_{j'}\}$  is minimized. By definition of Q and Lemma 3.2, j' is even. Suppose  $N(h_1) \cap Q \neq \emptyset$ . Let R be a shortest path from  $h_j$  to  $h_1$  in the graph induced by  $Q \cup \{h_1, h_j\}$ . Then  $(H \setminus \{h_2, ..., h_{j-1}\}) \cup R \cup x$  induces an even wheel with center x. So  $N(h_1) \cap Q = \emptyset$ . Suppose  $N(q_l) \cap P \neq p_k$ . Let R be a shortest path from  $h_i$  to  $h_{j'}$  in the graph induced by  $P \cup Q \cup \{h_i, h_{j'}\}$ . Note that by definition of Q and  $h_{j'}$  and by Lemma 3.2, no node of  $\{h_2, ..., h_{j'-1}\}$  has a neighbor in R. Then  $(H \setminus \{h_{j'+1}, ..., h_{i-1}\}) \cup R \cup x$  induces an even wheel with center x. So  $N(q_l) \cap P = p_k$ . But then  $(H \setminus \{h_2, ..., h_{j-1}\}) \cup P \cup Q$  induces a  $3PC(p_k, h_i)$ . This completes the proof of Claim 1.

By Claim 1 at least two nodes, say  $h_{j'}$  and  $h_{j''}$ , of  $H \setminus \{h_1, h_j\}$  have a neighbor in Q. Note that by definition of Q and Lemma 3.2, j' and j'' are both even. W.l.o.g. j' < j < j''. Let  $R = r_1, ..., r_t$  be a shortest path in the graph induced by Q where  $N(h_{j'}) \cap R = r_1$  and  $N(h_{j''}) \cap R = r_t$ . W.l.o.g and by Lemma 3.2 no other node from  $H \setminus \{h_1, h_j\}$  has a neighbor in R.

If  $N(h_1) \cap R = \emptyset$ , then  $(H \setminus \{h_{j'+1}, ..., h_{j''-1}\}) \cup R \cup x$  induces an even wheel with center x. So  $N(h_1) \cap R \neq \emptyset$ . Suppose  $j' \neq 2$ . Let R' be a shortest path from  $h_1$  to  $h_{j'}$  in the graph induced by  $R \cup \{h_1, h_{j'}\}$ . Then  $\{x, h_1, ..., h'_j\} \cup R'$  induces an even wheel with center x. Therefore j' = 2.

Suppose that  $N(h_1) \cap R = r_1$ . Then by Lemma 3.2,  $N(r_1) \cap H = \{h_1, h_2\}$ . If  $r_t = q_1$ , then by Lemma 3.2,  $N(r_t) \cap H = \{h_j, h_{j+1}\}$ , and hence  $H \cup R$  induces a  $3PC(h_1h_2r_1, h_{j+1}h_jr_t)$ . So  $r_t \neq q_1$ , and hence  $N(r_t) \cap H = \{h_{j''}\}$ . Therefore  $H \cup R$  induces a  $3PC(h_1h_2r_1, h_{j''})$ . Let R'be a shortest path from  $q_1$  to a node of R in the graph induced by Q. Since  $|R \cup R'| < |P \cup Q|$ , the choice of P and Q is contradicted.

So  $N(h_1) \cap (R \setminus r_1) \neq \emptyset$ . Let  $r_s$  be the node of R with highest index adjacent to  $h_1$ . If  $h_j$  has no neighbor in  $r_s, \ldots, r_t$ , then  $\{x, h_1, \ldots, h_{j''}, r_s, \ldots, r_t\}$  induces an even wheel with center x. So  $h_j$  does have a neighbor in  $r_s, \ldots, r_t$ , i.e.  $r_t = q_1$ . By Lemma 3.2,  $N(r_t) \cap H = \{h_j, h_{j''}\}$ , where j'' = j+1. Note that  $i \ge j+1$  and  $r_s \ne q_l$ . But then  $(H \setminus \{h_2, \ldots, h_j\}) \cup P \cup \{r_s, \ldots, r_t\}$  induces a  $3PC(h_1, h_i)$ .

Note that the above lemma does not work if we allow 4-holes. Consider the odd-signable graph in Figure 2 (one can see that this graph is odd-signable by assigning 0 to the three bold edges and 1 to all the other edges). Let H be the 5-hole induced by the neighborhood of node x. Then every node of H has a neighbor in the unique connected component obtained by removing  $N(x) \cup x$ .



Figure 2: An odd-signable graph for which Lemma 3.4 does not work.

Let  $\mathcal{F}$  be a class of graphs. We say that a graph G is  $\mathcal{F}$ -free if G does not contain (as an induced subgraph) any of the graphs from  $\mathcal{F}$ .

A class  $\mathcal{F}$  of graphs satisfies property (\*) w.r.t. a graph G if the following holds: for every node x of G such that  $G \setminus N[x] \neq \emptyset$ , and for every connected component C of  $G \setminus N[x]$ , if  $F \in \mathcal{F}$  is contained in G[N(x)], then there exists a node of F that has no neighbor in C.

The following theorem is proved in [13]. For completeness we include its proof here.

**Theorem 3.5** (Maffray, Trotignon and Vušković [13]) Let  $\mathcal{F}$  be a class of graphs such that for every  $F \in \mathcal{F}$ , no node of F is adjacent to all the other nodes of F. If  $\mathcal{F}$  satisfies property (\*) w.r.t. a graph G, then G has a node whose neighborhood is  $\mathcal{F}$ -free.

Proof: Let  $\mathcal{F}$  be a class of graphs such that for every  $F \in \mathcal{F}$ , no node of F is adjacent to all the other nodes of F. Assume that  $\mathcal{F}$  satisfies property (\*) w.r.t. G, and suppose that for every  $x \in V(G)$ , G[N(x)] is not  $\mathcal{F}$ -free. Then G is not a clique (since every graph of  $\mathcal{F}$ contains nonadjacent nodes) and hence it contains a node x that is not adjacent to all other nodes of G. Let  $C_1, \ldots, C_k$  be the connected components of  $G \setminus N[x]$ , with  $|C_1| \geq \ldots \geq |C_k|$ . Choose x so that for every  $y \in V(G)$  the following holds: if  $C_1^y, \ldots, C_l^y$  are the connected components of  $G \setminus N[y]$  with  $|C_1^y| \geq \ldots \geq |C_l^y|$ , then

- $|C_1| > |C_1^y|$ , or
- $|C_1| = |C_1^y|$  and  $|C_2| > |C_2^y|$ , or

- ...
- $|C_1| = |C_1^y|, \dots, |C_{k-1}| = |C_{k-1}^y|$  and  $|C_k| > |C_k^y|$ , or
- for i = 1, ..., k,  $|C_i| = |C_i^y|$  and k = l.

Let N = N(x) and  $C = C_1 \cup \ldots \cup C_k$ . For  $i = 1, \ldots, k$ , let  $N_i$  be the set of nodes of N that have a neighbor in  $C_i$ .

**Claim 1:**  $N_1 \subseteq N_2 \subseteq \ldots \subseteq N_k$  and for every  $i = 1, \ldots, k - 1$ , every node of  $(N \setminus N_i) \cup (C_{i+1} \cup \ldots \cup C_k)$  is adjacent to every node of  $N_i$ .

Proof of Claim 1: We argue by induction. First we show that every node of  $(N \setminus N_1) \cup (C_2 \cup \ldots \cup C_k)$  is adjacent to every node of  $N_1$ . Assume not and let  $y \in (N \setminus N_1) \cup (C_2 \cup \ldots \cup C_k)$  be such that it is not adjacent to  $z \in N_1$ . Clearly y has no neighbor in  $C_1$ , but z does. So  $G \setminus N[y]$  contains a connected component that contains  $C_1 \cup z$ , contradicting the choice of x.

Now let i > 1 and assume that  $N_1 \subseteq \ldots \subseteq N_{i-1}$  and every node of  $(N \setminus N_{i-1}) \cup (C_i \cup \ldots \cup C_k)$ is adjacent to every node of  $N_{i-1}$ . Since every node of  $C_i$  is adjacent to every node of  $N_{i-1}$ , it follows that  $N_{i-1} \subseteq N_i$ . Suppose that there exists a node  $y \in (N \setminus N_i) \cup (C_{i+1} \cup \ldots \cup C_k)$ that is not adjacent to a node  $z \in N_i$ . Then  $z \in N_i \setminus N_{i-1}$  and z has a neighbor in  $C_i$ . Also y is adjacent to all nodes in  $N_{i-1}$  and no node of  $C_1 \cup \ldots \cup C_i$ . So there exist connected components of  $G \setminus N[y], C_1^y, \ldots, C_l^y$  such that  $C_1 = C_1^y, \ldots, C_{i-1} = C_{i-1}^y$  and  $C_i \cup z$  is contained in  $C_i^y$ . This contradicts the choice of x. This completes the proof of Claim 1.

Since G[N] is not  $\mathcal{F}$ -free, it contains  $F \in \mathcal{F}$ . By property (\*), a node y of F has no neighbor in  $C_k$ . By Claim 1, y is adjacent to every node of  $N_k$ , and no node of  $N \setminus N_k$ has a neighbor in C. So (since every node of F has a non-neighbor in F) F must contain another node  $z \in N \setminus N_k$ , nonadjacent to y. But then  $C_1, \ldots, C_k$  are connected components of  $G \setminus N[y]$  and z is contained in  $(G \setminus N[y]) \setminus C$ , so y contradicts the choice of x.  $\Box$ 

*Proof of Theorem 1.1:* Let G be a 4-hole-free odd-signable graph. Let  $\mathcal{F}$  be the set of all holes. By Lemma 3.4,  $\mathcal{F}$  satisfies property (\*) w.r.t. G. So by Theorem 3.5, G has a node whose neighborhood is  $\mathcal{F}$ -free, i.e. triangulated.  $\Box$ 

#### 4 Final remarks

In a graph G, for any node x, let  $C_1, \ldots, C_k$  be the connected components of  $G \setminus N[x]$ , with  $|C_1| \geq \ldots \geq |C_k|$ , and let the numerical vector  $(|C_1|, \ldots, |C_k|)$  be associated with x. The nodes of G can thus be ordered according to the lexicographic ordering of the numerical vectors associated with them. Say that a node x is *lex-maximal* if the associated numerical vector is lexicographically maximal over all nodes of G. Theorem 3.5 actually shows that for a lex-maximal node x, N(x) is  $\mathcal{F}$ -free. This implies the following.

**Theorem 4.1** Let G be a 4-hole-free odd-signable graph, and let x be a lex-maximal node of G. Then the neighborhood of x is triangulated.

Possibly a more efficient algorithm for listing all maximal cliques can be constructed by searching for a lex-maximal node.

Lemma 3.4 also proves the following decomposition theorem. (H, x) is a *universal wheel* if x is adjacent to all the nodes of H. A node set S is a *star cutset* of a connected graph G if for some  $x \in S$ ,  $S \subseteq N[x]$  and  $G \setminus S$  is disconnected.

**Theorem 4.2** Let G be a 4-hole-free odd-signable graph. If G contains a universal wheel, then G has a star cutset.

*Proof:* Let (H, x) be a universal wheel of G. If G = N[x], then for any two nonadjacent nodes a and b of H,  $N[x] \setminus \{a, b\}$  is a star cutset of G. So assume  $G \setminus N[x]$  contains a connected component  $C_1$ . By Lemma 3.4, a node  $a \in H$  has no neighbor in  $C_1$ . But then  $N[x] \setminus a$  is a star cutset of G that separates a from  $C_1$ .  $\Box$ 

In [7] universal wheels in 4-hole-free odd-signable graphs are decomposed with triple star cutsets, i.e. node cutsets S such that for some triangle  $\{x_1, x_2, x_3\} \subseteq S$ ,  $S \subseteq N(x_1) \cup N(x_2) \cup N(x_3)$ .

## References

- [1] L. Addario-Berry, M. Chudnovsky, F. Havet, B. Reed and P. Seymour, *Bisimplicial vertices in even-hole-free graphs*, preprint (2006).
- [2] N. Chiba and T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput. 14 (1985) 210-223.
- [3] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vušković, *Recognizing Berge graphs*, Combinatorica 25 (2005) 143-187.
- [4] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, *The strong perfect graph theorem*, to appear in Annals of Mathematics.
- [5] M. Chudnovsky and P. Seymour, *Excluding induced subgraphs*, preprint (2006).
- [6] M. Conforti, G. Cornuéjols, A. Kapoor and K. Vušković, Even and odd holes in cap-free graphs, Journal of Graph Theory 30 (1999) 289-308.
- [7] M. Conforti, G. Cornuéjols, A. Kapoor and K. Vušković, Even-hole-free graphs, Part I: Decomposition theorem, Journal of Graph Theory 39 (2002) 6-49.
- [8] M. Conforti, G. Cornuéjols, A. Kapoor and K. Vušković, Even-hole-free graphs, Part II: Recognition algorithm, Journal of Graph Theory 40 (2002) 238-266.
- D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progression, Journal of Symbolic Computation 9 (1990) 251-280.
- [10] M. Farber, On diameters and radii of bridged graphs, Discrete Mathematics 73 (1989) 249-260.

- [11] D.R. Fulkerson and O.A. Gross, *Incidence matrices and interval graphs*, Pacific J. Math. 15 (1965) 835-855.
- [12] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Second Edition, Annals of Discrete Mathematics 57, Elsevier, 2004.
- [13] F. Maffray, N. Trotignon and K. Vušković, Algorithms for square- $3PC(\cdot, \cdot)$ -free Berge graphs, preprint (2005), submitted.
- [14] K. Makino and T. Uno, New algorithm for enumerating all maximal cliques, Algorithm Theory - SWAT 2004, edited by T. Hagerup and J. Katajainen, LNCS 3111 (2004) 260-272.
- [15] I. Parfenoff, F. Roussel and I. Rusu, Triangulated neighborhoods in  $C_4$ -free Berge graphs, Proceedings of WG'99, LNCS 1665 (1999) 402-412.
- [16] D.J. Rose, R.E. Tarjan and G.S. Leuker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput. 5 (1976) 266-283.
- [17] J. Spinrad, Efficient Graph Representations, Field Institute Monographs 19, American Mathematical Society, Providence (2003).
- [18] K. Truemper, Alpha-balanced graphs and matrices and GF(3)-representability of matroids, Journal of Combinatorial Theory B 32 (1982) 112-139.
- [19] S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa, A new algorithm for generating all the maximal independent sets, SIAM J. Comput. 6 (1977) 505-517.