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AbstratA 0;�1 matrix is balaned if, in every submatrix with two nonzeroentries per row and olumn, the sum of the entries is a multiple of four.This de�nition was introdued by Truemper and generalizes the notionof balaned 0; 1 matrix introdued by Berge. In this tutorial, we surveywhat is urrently known about these matries: polyhedral results,ombinatorial and strutural theorems, and reognition algorithms.
1 IntrodutionA 0;�1 matrix H is a hole matrix if H ontains two nonzero entries perrow and per olumn and no proper submatrix of H has this property. Ahole matrix H is square, say of order n, and its rows and olumns an bepermuted so that its nonzero entries are hi;i, 1 � i � n, hi;i+1, 1 � i � n� 1,hn;1 and no other. Note that n � 2 and the sum of the entries of H is even.A hole matrix is odd if the sum of its entries is ongruent to 2 mod 4 andeven if the sum of its entries is ongruent to 0 mod 4.A 0;�1 matrix A is balaned if no submatrix of A is an odd hole matrix.This notion is due to Truemper [69℄ and it extends the de�nition of balaned0; 1 matries introdued by Berge [2℄. The lass of balaned 0;�1 matriesinludes balaned 0; 1 matries and totally unimodular 0;�1 matries. (Amatrix is totally unimodular if every square submatrix has determinant equalto 0;�1. The fat that total unimodularity implies balanedness follows, forexample, from Camion's theorem [11℄ whih states that a 0;�1 matrix Ais totally unimodular if and only if A does not ontain a square submatrixwith an even number of nonzero entries per row and per olumn whose sumof the entries is ongruent to 2 mod 4.) In this tutorial, we survey what isurrently known about balaned matries: polyhedral results, ombinatorialand strutural theorems, and reognition algorithms. Previous surveys onthis topi appear in [22℄, [18℄.
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2 Integer PolytopesA polytope is integral if all its verties have only integer-valued omponents.The set paking polytope, de�ned by an n�m 0; 1 matrix A, isP (A) = fx 2 Rn : Ax � 1; 0 � x � 1g;where 1 denotes a olumn vetor of appropriate dimension whose entries areall equal to 1.The next theorem haraterizes a balaned 0; 1 matrix A in terms of theset paking polytope P (A) as well as the set overing polytope Q(A) and theset partitioning polytope R(A):Q(A) = fx : Ax � 1; 0 � x � 1g;R(A) = fx : Ax = 1; 0 � x � 1g:Theorem 2.1 (Berge [3℄, Fulkerson, Ho�man, Oppenheim [41℄) Let M be a0; 1 matrix. Then the following statements are equivalent:(i) M is balaned.(ii) For eah submatrix A of M , the set overing polytope Q(A) is integral.(iii) For eah submatrix A of M , the set paking polytope P (A) is integral.(iv) For eah submatrix A of M , the set partitioning polytope R(A) is inte-gral.Given a 0;�1 matrix A, let p(A), n(A) denote respetively the olumnvetors whose ith omponents pi(A), ni(A) are the number of +1s and thenumber of �1s in the ith row of matrix A. Theorem 2.1 extends to 0;�1matries as follows.Theorem 2.2 (Conforti, Cornu�ejols [17℄) Let M be a 0;�1 matrix. Thenthe following statements are equivalent:(i) M is balaned.(ii) For eah submatrix A of M , the generalized set overing polytopeQ(A) = fx : Ax � 1� n(A); 0 � x � 1g is integral.3



(iii) For eah submatrix A of M , the generalized set paking polytopeP (A) = fx : Ax � 1� n(A); 0 � x � 1g is integral.(iv) For eah submatrix A of M , the generalized set partitioning polytopeR(A) = fx : Ax = 1� n(A); 0 � x � 1g is integral.To prove this theorem, we need the following two results. The �rst one isan easy appliation of omputation of determinants by ofator expansion.Remark 2.3 Let H be a 0;�1 hole matrix. If H is an even hole matrix, His singular, and if H is an odd hole matrix, det(H) = �2.Lemma 2.4 If A is a balaned 0;�1 matrix, then the generalized set parti-tioning polytope R(A) is integral.Proof: Assume that A ontradits the theorem and has the smallest size(number of rows plus number of olumns). Then R(A) is nonempty. Let �xbe a frational vertex of R(A). By the minimality of A, 0 < �xj < 1 for allj. It follows that A is square and nonsingular. So �x is the unique vetor inR(A).Let a1; : : : ; an denote the row vetors of A and let Ai be the (n� 1)� nsubmatrix of A obtained by removing row ai. By the minimality of A, the setpartitioning polytope R(Ai) = fx 2 Rn : Aix = 1� n(Ai); 0 � x � 1g is anintegral polytope. Sine A is square and nonsingular, the polytope R(Ai) hasexatly two verties, say xS; xT . Sine �x is in R(Ai), then �x = �xS+(1��)xT .Sine 0 < �xj < 1 for all j and xS; xT have 0,1 omponents, it follows thatxS + xT = 1. Let k be any row of Ai. Sine both xS and xT satisfy akx =1 � n(ak), this implies that ak1 = 2(1 � n(ak)), i.e. row k ontains exatlytwo nonzero entries. Applying this argument to two di�erent matries Ai, itfollows that every row of A ontains exatly two nonzero entries.If A has a olumn j with only one nonzero entry akj, remove olumn j androw k. Sine A is nonsingular, the resulting matrix is also nonsingular andthe absolute value of the determinant is unhanged. Repeating this proess,we get a square nonsingular matrix B of order at least 2, with exatly twononzero entries in eah row and olumn (possibly B = A). Now B an beput in blok-diagonal form, where all the submatries in the diagonal arehole matries. Sine B is nonsingular, all these submatries are nonsingularand by Remark 2.3 they are odd hole matries. Hene A is not balaned. 24



Theorem 2.5 Let A be a balaned 0;�1 matrix with rows ai; i 2 S, and letS1; S2; S3 be a partition of S. ThenT (A) = fx 2 Rn : aix � 1� n(ai) for i 2 S1;aix = 1� n(ai) for i 2 S2;aix � 1� n(ai) for i 2 S3;0 � x � 1gis an integral polytope.Proof: If �x is a vertex of T (A), it is a vertex of the polytope obtainedfrom T (A) by deleting the inequalities that are not satis�ed with equality by�x. By Theorem 2.4, every vertex of this polytope has 0; 1 omponents. 2Theorem 2.5 does not hold when the upper bound x � 1 is removed. Tosee this, onsider the matrix
A = 0BBBBBBBBBBB�

1 1 1 1 �1 0 01 1 0 0 0 0 01 0 1 0 0 0 01 0 0 1 0 0 00 0 0 0 �1 1 10 0 0 0 0 1 00 0 0 0 0 0 1
1CCCCCCCCCCCA :

Then (12 ; 12 ; 12 ; 12 ; 2; 1; 1) is the unique solution of Ax = 1�n(A) and there-fore it is a frational vertex of the polyhedron T (A) with x � 1 removed, forany partition of the rows of A into S1, S2 and S3.Proof of Theorem 2.2: Sine balaned matries are losed under takingsubmatries, Theorem 2.5 shows that (i) implies (ii), (iii) and (iv).Assume that A ontains an odd hole submatrix H. By Remark 2.3, thevetor x = (12 ; : : : ; 12) is the unique solution of the system Hx = 1 � n(H).This proves all three reverse impliations. 22.1 Total Dual IntegralityA system of linear onstraints is totally dual integral (TDI) if, for eah integralobjetive funtion vetor , the dual linear program has an integral optimal5



solution (if an optimal solution exists). Edmonds and Giles [38℄ proved that,if a linear system Ax � b is TDI and b is integral, then fx : Ax � bg is anintegral polyhedron.Theorem 2.6 (Fulkerson, Ho�man, Oppenheim [41℄) Let A = 0B� A1A2A3 1CA be abalaned 0; 1 matrix. Then the following linear systemis TDI:A1x � 1 (1)A2x � 1A3x = 1x � 0:Theorem 2.6 and the Edmonds-Giles theorem imply Theorem 2.1. In thissetion, we prove the following more general result.Theorem 2.7 (Conforti, Cornu�ejols [17℄) Let A = 0B� A1A2A3 1CA be a balaned0;�1 matrix. Then the following linear system is TDI:A1x � 1� n(A1) (2)A2x � 1� n(A2)A3x = 1� n(A3)0 � x � 1:The following transformation of a 0;�1 matrix A into a 0; 1 matrix B isoften seen in the literature: to every olumn aj of A, j = 1; : : : ; p, assoiatetwo olumns of B, say bPj and bNj , where bPij = 1 if aij = 1, 0 otherwise, andbNij = 1 if aij = �1, 0 otherwise. Let D be the 0; 1 matrix with p rows and2p olumns dPj and dNj suh that dPjj = dNjj = 1 and dPij = dNij = 0 for i 6= j.
6



Given a 0;�1 matrix A = 0B� A1A2A3 1CA and the assoiated 0; 1 matrix B =0B� B1B2B3 1CA, de�ne the following two linear systems:A1x � 1� n(A1) (3)A2x � 1� n(A2)A3x = 1� n(A3)0 � x � 1;B1y � 1 (4)B2y � 1B3y = 1Dy = 1y � 0:A vetor x 2 Rp satis�es (3) if and only if the vetor (yP ; yN) = (x; 1�x)satis�es (4) and this transformation maps integer vetors into integer vetors.Hene the polytope de�ned by (3) is integral if and only if the polytopede�ned by (4) is integral. We show that, if A is a balaned 0;�1 matrix,then both (3) and (4) are TDI.Lemma 2.8 If A = 0B� A1A2A3 1CA is a balaned 0;�1 matrix, the orrespondingsystem (4) is TDI.Proof: The proof is by indution on the number m of rows of B. Let = (P ; N) 2 Z2p denote an integral vetor and R1; R2; R3 the index sets ofthe rows of B1; B2; B3 respetively. The dual of min fy : y satis�es (4)g isthe linear program 7



max mXi=1 ui + pXj=1 vj (5)uB + vD � ui � 0; i 2 R1ui � 0; i 2 R2:Sine vj only appears in two of the onstraints uB + vD �  and noonstraint ontains vj and vk, it follows that any optimal solution to (5)satis�es vj = min (Pj � mXi=1 bPijui; Nj � mXi=1 bNijui): (6)Let (�u; �v) be an optimal solution of (5). If �u is integral, then so is �v by (6),and we are done. So assume that �u` is frational. Let b` be the orrespondingrow of B, and let B` be the matrix obtained from B by removing row b`. Byindution on the number of rows of B, the system (4) assoiated with B` isTDI. Hene the systemmax Xi 6=` ui + pXj=1 vju`B` + vD � � b�u`b` (7)ui � 0; i 2 R1nf`gui � 0; i 2 R2nf`ghas an integral optimal solution (~u; ~v).Sine (�u1; : : : ; �u`�1; �u`+1; : : : ; �um; �v1; : : : ; �vp) is a feasible solution to (7)and Theorem 2.5 shows that Pmi=1 �ui +Ppj=1 �vj is an integer number,Xi 6=` ~ui + pXj=1 ~vj � dXi 6=` �ui + pXj=1 �vje = mXi=1 �ui + pXj=1 �vj � b�u`:Therefore the vetor (u�; v�) = (~u1; : : : ; ~u`�1; b�u`; ~u`+1; : : : ; ~um; ~v1; : : : ; ~vp)is integral, is feasible to (5) and has an objetive funtion value not smallerthan (�u; �v), proving that the system (4) is TDI. 28



Proof of Theorem 2.7: Let R1; R2; R3 be the index sets of the rows ofA1; A2; A3. By Lemma 2.8, the linear system (4) assoiated with (3) is TDI.Let d 2 Rp be any integral vetor. The dual of min fdx : x satis�es (3)g isthe linear program max w(1� n(A))� t1wA� t � d (8)wi � 0; i 2 R1wi � 0; i 2 R2t � 0:For every feasible solution (�u; �v) of (5) with  = (P ; N) = (d; 0), weonstrut a feasible solution ( �w; �t) of (8) with the same objetive funtionvalue as follows:�w = �u�tj = ( 0 if �vj = �Pi bNij �uiPi bPij�ui �Pi bNij �ui � dj if �vj = dj �Pi bPij�ui: (9)When the vetor (�u; �v) is integral, the above transformation yields an integralvetor ( �w; �t). Therefore (8) has an integral optimal solution and the linearsystem (3) is TDI. 2This theorem does not hold when the upper bound x � 1 is dropped fromthe linear system as shown by the example given after Theorem 2.5.3 Colorings and Hypergraphs3.1 BioloringsA k-oloring of a matrixA is a partition of olumns of A into k sets or \olors"(some of them may be empty). In this setion we onsider 2-olorings.Berge [2℄ introdued the following notion. A 0; 1 matrix is biolorable ifits olumns an be 2-olored into blue and red in suh a way that every rowwith two or more 1s ontains a 1 in a blue olumn and a 1 in a red olumn.Equivalently, for no row with at least two 1s all the 1s have the same olor.This notion provides the following haraterization of balaned 0; 1 matries.9



Theorem 3.1 (Berge [2℄) A 0; 1 matrix A is balaned if and only if everysubmatrix of A is biolorable.Ghouila-Houri [43℄ introdued the notion of equitable bioloring for a 0;�1matrix A as follows. The olumns of A are 2-olored into blue olumns andred olumns in suh a way that, for every row of A, the sum of the entries inthe blue olumns di�ers from the sum of the entries in the red olumns byat most one.Theorem 3.2 (Ghouila-Houri [43℄) A 0;�1 matrix A is totally unimodularif and only if every submatrix of A has an equitable bioloring.This theorem generalizes a result of Heller and Tompkins [50℄ for matrieswith at most two nonzero entries per row.A 0;�1 matrix A is biolorable if its olumns an be 2-olored into blueolumns and red olumns in suh a way that every row with two or morenonzero entries either ontains two entries of opposite sign in olumns of thesame olor, or ontains two entries of the same sign in olumns of di�erentolors. Equivalently, for no row with at least two nonzero entries all the 1shave the same olor, say blue, and all the �1's are red. For a 0; 1 matrix,this de�nition oinides with Berge's notion of bioloring. Clearly, if a 0;�1matrix has an equitable bioloring as de�ned by Ghouila-Houri, then it isbiolorable. So the theorem below implies that every totally unimodularmatrix is balaned.Theorem 3.3 (Conforti, Cornu�ejols [17℄) A 0;�1 matrix A is balaned ifand only if every submatrix of A is biolorable.Proof: Assume �rst that A is balaned and let B be any submatrix of A.Remove from B any row with fewer than two nonzero entries. Sine B isbalaned, so is the matrix (B;�B). It follows from Theorem 2.5 that theinequalities Bx � 1� n(B) (10)�Bx � 1� n(�B)0 � x � 110



de�ne an integral polytope. Sine it is nonempty (the vetor (12 ; : : : ; 12) is asolution), it ontains a 0,1 vetor �x. Color a olumn j of B red if �xj = 1 andblue otherwise. By (10), this is a valid bioloring of B.Conversely, assume that A ontains an odd hole matrix H. We laimthat H is not biolorable. Suppose otherwise. Sine H ontains exatly 2nonzero entries per row, the bioloring ondition shows that the vetor of allzeroes an be obtained by adding the blue olumns and subtrating the redolumns. So H is singular, a ontradition to Remark 2.3. 2In Setion 4.1, we prove a bioloring theorem that extends all the aboveresults (Theorem 4.3).Cameron and Edmonds [10℄ showed that the following simple algorithm�nds a bioloring of a balaned matrix.Algorithm (Cameron and Edmonds [10℄)Input: A 0;�1 matrix A.Output: A bioloring of A or a proof that the matrix A is not balaned.Stop if all olumns are olored or if some row is inorretly olored. Oth-erwise, olor a new olumn red or blue as follows.If some row of A fores the olor of a olumn, olor this olumn aord-ingly.If no row of A fores the olor of a olumn, arbitrarily olor one of theunolored olumns.In the above algorithm, a row ai fores the olor of a olumn when all theolumns orresponding to the nonzero entries of ai have been olored exeptone, say olumn k, and row ai, restrited to the olored olumns, violatesthe bioloring ondition. In this ase, the bioloring rule ditates the olorof olumn k.When the algorithm fails to �nd a bioloring, the sequene of foringsthat resulted in an inorretly olored row identi�es an odd hole submatrixof A.Note that a matrix A may be biolorable even if A is not balaned. Infat, the algorithm may �nd a bioloring of A even if A is not balaned.For example, if A = 0B� 1 1 1 01 1 0 11 0 1 1 1CA, the algorithm may olor the �rst two11



olumns blue and the last two red, whih is a bioloring of A. For this reason,the algorithm annot be used as a reognition of balanedness.3.2 k-ColoringsA 0; 1 matrix A is k-olorable if there exists a k-oloring of its olumns suhthat for every row i that has at least two 1s in olors J [L there are entriesaij = ail = 1 where j 2 J and l 2 L. This is equivalent to saying that everypair of olors J; L onstitutes a bioloring (as de�ned in the previous setion)of the submatrix AJL of A, indued by olumns J [ L.Theorem 3.4 (Berge [4℄) A 0; 1 matrix A is balaned if and only if everysubmatrix of A is k-olorable for every k.Proof: The \if" part follows from Theorem 3.1. We now show that if everyolumn submatrix of A is biolorable, then A is k-olorable for every k. ByTheorem 3.1 this proves the result. For a given k-oloring of A, let r(i) bethe number of olors that are represented in row i, i.e. the number of olorsJ for whih aij = 1 for some j 2 J . Consider a k-oloring of A suh that thesum of r(i) over all rows i of A is maximized. Suppose that this k-oloringof A does not satisfy the above de�nition. Then there are olors J; L thatdo not give a bioloring of the matrix AJL. Let J 0; L0 be a bioloring of AJL,and onsider a new k-oloring of A where J and L are replaed by J 0 andL0 and all the other olors stay the same. In this new oloring the sum ofr(i) over all rows i of A has inreased, in omparison to the original one, aontradition. 2The above proof shows that if A is a balaned matrix one an eÆientlyonstrut a k-oloring of A, that satis�es the above ondition, using thealgorithm of Cameron and Edmonds.Similarly the notion of equitable bioloring is extended to the notion ofequitable k-oloring. A k-oloring of a 0;�1 matrix A is equitable if every pairof olors J; L onstitutes an equitable bioloring of AJL. A similar argumentas in the proof above, gives the following result.Theorem 3.5 (de Werra [36℄) A 0;�1 matrix A is totally unimodular if andonly if every submatrix of A has an equitable k-oloring for every k.12



A 0;�1 matrix A is k-olorable if there exists a k-oloring of its olumnsso that every pair of olors J; L onstitutes a bioloring of AJL.Conjeture 3.6 (Conforti and Zambelli) A 0;�1 matrix A is balaned ifand only if every submatrix of A is k-olorable for every k.For k = 2 the onjeture is equivalent to Theorem 3.3. This onjeture isopen for k = 3. Note that the onjeture holds for every totally unimodularmatrix A sine every equitable k-oloring of A is a k-oloring that satis�esthe above ondition. De Werra [37℄ gives a weaker notion of k-olorability ofa 0;�1 matrix and proves that balaned matries satisfy it.3.3 Balaned HypergraphsA 0; 1 matrix A an be represented by a hypergraph. Then the de�nition ofbalanedness for 0; 1 matries is a natural extension of the property of notontaining odd yles for graphs. In fat, this is the motivation that led Berge[2℄ to introdue the notion of balanedness: A hypergraph H = (V; E), whereV represents the olumn set and E represents the row set of A, is balanedif every odd yle C of H has an edge ontaining at least three nodes of C.Equivalently, H is balaned if the assoiated 0; 1 matrix A is balaned. Werefer to Berge [6℄ for an introdution to the theory of hypergraphs. Several re-sults on bipartite graphs generalize to balaned hypergraphs, suh as K�onig'sbipartite mathing theorem, as stated in the next theorem. In a hypergraph,a mathing is a set of pairwise noninterseting edges and a transversal is anode set interseting all the edges.Theorem 3.7 (Berge, Las Vergnas [7℄) In a balaned hypergraph, the maxi-mum ardinality of a mathing equals the minimum ardinality of a transver-sal.Proof: Follows from Theorem 2.6 applied with A1 = A3 = ; and the primalobjetive funtion maxPj xj. 2The next result generalizes a theorem of Gupta [47℄ on bipartite multi-graphs. 13



Theorem 3.8 (Berge [5℄) In a balaned hypergraph H = (V; E), the mini-mum number of nodes in an edge equals the maximum ardinality of a familyof disjoint transversals.Proof: Let �min be the minimum ardinality of an edge in H, and let A bethe inidene matrix of H. Sine A is balaned, by Theorem 3.4, A is �min-olorable and this oloring indues a partition of V in �min olors. Let J bea olor. We show that J is a transversal of H. Assume not; then there isan edge e that does not ontain any node olored J . Sine jej � �min, thereexists a olor, say L, that ontains at least two nodes of e. This shows thatthe submatrix AJL is not biolored, a ontradition. 2The hromati number of a hypergraph is the minimum number of olorsneeded to olor its nodes so that no edge ontains two nodes of the sameolor.Theorem 3.9 (Berge [5℄) In a balaned hypergraph H = (V; E), the maxi-mum number of nodes in an edge equals the hromati number of H.Proof: Let �max be the maximum number of nodes in an edge of H, and letA be the inidene matrix of H. Sine A is balaned, it is �max-olorable byTheorem 3.4. By the same argument as before, suh a oloring provides aoloring of H. 2One of the �rst results on mathings in graphs is the following elebratedtheorem of Hall.Theorem 3.10 (Hall [49℄) A bipartite graph has no perfet mathing if andonly if there exist disjoint node sets R and B suh that jBj > jRj and everyedge having one endnode in B has the other in R.The following result generalizes Hall's theorem to balaned hypergraphs.Theorem 3.11 (Conforti, Cornu�ejols, Kapoor, Vu�skovi� [20℄) A balanedhypergraph H = (V; E) has no perfet mathing if and only if there existdisjoint node sets R and B suh that jBj > jRj and every edge ontains atleast as many nodes in R as in B. 14



We give a short polyhedral proof of Theorem 3.11, due to Shrijver [65℄.Huk and Triesh [55℄ give a ombinatorial proof.Proof: Assume H admits a perfet mathing M . Then for every disjointsubsets R, B of V suh that jB \ ej � jR \ ej for every e 2 E , we have:jBj = Xe2M jB \ ej � Xe2M jR \ ej = jRj:So the ondition is neessary.We prove suÆieny: Assume H admits no perfet mathing and let Abe the node-edge inidene matrix of H. Then by Theorem 2.1, the systemAy = 1; y � 0 de�nes an integral polytope. Therefore, sineH has no perfetmathing, this system has no solution. Hene, by Farkas' lemma, there is avetor x suh that ATx � 0 and 1Tx < 0. We an assume �1 � x � 1. Letz = 1 � x. Then 0 � z � 2, AT z � AT1 and 1T z > 1T1 = jV j. Considerthe linear program: min (AT1)Tu+ 2TvAu+ Iv � 1u; v � 0:By Theorem 2.6 its onstraints form a TDI system. Sine the systemsatis�ed by z orresponds to the dual of the above linear program, it followsthat it has an integral solution z. So there is an integral vetor x suh thatATx � 0; 1Tx < 0; �1 � x � 1. Now set B = fv 2 V jxv = �1g andR = fv 2 V jxv = 1g. Then B, R satisfy the onditions of the theorem. 2It is well known that a bipartite graph with maximum degree � ontains� edge-disjoint mathings. The same property holds for balaned hyper-graphs. The following result is equivalent to Theorem 3.9. We provide aproof based on Theorem 3.11.Corollary 3.12 The edges of a balaned hypergraph H with maximum degree� an be partitioned into � mathings.Proof: By adding edges ontaining a unique node, we an assume that H is�-regular. (This operation does not destroy the property of being balaned).We now show thatH has a perfet mathing. Assume not. By Theorem 3.11,15



there exist disjoint node sets R and B suh that jBj > jRj and jR \ ej �jB \ ej for every edge e of H. Adding these inequalities over all edges, weget jRj � jBj sine H is �-regular, a ontradition. So H ontains a perfetmathingM . Removing the edges ofM , the result now follows by indution.23.4 2-Setion Graphs and Clique-HypergraphsThe main result of this setion was found by Prisner [63℄.The 2-setion graph of a hypergraph H = (V; E) is the simple undiretedgraph G = (V;E) having the same node set as H; two of its nodes areadjaent if and only if they belong to the same edge of H.A hypergraph H = (V; E) is a lique-hypergraph if E is the family of allthe maximal liques of its 2-setion graph G. Obviously, if H is a lique-hypergraph, H does not ontain any repeated or dominated edges. In [48℄an algorithm is given, to list the set K of all maximal liques of a graphG = (V;E). Its running time is O(jV j� jEj� jKj). So the lique-hypergraphof a graph G an be eÆiently onstruted.Lemma 3.13 A hypergraph H = (V; E) is a lique-hypergraph if and only ifH ontains no dominated or repeated edge, and for every triple of edges, saye1; e2; e3, the set of nodes V123 = (e1 \ e2) [ (e2 \ e3) [ (e1 \ e3) is ontainedin some edge of H.Proof: Let G be the 2-setion graph of H. Sine V123 is ontained in a liqueof G, the ondition is obviously neessary. We now prove suÆieny. If H isnot a lique-hypergraph, then some set of nodes pairwise adjaent in G is notontained in and edge of H; let V 0 be a minimal suh set. Clearly jV 0j � 3.By the minimality of V 0, for every v 2 V 0, the set V 0nv is ontained in an edgeev ofH. Assume fv1; v2; v3g � V 0. Now V 0 � (ev1\ev2)[(ev1\ev3)[(ev2\ev3)and ev1 ; ev2 ; ev3 satisfy the above onditions. 2Let us de�ne a hypergraph to be semi-balaned if its inidene matrixontains no 3 � 3 hole matrix. Balaned hypergraphs are obviously semi-balaned.Given hypergraph H = (V; E), let Emax be the subset of E onsisting ofone opy of every maximal edge of H, and let Hmax = (V; Emax).16



Lemma 3.14 Let H = (V; E) be a semi-balaned hypergraph. Then Hmax =(V; Emax) is a lique-hypergraph.Proof: By onstrution, Hmax ontains no dominated or repeated edge. Soassume Hmax is not a lique-hypergraph. By Lemma 3.13, Hmax ontainsedges e1; e2; e3 suh that the set V123 is not ontained in any other edge ofHmax. In partiular, there exist nodes v12 2 (e1\e2)ne3 and v13; v23 similarlyde�ned. Let A be the inidene matrix of H. Now the rows and olumns ofA orresponding to v12; v13; v23 and e1; e2; e3 indue a 3� 3 hole matrix. 2Lemma 3.15 Let H = (V; E) be a semi-balaned hypergraph not ontainingany repeated edges. Then every edge of Hmax ontains two verties that donot belong to any other edge of H.Proof: Obviously H and Hmax have the same 2-setion graph G. Further-more, sine H is semi-balaned, so is Hmax. So by Lemma 3.14, Hmax is thelique-hypergraph of G. Assume the lemma is false, and let e 2 Emax bean edge violating the above ondition. Obviously, e ontains at least threenodes. Sine every pair of nodes in e belong to some other edge of Emax,G is also the 2-setion graph of the hypergraph Hmax n e. However, sinee is missing, Hmax n e is not the lique-hypergraph of G. By Lemma 3.14,Hmaxne is not semi-balaned and hene bothHmax,H, are not semi-balaned,a ontradition. 2Corollary 3.16 (Prisner [63℄) Let H be a balaned hypergraph that is thelique-hypergraph of G. Then the number of edges of H is bounded by thenumber of edges of G.Proof: By Lemma 3.15, every edge of H ontains an edge of G that belongsto no other edge of H. 24 Related Integer Polytopes4.1 k-Balaned MatriesWe introdue a hierarhy of balaned 0;�1 matries that ontains as its twoextreme ases the balaned and totally unimodular matries. The followingwell known result of Camion will be used.17



A 0;�1 matrix whih is not totally unimodular but whose proper sub-matries are all totally unimodular is said to be almost totally unimodular.Camion [12℄ proved the following:Theorem 4.1 (Camion [12℄ and Gomory [ited in [12℄℄) Let A be an almosttotally unimodular 0;�1 matrix. Then A is square, detA = �2 and A�1 hasonly �12 entries. Furthermore, eah row and eah olumn of A has an evennumber of nonzero entries and the sum of all entries in A equals 2 mod 4.Proof: Clearly A is square, say n � n. If n = 2, then indeed, det A = �2.Now assume n � 3. Sine A is nonsingular, it ontains an (n� 2)� (n� 2)nonsingular submatrix B. Let A =  B CD E ! and U =  B�1 0�DB�1 I ! :Then det U = �1 and UA =  I B�1C0 E �DB�1C ! : We laim that the 2� 2matrix E �DB�1C has all entries equal to 0;�1. Suppose to the ontrarythat E � DB�1C has an entry di�erent from 0;�1 in row i and olumn j.Denoting the orresponding entry of E by eij, the orresponding olumn ofC by j and row of D by di, B�1 0�diB�1 1 ! B jdi eij ! =  I B�1j0 eij � diB�1j !and onsequently A has an (n� 1)� (n� 1) submatrix with a determinantdi�erent from 0;�1, a ontradition.Consequently, det A = �det UA = �det(E �DB�1C) = �2.So, every entry of A�1 is equal to 0;�12 . Suppose A�1 has an entry equalto 0, say in row i and olumn j. Let �A be the matrix obtained from A byremoving olumn i and let hj be the jth olumn of A�1 with row i removed.Then �Ahj = uj, where uj denotes the jth unit vetor. Sine �A has rank n�1,this linear system of equations has a unique solution hj. Sine �A is totallyunimodular and uj is integral, this solution hj is integral. Sine hj 6= 0, thisontradits the fat that every entry of hj is equal to 0;�12 . So A�1 has only�12 entries.This property and the fat that AA�1 and A�1A are integral, imply thatA has an even number of nonzero entries in eah row and olumn.Finally, let � denote a olumn of A�1 and S = fi : �i = +12g and�S = fi : �i = �12g. Let k denote the sum of all entries in the olumns of A18



indexed by �S. Sine A� is a unit vetor, the sum of all entries in the olumnsof A indexed by S equals k+2. Sine every olumn of A has an even numberof nonzero entries, k is even, say k = 2p for some integer p. Therefore, thesum of all entries in A equals 4p+ 2. 2For any positive integer k, we say that a 0;�1 matrix A is k-balaned ifA does not ontain any almost totally unimodular submatrix with at most2k nonzero entries in eah row. Truemper [70℄ gives a onstrution of all theminimal matries that are not k-balaned.Note that every almost totally unimodular matrix ontains at least 2nonzero entries per row and per olumn. So the odd hole matries are thealmost totally unimodular matries with at most 2 nonzero entries per row.Therefore the balaned matries are the 1-balaned matries and the to-tally unimodular matries with n olumns are the k-balaned matries fork � bn=2. The lass of k-balaned matries was introdued by Truemperand Chandrasekaran [72℄ for 0,1 matries and by Conforti, Cornu�ejols andTruemper [24℄ for 0;�1 matries. Let k denote a olumn vetor whose entriesare all equal to k.Theorem 4.2 (Conforti, Cornu�ejols and Truemper [24℄) Let A be an m� nk-balaned 0;�1 matrix with rows ai, i 2 [m℄, b be a vetor with entries bi,i 2 [m℄, and let S1; S2; S3 be a partition of [m℄. ThenP (A; b) = fx 2 Rn : aix � bi for i 2 S1aix = bi for i 2 S2aix � bi for i 2 S30 � x � 1gis an integral polytope for all integral vetors b suh that �n(A) � b �k� n(A).Proof: Assume the ontrary and let A be a k-balaned matrix of smallestorder suh that P (A; b) has a frational vertex �x for some vetor b suh that�n(A) � b � k � n(A) and some partition S1; S2; S3 of [m℄. Then by theminimality of A, �x satis�es all the onstraints in S1[S2[S3 at equality. So wemay assume S1 = S3 = ;. Furthermore all the omponents of x are frational,19



otherwise let Af be the olumn submatrix of A orresponding to the frationalomponents of �x and Ap be the olumn submatrix of A orresponding to theomponents of �x that are equal to 1. Let bf = b � p(Ap) + n(Ap). Then�n(Af ) � bf � k� n(Af ) sine bf = b� p(Ap) + n(Ap) = Af �x � n(Af) andbeause bf = b�p(Ap)+n(Ap) � b+n(Ap) � k�n(A)+n(Ap) � k�n(Af ).Sine the restrition of �x to is frational omponents is a vertex of P (Af ; bf )with S1 = S3 = ;, the minimality of A is ontradited. So A is a square non-singular matrix whih is not totally unimodular. Let G be an almost totallyunimodular submatrix of A. Sine A is not k-balaned, G ontains a rowi suh that pi(G) + ni(G) > 2k. Let Ai be the submatrix of A obtainedby removing row i and let bi be the orresponding subvetor of b. By theminimality of A, P (Ai; bi) with S1 = S3 = ; is an integral polytope and sineA is nonsingular, P (Ai; bi) has exatly two verties, say z1 and z2. Sine�x is a vetor whose omponents are all frational and �x an be written asthe onvex ombination of the 0; 1 vetors z1 and z2, then z1 + z2 = 1. For` = 1; 2, de�neL(`) = fj; either gij = 1 and zì = 1 or gij = �1 and zì = 0g:Sine z1 + z2 = 1, it follows that jL(1)j + jL(2)j = pi(G) + ni(G) > 2k.Assume w.l.o.g. that jL(1)j > k. Now this ontraditsjL(1)j =Xj gijz1j + ni(G) � bi + ni(A) � kwhere the �rst inequality follows from Aiz1 = bi. 2This theorem generalizes previous results by Ho�man and Kruskal [51℄for totally unimodular matries, Berge [3℄ for 0; 1 balaned matries, Con-forti and Cornu�ejols [17℄ for 0;�1 balaned matries, and Truemper andChandrasekaran [72℄ for k-balaned 0,1 matries.A 0;�1 matrix A has a k-equitable bioloring if its olumns an be parti-tioned into blue olumns and red olumns so that:� the bioloring is equitable for the row submatrix A0 determined by therows of A with at most 2k nonzero entries,� every row with more than 2k nonzero entries ontains k pairwise disjointpairs of nonzero entries suh that eah pair ontains either entries of20



opposite sign in olumns of the same olor or entries of the same signin olumns of di�erent olors.Obviously, an m� n 0;�1 matrix A is biolorable if and only if A has a1-equitable bioloring, while A has an equitable bioloring if and only if Ahas a k-equitable bioloring for k � bn=2. The following theorem providesa new haraterization of the lass of k-balaned matries, whih generalizesthe bioloring results of Setion 3.1 for balaned and totally unimodularmatries.Theorem 4.3 (Conforti, Cornu�ejols and Zambelli [26℄) A 0;�1 matrix A isk-balaned if and only if every submatrix of A has a k-equitable bioloring.Proof: Assume �rst that A is k-balaned and let B be any submatrix of A.Assume, up to row permutation, thatB =  B0B00 !where B0 is the row submatrix of B determined by the rows of B with 2k orfewer nonzero entries. Consider the systemB0x � $B012 %�B0x � � &B012 'B00x � k� n(B00) (11)�B00x � k� n(�B00)0 � x � 1Sine B is k-balaned, also  B�B ! is k-balaned. Therefore the on-straint matrix of system (11) above is k-balaned. One an readily verifythat �n(B0) � jB012 k � k � n(B0) and �n(�B0) � � lB012 m � k � n(�B0).Therefore, by Theorem 4.2 applied with S1 = S2 = ;, system (11) de�nesan integral polytope. Sine the vetor (12 ; :::; 12) is a solution for (11), thepolytope is nonempty and ontains a 0; 1 point �x. Color a olumn i of B21



blue if �xi = 1, red otherwise. It an be easily veri�ed that suh a bioloringis, in fat, k-equitable.Conversely, assume that A is not k-balaned. Then A ontains an almosttotally unimodular matrix B with at most 2k nonzero elements per row.Suppose that B has a k-equitable bioloring, then suh a bioloring must beequitable sine eah row has, at most, 2k nonzero elements. By Theorem 4.1,B has an even number of nonzero elements in eah row. Therefore the sum ofthe olumns olored blue equals the sum of the olumns olored red, thereforeB is a singular matrix, a ontradition. 2Given a 0;�1 matrix A and positive integer k, one an �nd in polynomialtime a k-equitable bioloring of A or a erti�ate that A is not k-balanedas follows:Find a basi feasible solution of (11). If the solution is not integral, Ais not k-balaned by Theorem 4.2. If the solution is a 0,1 vetor, it yields ak-equitable bioloring as in the proof of Theorem 4.3.Note that, as with the algorithm of Cameron and Edmonds [10℄ disussedin Setion 3.1, a 0,1 vetor may be found even when the matrix A is not k-balaned.Using the fat that the vetor (12 ; :::; 12) is a feasible solution of (11), abasi feasible solution of (11) an atually be derived in strongly polynomialtime using an algorithm of Megiddo [59℄.4.2 Perfet and Ideal 0;�1 MatriesA 0; 1 matrix A is said to be perfet if the set paking polytope P (A) isintegral. A 0; 1 matrix A is ideal if the set overing polytope Q(A) is integral.The study of perfet and ideal 0; 1 matries is a entral topi in polyhedralombinatoris. Theorem 2.1 shows that every balaned 0; 1 matrix is bothperfet and ideal.The integrality of the set paking polytope assoiated with a (0; 1) matrixA is related to the notion of perfet graph. A graph G is perfet if, forevery indued subgraph H of G, the hromati number of H equals the sizeof its largest lique. The fundamental onnetion between the theory ofperfet graphs and integer programming was established by Fulkerson [40℄,Lov�asz [57℄ and Chv�atal [14℄. The lique-node matrix of a graph G is a 0; 122



matrix whose olumns are indexed by the nodes of G and whose rows are theinidene vetors of the maximal liques of G.Theorem 4.4 (Lov�asz [57℄, Fulkerson [40℄, Chv�atal [14℄) Let A be a 0,1matrix. The set paking polytope P (A) is integral if and only if the rows ofA of maximal support form the lique-node matrix of a perfet graph.Now we extend the de�nition of perfet and ideal 0; 1 matries to 0;�1matries. A 0;�1 matrix A is ideal if the generalized set overing polytopeQ(A) = fx : Ax � 1 � n(A); 0 � x � 1g is integral. A 0;�1 matrixA is perfet if the generalized set paking polytope P (A) = fx : Ax �1� n(A); 0 � x � 1g is integral. By Theorem 2.2, balaned 0;�1 matriesare both perfet and ideal.Hooker [54℄ was the �rst to relate idealness of a 0;�1 matrix to that ofa family of 0,1 matries. A similar result for perfetion was obtained in [19℄.These results were strengthened by Guenin [46℄ and by Boros, �Cepek [8℄ forperfetion, and by Nobili, Sassano [61℄ for idealness. The key tool for theseresults is the following:Given a 0;�1 matrix A, let P and R be 0; 1 matries of the same dimen-sion as A, with entries pij = 1 if and only if aij = 1, and rij = 1 if and only ifaij = �1. The matrix DA =  P RI I ! is the 0; 1 extension of A. Note thatthe transformation x+ = x and x� = 1�x maps every vetor x in P (A) intoa vetor in f(x+; x�) � 0 : Px++Rx� � 1; x+ + x� = 1g and every vetorx in Q(A) into a vetor in f(x+; x�) � 0 : Px+ + Rx� � 1; x+ + x� = 1g.So P (A) and Q(A) are respetively the faes of P (DA) and Q(DA), obtainedby setting the inequalites x+ + x� � 1 and x+ + x� � 1 at equality. Thus,if P (DA) is an integral polytope, then so is P (A). Similarly Q(DA) integralimplies Q(A) integral. To get a onverse, we introdue the following notion.Consider a 0;�1 matrix A with two rows a1 and a2 suh that there isone index k suh that a1ka2k = �1 and, for all j 6= k, a1ja2j = 0. A disjointimpliation of A is the 0;�1 vetor a1+a2. For a 0;�1 matrix A, the matrixA+ obtained by reursively adding all disjoint impliations and removing alldominated rows (those whose support is not maximal in the paking ase;those whose support is not minimal in the overing ase) is alled the disjointompletion of A. Note that P (A) = P (A+) and Q(A) = Q(A+).23



Theorem 4.5 (Nobili, Sassano [61℄) Let A be a 0;�1 matrix. Then A isideal if and only if the 0; 1 matrix DA+ is ideal.Furthermore A is ideal if and only if minfx : x 2 Q(A)g has an integraloptimum x for every vetor  2 f0;�1;�1gn.Theorem 4.6 (Guenin [46℄) Let A be a 0;�1 matrix suh that P (A) is notontained in any of the hyperplanes fx : xj = 0g or fx : xj = 1g. Then A isperfet if and only if the 0; 1 matrix DA+ is perfet.Note that this result does not hold when the assumption on the hyper-planes fx : xj = 0g and fx : xj = 1g is dropped. For example, on-sider A = 0B� 1 1 �1�1 1 11 �1 1 1CA. Then P (A) is an integral polytope sine itonly ontains the point 0, whereas P (DA+) is not an integral polytope sineA+ = A and P (DA) has the frational vertex (x+; x�) where x+ = (12 ; 12 ; 12)and x� = 0.Theorem 4.7 (Guenin [46℄) Let A be a 0;�1 matrix suh that P (A) is notontained in any of the hyperplanes fx : xj = 0g or fx : xj = 1g. ThenA is perfet if and only if maxfx : x 2 P (A)g admits an integral optimalsolution for every  2 f0;�1gn. Moreover, if A is perfet, the linear systemAx � 1� n(A), 0 � x � 1 is TDI.This is the natural extension of the Lov�asz's theorem for perfet 0; 1matries. The next theorem haraterizes perfet 0;�1 matries in termsof exluded submatries. A row of a 0;�1 matrix A is trivial if it ontainsat most one nonzero entry. Note that trivial rows an be removed withouthanging P (A).Theorem 4.8 (Guenin [46℄) Let A be a 0;�1 matrix suh that P (A) is notontained in any of the hyperplanes fx : xj = 0g or fx : xj = 1g. Then A isperfet if and only if A+ does not ontain1)  1 1�1 1 ! or  1 �1�1 �1 ! as a submatrix, or24



2) a olumn submatrix whih, without its trivial rows, is obtained from aminimally imperfet 0,1 matrix B by swithing signs of all entries in asubset of the olumns of B.For ideal 0;�1 matries, a similar haraterization was obtained in termsof exluded \weak minors" by Nobili and Sassano [61℄.4.3 Propositional LogiIn propositional logi, atomi propositions x1; : : : ; xj; : : : ; xn an be eithertrue or false. A truth assignment is an assignment of "true" or "false" to everyatomi proposition. A literal is an atomi proposition xj or its negation :xj .A lause is a disjuntion of literals and is satis�ed by a given truth assignmentif at least one of its literals is true.A survey of the onnetions between propositional logi and integer pro-gramming an be found in [53℄.A truth assignment satis�es a set of m lauses_j2Pi xj _ ( _j2Ni :xj) for i = 1 : : : ; mif and only if the orresponding 0; 1 vetor satis�es the system of inequalitiesXj2Pi xj � Xj2Ni xj � 1� jNij for i = 1 : : : ; m:The above system of inequalities is of the formAx � 1� n(A); (12)where A is an m� n 0;�1 matrix.We onsider three lassial problems in logi. The satis�ability problem(SAT) assoiated to a set S of lauses, onsists of �nding a truth assignmentthat satis�es all the lauses in S or showing that none exists. Equivalently,SAT onsists of �nding a 0; 1 solution x to (12) or showing that none exists.The weighted maximum satis�ability problem (MAXSAT) asoiated to aset S of lauses and a weight vetor w whose omponents are indexed by the25



lauses in S onsists of �nding a truth assignment that maximizes the totalweight of the satis�ed lauses. MAXSAT an be formulated as the integerprogram: min Pmi=1wisiAx + s � 1� n(A)x 2 f0; 1gn; s 2 f0; 1gm:Logial inferene in propositional logi is assoiated to a set S of lauses(the premises) and a lause C (the onlusion), and onsists of deidingwhether every truth assignment that satis�es all the premises in S also sat-is�es the onlusion C.Let Ax � 1� n(A) be the system of inequalities assoiated with the setS of premises. The onlusion C = (Wj2P (C) xj) _ (Wj2N(C) :xj) annot bededued from S if and only if there exists a 0; 1 vetor satisfying the followingsystem: Ax � 1� n(A);xj = 0 for all j 2 P (C);xj = 1 for all j 2 N(C):Equivalently, the onlusion C an be represented by the inequalityXj2P (C)xj � Xj2N(C) xj � 1� jN(C)j;or, more ompatly, x � 1 � jN(C)j where  denotes the n-vetor withomponents j = 1 for j 2 P (C), j = �1 for j 2 N(C) and j = 0 otherwise.Then C annot be dedued from S if and only if the integer programmin fx : Ax � 1� n(A); x 2 f0; 1gng (13)has a solution with value �jN(C)j.These three problems are NP-hard in general but SAT and logial in-ferene an be solved eÆiently for Horn lauses, lauses with at most twoliterals and several related lasses [9℄, [13℄, [71℄. MAXSAT remains NP-hardfor Horn lauses with at most two literals [42℄. A set S of lauses is balanedif the orresponding 0;�1 matrix A de�ned in (12) is balaned. Similarly, aset of lauses is ideal if A is ideal. By Theorem 2.2, every balaned set oflauses is ideal. The verties of (12) are integral for an ideal set of lauses,26



whih implies that the underlying integer program an be solved as a linearprogram in that ase:Theorem 4.9 Let S be an ideal set of lauses. Then SAT, MAXSAT andlogial inferene an be solved in polynomial time by linear programming.This has onsequenes for probabilisti logi as de�ned by Nilsson [60℄.Being able to solve MAXSAT in polynomial time provides a polynomialtime separation algorithm for probabilisti logi via the ellipsoid method,as observed by Georgakopoulos, Kavvadias and Papadimitriou [42℄. Heneprobabilisti logi is solvable in polynomial time for ideal sets of lauses.Lemma 4.10 Let S be an ideal set of lauses. If every lause of S ontainsmore than one literal then, for every atomi proposition xj, there exist atleast two truth assignments satisfying S, one in whih xj is true and one inwhih xj is false.Proof: Sine the point xj = 1=2; j = 1; : : : ; n belongs to the polytopeQ(A) = fx : Ax � 1� n(A); 0 � x � 1g and Q(A) is an integral polytope,then the above point an be expressed as a onvex ombination of 0; 1 vetorsin Q(A). Clearly, for every index j, there exists in the onvex ombination a0; 1 vetor with xj = 0 and another with xj = 1. 2A onsequene of Lemma 4.10 is that, for an ideal set of lauses, SAT anbe solved more eÆiently than by general linear programming.Theorem 4.11 (Conforti, Cornu�ejols [16℄) Let S be an ideal set of lauses.Then S is satis�able if and only if a reursive appliation of the followingproedure stops with an empty set of lauses.Reursive StepIf S = ; then S is satis�able.If S ontains a lause C with a single literal (unit lause), set the orre-sponding atomi proposition xj so that C is satis�ed. Eliminate from S alllauses that beome satis�ed and remove xj from all the other lauses. If alause beomes empty, then S is not satis�able (unit resolution).If every lause in S ontains at least two literals, hoose any atomi propo-sition xj appearing in a lause of S and add to S one of the lauses xj and:xj. 27



The above algorithm for SAT an also be used to solve the logial infereneproblem when S is an ideal set of lauses, see [16℄. For balaned (or ideal)sets of lauses, it is an open problem to solve MAXSAT in polynomial timeby a diret method, without appealing to polynomial time algorithms forgeneral linear programming.4.4 Nonlinear 0; 1 OptimizationConsider the nonlinear 0; 1 maximization problemmax Xk ak Yj2Tk xj Yj2Rk(1� xj)x 2 f0; 1gnwhere, w.l.o.g., all ordered pairs (Tk; Rk) are distint and Tk\Rk = ;. This isan NP-hard problem. A standard linearization of this problem was proposedby Fortet [39℄:max X akykyk � xj � 0 for all k s:t: ak > 0; for all j 2 Tkyk + xj � 1 for all k s:t: ak > 0; for all j 2 Rkyk � Xj2Tk xj + Xj2Rk xj � 1� jTkj for all k s:t: ak < 0yk; xj 2 f0; 1g for all k and j:When the onstraint matrix is balaned, this integer program an besolved as a linear program, as a onsequene of Theorem 2.7. Therefore, inthis ase, the nonlinear 0; 1 maximization problem an be solved in polyno-mial time. The relevane of balanedness in this ontext was pointed out byCrama [33℄.5 The Struture of Balaned Matries5.1 Bipartite Representation of a 0;�1 MatrixIn an undireted graph, a hole is a hordless yle of length greater than 3.A yle is balaned if its length is a multiple of 4. A graph is balaned if28



all its hordless yles are balaned. Clearly, a balaned graph is simple andbipartite.The bipartite representation of a 0; 1 matrix A is the bipartite graphG(A) = (V r [ V ; E) having a node in V r for every row of A, a node in V for every olumn of A and an edge ij joining nodes i 2 V r and j 2 V  if andonly if the entry aij of A equals 1.Note that a 0; 1 matrix is balaned if and only if its bipartite representa-tion is a balaned graph.The bipartite representation of a 0;�1 matrix A is the signed bipartitegraph G(A) = (V r[V ; E) having a node in V r for every row of A, a node inV  for every olumn of A and an edge ij joining nodes i 2 V r and j 2 V  ifand only if the entry aij is nonzero. Furthermore aij is the sign of the edge ij.This onept extends the one introdued above. Conversely, for a bipartitegraph G = (V r [V ; E), with signs �1 on its edges, there is a unique matrixA for whih G = G(A) (up to transposition of the matrix, permutation ofrows and permutation of olumns).5.2 Signing 0,1 Matries: Camion's Algorithm andTruemper's TheoremA 0; 1 matrix is balaneable if its nonzero entries an be signed +1 or -1 so thatthe resulting 0;�1 matrix is balaned. A bipartite graph G is balaneable ifG = G(A) and A is a balaneable matrix.Camion [12℄ observed that the signing of a balaneable matrix into abalaned matrix is unique up to multiplying rows or olumns by �1, and hegave a simple algorithm to obtain this signing. We present Camion's resultnext.Let A be a 0;�1 matrix and let A0 be obtained from A by multiplying aset S of rows and olumns by �1. A is balaned if and only if A0 is. Notethat, in the bipartite representation of A, this orresponds to swithing signson all edges of the ut Æ(S). Now let R be a 0,1 matrix and G(R) its bipartiterepresentation. Sine every edge of a maximal forest F of G(R) is ontainedin a ut that does not ontain any other edge of F , it follows that if R isbalaneable, there exists a balaned signing of R in whih the edges of Fhave any spei�ed (arbitrary) signing.This implies that, if a 0,1 matrix A is balaneable, one an �nd a balaned29



signing of A as follows.CAMION'S SIGNING ALGORITHMInput: A 0,1 matrix A and its bipartite representation G, a maximalforest F of G and an arbitrary signing of the edges of F .Output: A signing of G in whih the edges of F are signed as spei�edin the input, and if A is balaneable then the signing is balaned.Index the edges of G e1; : : : ; en, so that the edges of F ome �rst, andevery edge ej, j � jF j+ 1, together with edges having smaller indies, losesa hole Hj of G. For j = jF j+1; : : : ; n, sign ej so that the sum of the weightsof Hj is ongruent to 0 mod 4.Note that the rows and olumns orresponding to the nodes of Hj de�nea hole submatrix of A.The fat that there exists an indexing of the edges of G as required in thesigning algorithm follows from the following observation. For j � jF j+1, wean selet ej so that the path onneting the endnodes of ej in the subgraph(V (G); fe1; : : : ; ej�1g) is shortest possible. The hole Hj identi�ed this way isalso a hole in G. This fores the signing of ej, sine all the other edges of Hjare signed already. So, one the (arbitrary) signing of F has been hosen,the signing of G is unique. Therefore we have the following result.Theorem 5.1 If the input matrix A is a balaneable 0,1 matrix, Camion'ssigning algorithm produes a balaned 0;�1 matrix B. Furthermore everybalaned 0;�1 matrix that arises from A by signing its nonzero entries either+1 or �1, an be obtained by swithing signs on rows and olumns of B.If one applies Camion's algorithm to the bipartite representation of thefollowing matrix, the signing produed would leave one of the four holesunbalaned, proving that the matrix is not balaneable.0B� 1 1 0 11 0 1 10 1 1 1 1CAAssume that we have an algorithm to hek if a bipartite graph is bal-aneable. Then, we an hek whether a signed bipartite graph G is balaned30



as follows. Let G0 be a opy of G that is not signed. Test whether G0 is bal-aneable. If it is not, then G is not balaned. Otherwise, let F be a maximalforest of G0. Run the signing algorithm on G0 with the edges of F signed asthey are in G. Then G is balaned if and only if the signing of G0 oinideswith the signing of G.We now give a haraterization due to Truemper [71℄ of the bipartitegraphs that are balaneable.In a bipartite graph, a wheel (H; v) onsists of a hole H and a node vhaving at least three neighbors in H. The wheel (H; v) is odd if v has an oddnumber of neighbors in H. A 3-path on�guration is an indued subgraphonsisting of three internally node-disjoint paths onneting two nonadjaentnodes u and v and ontaining no edge other than those of the paths. If u andv are in opposite sides of the bipartition, i.e. the three paths have an oddnumber of edges, the 3-path on�guration is alled a 3-odd-path on�guration.In Figure 1, solid lines represent edges and dotted lines represent paths withat least one edge. uH
v

vFigure 1: An odd wheel and a 3-odd-path on�gurationBoth a 3-odd-path on�guration and an odd wheel have the followingproperties: eah edge belongs to exatly two holes and the total number ofedges is odd. Therefore in any signing, the sum of the labels of all holesis equal to 2 mod 4. This implies that at least one of the holes is not bal-31



aned, showing that neither 3-odd-path on�gurations nor odd wheels arebalaneable. These are in fat the only minimal bipartite graphs that arenot balaneable, as shown by the following theorem.Theorem 5.2 (Truemper [71℄) A bipartite graph is balaneable if and only ifit does not ontain an odd wheel or a 3-odd-path on�guration as an induedsubgraph.We prove Theorem 5.2 following Conforti, Gerards and Kapoor [27℄.For a onneted bipartite graph G that ontains a lique utset Kt witht nodes, let G01; : : : ; G0n be the onneted omponents of G nKt. The bloksof G are the subgraphs Gi indued by V (G0i) [Kt for i = 1; : : : ; n.Lemma 5.3 If a onneted bipartite graph G ontains a K1 or K2 utset,then G is balaneable if and only if eah blok is balaneable.Proof: If G is balaneable, then so are the bloks. Therefore we only have toprove the onverse. Assume that all the bloks are balaneable. Give eahblok a balaned signing. If the utset is a K1 utset, this yields a balanedsigning of G. If the utset is a K2 utset, re-sign eah blok so that the edgeof that K2 has the sign +1. Now take the union of these signings. This yieldsa balaned signing of G again. 2Thus, in the remainder of the proof, we an assume that G is a onnetedbipartite graph with no K1 or K2 utset.Lemma 5.4 Let H be a hole of G. If G 6= H, then H is ontained in a3-path on�guration or a wheel of G.Proof: Choose two nonadjaent nodes u and w in H and a uw-path P =u; x; : : : ; z; w whose intermediate nodes are in G nH suh that P is as shortas possible. Suh a pair of nodes u; w exists sine G 6= H and G has no K1or K2 utset. If x = z, then H is ontained in a 3-path on�guration or awheel. So assume x 6= z. By our hoie of P , u is the only neighbor of x inH and w is the only neighbor of z in H.Let Y be the set of nodes in V (H) � fu; wg that have a neighbor in P .If Y is empty, H is ontained in a 3-path on�guration. So assume Y isnonempty. By the minimality of P , the nodes of Y are pairwise adjaent and32



they are adjaent to u and w. This implies that Y ontains a single node yand that y is adjaent to u and w. But then V (H) [ V (P ) indues a wheelwith enter y. 2For e 2 E(G), let Ge denote the graph with a node vH for eah hole Hof G ontaining e and an edge vHivHj if and only if there exists a wheel or a3-path on�guration ontaining both holes Hi and Hj.Lemma 5.5 Ge is a onneted graph.Proof: Suppose not. Let e = uw. Choose two holes H1 and H2 of G with vH1and vH2 in di�erent onneted omponents of Ge, with the minimum distaned(H1; H2) in G n fu; vg between V (H1) � fu; wg and V (H2) � fu; wg and,subjet to this, with the smallest jV (H1) [ V (H2)j.Let T be a shortest path from V (H1)� fu; vg to V (H2) � fu; vg in G nfu; vg. Note that T is just a node of V (H1)\V (H2) n fu; vg when this set isnonempty. The graph G0 indued by the nodes in H1, H2 and T has no K1or K2 utset. By Lemma 5.4, H1 is ontained in a 3-path on�guration ora wheel of G0. Sine eah edge of a 3-path on�guration or a wheel belongsto two holes, there exists a hole H3 6= H1 ontaining edge e in G0. SinevH1 and vH3 are adjaent in Ge, it follows that vH2 and vH3 are in di�erentomponents of Ge. Sine H1 and H3 are distint holes, H3 ontains a nodein V (H2)[V (T ) nV (H1). If H3 ontains a node in V (T ) n (V (H1)[V (H2)),then V (H1) \ V (H2) = fu; vg and d(H3; H2) < d(H1; H2) a ontradition tothe hoie of H1, H2.Therefore H3 ontains a node x in V (H2) n V (H1). By our hoie of H1,H2, we have that V (H1) \ V (H2) n fu; vg is nonempty. Let P1 = H1 n eand P2 = H2 n e and let s, t be the nodes in V (H1) \ V (H2) suh that thest-subpath P st2 of P2 ontains x and is shortest. Let P st1 be the st-subpath ofP1. Sine H2 is a hole, P st1 ontains an intermediate node z 2 V (H1)nV (H2).Now V (H3) [ V (H2) is ontained in V (H1) [ V (H2) n z, a ontradition toour hoie of H1, H2. 2Proof of Theorem 5.2: We showed already that odd wheels and 3-odd-path on�gurations are not balaneable. It remains to show that, onversely,if G ontains no odd wheel or 3-odd-path on�guration, then G is balane-able. Suppose G is a ounterexample with the smallest number of nodes. By33



Lemma 5.3, G is onneted and has no K1 or K2 utset. Let e = uv be anedge of G. Sine G n fu; vg is onneted, there exists a spanning tree F ofG where u and v are leaves. Arbitrarily sign F and use Camion's signingalgorithm in G n fug and G n fvg. By the minimality of G, these two graphsare balaneable and therefore Camion's algorithm yields a unique signingof all the edges exept e. Furthermore, all holes not going through edge eare balaned. Sine G is not balaneable, any signing of e yields some holesgoing through e that are balaned and some that are not. By Lemma 5.5,there exists a wheel or a 3-path on�guration C ontaining an unbalanedhole H1 and a balaned hole H2 both going through edge e. Now we usethe fat that eah edge of C belongs to exatly two holes of C. Sine theholes of C distint from H1 and H2 do not go through e, they are balaned.Furthermore, applying the above fat to all edges of C, the sum of all labelsin C is 1 mod 2, whih implies that C has an odd number of edges. Thus Cis an odd wheel or a 3-odd-path on�guration, a ontradition. 25.3 Deomposition TheoremsIn this setion, we present deomposition theorems for balaned 0; 1 matriesdue to Conforti, Cornu�ejols and Rao [23℄ and balaneable 0; 1 matries due toConforti, Cornu�ejols, Kapoor and Vu�skovi� [21℄. We state the deompositiontheorems in terms of the bipartite representation of suh matries, as de�nedin Setion 5.1.5.3.1 CutsetsA set S of nodes (edges) of a onneted graph G is a node (edge) utset if thesubgraph of G obtained by removing the nodes (edges) in S, is disonneted.For a node x, let N(x) denote the set of all neighbors of x. In a bipartitegraph, an extended star is de�ned by disjoint subsets T , A, N of V (G) anda node x 2 T suh that(i) N � N(x),(ii) every node of A is adjaent to every node of T ,(iii) A 6= ; and if jT j � 2, then jAj � 2.34
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Figure 2: Extended star

Figure 3: A 1-join, a 2-join and a 6-joinThis onept was introdued by Conforti, Cornu�ejols and Rao [23℄ and isillustrated in Figure 2. An extended star utset is one where T [ A [N is anode utset. An extended star utset with N = ; is alled a bilique utset.An extended star utset having T = fxg is alled a star utset. Note that astar utset is a speial ase of a bilique utset.A graph G has a 1-join if its nodes an be partitioned into sets H1 andH2, with jH1j � 2 and jH2j � 2, so that A1 � H1, A2 � H2 are nonempty,all nodes of A1 are adjaent to all nodes of A2 and these are the only adja-enies between H1 and H2. This onept was introdued by Cunninghamand Edmonds [35℄.A graph G has a 2-join if its nodes an be partitioned into sets H1 andH2 so that A1; B1 � H1, A2; B2 � H2 where A1, B1, A2, B2 are nonemptyand disjoint, all nodes of A1 are adjaent to all nodes of A2, all nodes of B135



Figure 4: R10are adjaent to all nodes of B2 and these are the only adjaenies betweenH1 and H2. Also, for i = 1; 2, Hi has at least one path from Ai to Bi andif Ai and Bi are both of ardinality 1, then the graph indued by Hi is nota hordless path. We also say that E(KA1A2) [ E(KB1B2) is a 2-join of G.This onept was introdued by Cornu�ejols and Cunningham [32℄.In a onneted bipartite graph G, let Ai, i = 1; : : : ; 6, be disjoint non-empty node sets suh that, for eah i, every node in Ai is adjaent to everynode in Ai�1 [ Ai+1 (indies are taken modulo 6), and these are the onlyedges in the subgraph A indued by the node set [6i=1Ai. Assume that E(A)is an edge utset but that no subset of its edges forms a 1-join or a 2-join.Furthermore assume that no onneted omponent of G n E(A) ontains anode in A1 [ A3 [ A5 and a node in A2 [ A4 [ A6. Let G135 be the unionof the omponents of G n E(A) ontaining a node in A1 [ A3 [ A5 and G246be the union of omponents ontaining a node in A2 [ A4 [ A6. The setE(A) onstitutes a 6-join if the graphs G135 and G246 ontain at least fournodes eah. This onept was introdued by Conforti, Cornu�ejols, Kapoorand Vu�skovi� [21℄.
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5.3.2 Main TheoremA graph is strongly balaneable if it is balaneable and ontains no ylewith exatly one hord. This lass of bipartite graphs is well studied in theliterature, see [28℄. We disuss it in Setion 5.5.2. The following graph, whihis not strongly balaneable, plays an important role: R10 is the bipartitegraph on ten nodes de�ned by the yle C = x1; : : : ; x10; x1 of length tenwith hords xixi+5, 1 � i � 5, see Figure 4. Equivalently, R10 is the bipartiterepresentation of the matrix 0BBBBBB� 1 1 0 1 00 1 1 0 11 0 1 1 00 1 0 1 11 0 1 0 1
1CCCCCCA, whih appears in Seymour'sdeomposition of totally unimodular matries [66℄. Note that the signing ofR10 that assigns +1 to the edges of C and �1 to all the other edges is abalaned signing of R10. The orresponding 0;�1 matrix is atually totallyunimodular.Theorem 5.6 (Conforti, Cornu�ejols, Kapoor and Vu�skovi� [21℄ ) A balane-able bipartite graph that is not strongly balaneable is either R10 or ontainsa 2-join, a 6-join or an extended star utset.Figure 5 exhibits examples showing that none of the three kinds of utsetsan be dropped from Theorem 5.6.

Figure 5: Examples showing that no utset an be dropped in the theorem
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Conneted 6-HolesA triad onsists of three internally node-disjoint paths t; : : : ; u; t; : : : ; v andt; : : : ; w, where t, u, v, w are distint nodes and u, v, w belong to the sameside of the bipartition. Furthermore, the graph indued by the nodes of thetriad ontains no other edges than those of the three paths. Nodes u, v andw are alled the attahments of the triad.A fan onsists of a hordless path x; : : : ; y together with a node z adjaentto at least one node of the path, where x, y and z are distint nodes allbelonging to the same side of the bipartition. Nodes x, y and z are alledthe attahments of the fan.A onneted 6-hole � is a graph indued by two disjoint node sets T (�)and B(�) suh that eah indues either a triad or a fan, the attahments ofT (�) and B(�) indue a 6-hole and there are no other adjaenies betweenthe nodes of T (�) and B(�). Figure 6 depits the four types of onneted6-holes.The following theorem onerns the lass of balaneable bipartite graphsthat do not ontain a onneted 6-hole or R10 as indued subgraph.Theorem 5.7 (Conforti, Cornu�ejols and Rao [23℄) A balaneable bipartitegraph not ontaining R10 or a onneted 6-hole as indued subgraph either isstrongly balaneable or ontains a 2-join or an extended star utset.So it remains to �nd a deomposition of balaneable bipartite graphs thatontain R10 or onneted 6-holes as indued subgraph. This is aomplishedas follows.Theorem 5.8 (Conforti, Cornu�ejols, Kapoor and Vu�skovi� [21℄) A balane-able bipartite graph ontaining R10 as a proper indued subgraph has a biliqueutset.Theorem 5.9 ([21℄) A balaneable bipartite graph that ontains a onneted6-hole as indued subgraph, has an extended star utset or a 6-join.Now Theorem 5.6 follows from Theorems 5.7, 5.8 and 5.9.
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Figure 6: The four types of onneted 6-holes
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5.4 Reognition AlgorithmConforti, Cornu�ejols, Kapoor and Vu�skovi� [21℄ give a polynomial time algo-rithm to hek whether a 0;�1 matrix A is balaned. The algorithm workson the bipartite representation G(A) introdued. Sine eah edge of G(A) issigned +1 or �1 aording to the orresponding entry in the matrix A, weall G a signed bipartite graph.Let G be a onneted signed bipartite graph. The removal of a nodeutset or edge utset disonnets G into two or more onneted omponents.From these omponents we onstrut bloks of deomposition by adding somenew nodes and signed edges. We say that a deomposition is balanednesspreserving when it has the following property: all the bloks are balaned ifand only if G itself is balaned. The entral idea in the algorithm is to de-ompose G using balanedness preserving deompositions into a polynomialnumber of basi bloks that an be heked for balanedness in polynomialtime.For the 2-join and 6-join, the bloks an be de�ned so that the deom-positions are balanedness preserving. For the extended star utset it isnot known how to onstrut bloks of deomposition that are balanednesspreserving and generate a polynomial deomposition tree. To overome thisproblem, the algorithm uses the idea of leaning, �rst introdued by Confortiand Rao [29℄, [30℄. An input graph G is �rst transformed into a lean graphG0 (to be de�ned later), and then G0 is deomposed, the deompositions inG0 being balanedness preserving.Reently Zambelli [74℄, based on an idea introdued by Chudnovsky andSeymour for reognizing Berge graphs [15℄, has given a polynomial algorithmto test balanedness in a signed bipartite graph that does not use the de-omposition theorem: it uses leaning and shortest paths tehniques. Wesummarize here the ideas behind his algorithm.The algorithm �rst detets whether the input graph has a 3-odd-pathon�guration (as de�ned in Setion 5.2), based on the following result:In a bipartite graph G, onsider a 3-odd-path on�guration with the small-est number of nodes, indued by paths P1; P2; P3 onneting nodes u and v.Let mi be a middle node of path Pi. In a subgraph obtained from G by re-moving some neighbors of u and v, any shortest path from mi to u and v anbe substituted for Pi yielding another smallest 3-odd-path on�guration.40



This result yields a polynomial time algorithm to detet whether a bipar-tite graph ontains a 3-odd-path on�guartion.A detetable 3-wheel is a wheel (H; v) where v has three neighbors in Hand two of the neighbors of v in H have distane two in H. By an analogousmethod Zambelli shows the following:There exists a polynomial time algorithm that heks whether a bipartitegraph that does not ontain a 3-odd-path on�guration, ontains a detetable3-wheel.By Theorem 5.2, if a bipartite graph ontains a 3-odd-path on�gurationor a detetable 3-wheel, it is not balaneable.A node v is major for a hole H if v has at least three neighbors in H.The following result is proved by Conforti, Cornu�ejols, Kapoor and Vu�skovi�[21℄.Theorem 5.10 Let H be a smallest unbalaned hole in a signed bipartitegraph. Then H ontains two edges suh that every major node for H isadjaent to at least one of the endnodes of these two edges.A signed bipartite graph is lean if it is either balaned or ontains asmallest unbalaned hole H with no major verties for H.Based on the above theorem a polynomial time algorithm is onstrutedin [21℄, that takes as input a signed bipartite graph G and outputs a leangraph G0, suh that G is balaned if and only if G0 is balaned.Let G be a signed bipartite graph that does not ontain a 3-odd pathon�guration nor a detetable 3-wheel. The last step of Zambelli's algorithmis based on the following:Let G be a lean signed bipartite graph that does not ontain a 3-odd-path on�guration or a detetable 3-wheel. There exists a polynomial timealgorithm, based on shortest path methods, that heks whether G is balaned.The algorithms outlined in this setion reognize in polynomial timewhether a signed bipartite graph ontains an unbalaned hole. InterestinglyKapoor [56℄ has shown that it is NP-omplete to reognize whether a signedbipartite graph ontains an unbalaned hole going through a prespei�ednode. 41



5.5 More Deomposition TheoremsSeveral sublasses of balaned matries have beautiful deomposition prop-erties of their own. Totally unimodular matries for example an be deom-posed using a deep theorem of Seymour [66℄. This result is surveyed in [64℄,[62℄ or [31℄ and we do not review it here. We review instead the strutureand properties of several other lasses of balaned matries.5.5.1 Totally Balaned 0; 1 MatriesA 0; 1 matrix A is totally balaned if every hole submatrix of A is the 2� 2submatrix of all 1s. Equivalently, a bipartite graph G is totally balaned ifevery hole of G has length 4. Totally balaned matries arise in loationtheory. Several authors (Golumbi and Goss [45℄, Anstee and Farber [1℄,Ho�man, Kolen and Sakarovith [52℄ and Lubiw [58℄ among others) havegiven properties of these matries.A bilique is a omplete bipartite graph with at least one node from eahside of the bipartition. For a node u, let N(u) denote the set of all neighborsof u. An edge uv is bisimpliial if the node set N(u) [ N(v) indues abilique. The following theorem of Golumbi and Goss [45℄ haraterizestotally balaned bipartite graphs.Theorem 5.11 (Golumbi, Goss, [45℄) A totally balaned bipartite graph hasa bisimpliial edge.This theorem yields a polynomial time algorithm to test whether a bipar-tite graph G is totally balaned: for if e is a bisimpliial edge of G, then Gis totally balaned if and only if G n e is totally balaned.A 0; 1 matrix A is in standard greedy form if it ontains no 2� 2 subma-trix of the form  1 11 0 !, where the order of the rows and olumns in thesubmatrix is the same as in the matrix A. This name omes from the fatthat the linear program max X yiyA �  (14)0 � y � p42



an be solved by a greedy algorithm. Namely, given y1; : : : ; yk�1 suh thatPk�1i=1 aijyi � j; j = 1; : : : ; n and 0 � yi � pi; i = 1; : : : ; k � 1, set yk tothe largest value suh that Pki=1 aijyi � j; j = 1; : : : ; n and 0 � yk � pk:The resulting greedy solution is an optimum solution to this linear program.What does this have to do with totally balaned matries? The answer is inthe next theorem.Theorem 5.12 (Anstee, Farber [1℄, Ho�man, Kolen, Sakarovith [52℄, Lu-biw [58℄) A 0; 1 matrix is totally balaned if and only if its rows and olumnsan be permuted into standard greedy form.This transformation an be performed in time O(nm2) [52℄.Totally balaned 0; 1 matries ome up in various ways in the ontext offaility loation problems on trees. For example, the overing problemmin nX1 jxj + mX1 piziXj aijxj + zi � 1; i = 1; : : : ; m (15)xj; zi 2 f0; 1gan be interpreted as follows: j is the set up ost of establishing a failityat site j, pi is the penalty if lient i is not served by any faility, and aij = 1if a faility at site j an serve lient i, 0 otherwise.When the underlying network is a tree and the failities and lients areloated at nodes of the tree, it is ustomary to assume that a faility at site jan serve all the lients in a neighborhood subtree of j, namely, all the lientswithin distane rj from node j.An intersetion matrix of the set fS1; : : : ; Smg versus fR1; : : : ; Rng, whereSi, i = 1; : : : ; m, and Rj, j = 1; : : : ; n, are subsets of a given set, is de�ned tobe the m� n 0; 1 matrix A = (aij) where aij = 1 if and only if Si \Rj 6= ;.Theorem 5.13 (Giles [44℄) The intersetion matrix of neighborhood subtreesversus nodes of a tree is totally balaned.It follows that the above loation problem on trees (15) an be solvedas a linear program (by Theorem 2.1 and the fat that totally balanedmatries are balaned). In fat, by using the standard greedy form of the43



neighborhood subtrees versus nodes matrix, and by noting that (15) is thedual of (14), the greedy solution desribed earlier for (14) an be used, inonjuntion with omplementary slakness, to obtain an elegant solution ofthe overing problem. The above theorem of Giles has been generalized asfollows.Theorem 5.14 (Tamir [67℄) The intersetion matrix of neighborhood sub-trees versus neighborhood subtrees of a tree is totally balaned.Other lasses of totally balaned 0; 1 matries arising from loation prob-lems on trees an be found in [68℄.5.5.2 Restrited and Strongly Balaned MatriesA signed bipartite graph G is restrited balaned if the weight of every yleof G is ongruent to 0 mod 4. A signed bipartite graph is strongly balaned ifevery yle of weight 2 mod 4 has at least two hords. Restrited (strongly,resp.) balaned 0;�1 matries are de�ned to be the matries whose bipar-tite representation is a restrited (strongly, resp.) balaned bipartite graph.It follows from the de�nition that restrited balaned 0;�1 matries arestrongly balaned, and it an be shown that strongly balaned 0;�1 matri-es are totally unimodular, see [28℄. Restrited (strongly, resp.) balaneable0,1 matries are those where the nonzero entries an be signed +1 or �1 sothat the resulting 0;�1 matrix is restrited (strongly, resp.) balaned.Theorem 5.15 (Conforti, Rao [28℄) A strongly balaneable bipartite grapheither is restrited balaneable or ontains a 1-join.Crama, Hammer and Ibaraki [34℄ de�ne a 0;�1 matrix A to be stronglyunimodular if every basis of (A; I) an be put in triangular form by permu-tation of rows and olumns.Theorem 5.16 (Crama, Hammer, Ibaraki [34℄) A 0;�1 matrix is stronglyunimodular if and only if it is strongly balaned.Yannakakis [73℄ has shown that a restrited balaneable 0; 1 matrix hav-ing both a row and a olumn with more than two nonzero entries has a veryspeial 3-separation: the bipartite graph representation has a 2-join onsist-ing of two single edges. A bipartite graph is 2-bipartite if all the nodes in oneside of the bipartition have degree at most 2.44



Theorem 5.17 (Yannakakis [73℄) A restrited balaneable bipartite grapheither is 2-bipartite or ontains a utnode or ontains a 2-join onsisting oftwo edges.Based on this theorem, Yannakakis designed a linear time algorithm forheking whether a 0;�1 matrix is restrited balaned. A di�erent algorithmfor this reognition problem was given by Conforti and Rao [28℄:Construt a spanning forest in the bipartite graph and hek if there existsa yle of weight 2 mod 4 whih is either fundamental or is the symmetridi�erene of fundamental yles. If no suh yle exists, the signed bipartitegraph is restrited balaned.A bipartite graph is linear if it does not ontain a yle of length 4. Notethat an extended star utset in a linear bipartite graph is always a star utset,due to Condition (ii) in the de�nition of extended star utsets. Conforti andRao [29℄ proved the following theorem for linear balaned bipartite graphs:Theorem 5.18 (Conforti, Rao [29℄) A linear balaned bipartite graph eitheris restrited balaned or ontains a star utset.A yle C in a signed bipartite graph G is unbalaned if the sum of theweights of the edges in C is ongruent to 2 mod 4. It is easy to see that asigned bipartite graph has a balaned yle if and only if it has a balanedhole. It follows that the following two lasses of graphs are equivalent: signedbipartite graphs in whih all yles are unbalaned, and signed bipartitegraphs in whih all holes are unbalaned. These graphs are haraterizedby Conforti, Cornu�ejols and Vu�skovi� in [25℄, where a linear algorithm fortesting membership in this lass is given.5.6 Some Conjetures and Open Questions5.6.1 Eliminating EdgesConjeture 5.19 (Conforti, Cornu�ejols, Kapoor, Vu�skovi� [21℄) In a bal-aned signed bipartite graph G, either every edge belongs to some R10, orsome edge an be removed from G so that the resulting signed bipartite graphis still balaned. 45



The ondition on R10 is neessary sine removing any edge from R10yields a wheel with three spokes or a 3-odd-path on�guration as induedsubgraph. This onjeture implies that given a 0;�1 balaned matrix we ansequentially turn the nonzero entries to zero until every nonzero belongs tosome R10 matrix, while maintaining balaned 0;�1 matries at eah steps.For 0; 1 matries, the above onjeture redues to the following:Conjeture 5.20 (Conforti, Rao [29℄) Every balaned bipartite graph on-tains an edge whih is not the unique hord of a yle.It follows from the de�nition that restrited balaned signed bipartitegraphs are exatly the ones suh that the removal of any subset of edgesleaves a restrited balaned signed bipartite graph.Conjeture 5.19 holds for signed bipartite graphs that are strongly bal-aned sine, by de�nition, the removal of any edge leaves a hord in everyunbalaned yle.Theorem 5.11 shows that the graph obtained by eliminating a bisimpli-ial edge in a totally balaned bipartite graph is totally balaned. HeneConjeture 5.20 holds for totally balaned bipartite graphs.5.6.2 Strengthening the Deomposition TheoremsThe extended star deomposition is not balanedness preserving. This heav-ily a�ets the running time of the reognition algorithm for balanedness.Therefore it would be desirable to �nd strengthenings of Theorem 5.6 thatonly use operations that preserve balanedness. We have been unable toobtain these results even for linear balaned bipartite graphs [30℄.Another diretion in whih the main theorem might be strengthened isas follows.Conjeture 5.21 ([21℄) Every balaneable bipartite graph G whih is notsignable to be totally unimodular has an extended star utset.This onjeture was shown to hold when G is the bipartite representationof a balaned 0; 1 matrix [23℄.Aknowledgments: We would like to thank an anonymous referee andVasek Chv�atal for their helpful suggestions.46
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