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Abstract

A 0,+£1 matrix is balanced if, in every submatrix with two nonzero
entries per row and column, the sum of the entries is a multiple of four.
This definition was introduced by Truemper and generalizes the notion
of balanced 0, 1 matrix introduced by Berge. In this tutorial, we survey
what is currently known about these matrices: polyhedral results,
combinatorial and structural theorems, and recognition algorithms.

1 Introduction

A 0,41 matrix H is a hole matriz if H contains two nonzero entries per
row and per column and no proper submatrix of H has this property. A
hole matrix H is square, say of order n, and its rows and columns can be
permuted so that its nonzero entries are h;;, 1 <@ <mn, h; ;11,1 <i<n-—1,
Iy, and no other. Note that n > 2 and the sum of the entries of H is even.

A hole matrix is odd if the sum of its entries is congruent to 2 mod 4 and
even if the sum of its entries is congruent to 0 mod 4.

A 0, %1 matrix A is balanced if no submatrix of A is an odd hole matrix.
This notion is due to Truemper [69] and it extends the definition of balanced
0,1 matrices introduced by Berge [2]. The class of balanced 0,41 matrices
includes balanced 0,1 matrices and totally unimodular 0, +1 matrices. (A
matrix is totally unimodular if every square submatrix has determinant equal
to 0, +1. The fact that total unimodularity implies balancedness follows, for
example, from Camion’s theorem [11] which states that a 0,+1 matrix A
is totally unimodular if and only if A does not contain a square submatrix
with an even number of nonzero entries per row and per column whose sum
of the entries is congruent to 2 mod 4.) In this tutorial, we survey what is
currently known about balanced matrices: polyhedral results, combinatorial
and structural theorems, and recognition algorithms. Previous surveys on
this topic appear in [22], [18].



2 Integer Polytopes

A polytope is integral if all its vertices have only integer-valued components.
The set packing polytope, defined by an n x m 0,1 matrix A, is

PA)={z e R": Az <1, 0 <z <1},

where 1 denotes a column vector of appropriate dimension whose entries are
all equal to 1.

The next theorem characterizes a balanced 0,1 matrix A in terms of the
set packing polytope P(A) as well as the set covering polytope Q(A) and the
set partitioning polytope R(A):

QA)={z:Az>1,0<x <1},
R(A)={z:Ax =1, 0<z <1},

Theorem 2.1 (Berge [3], Fulkerson, Hoffman, Oppenheim [41]) Let M be a
0,1 matriz. Then the following statements are equivalent:

(i) M is balanced.
(ii) For each submatriz A of M, the set covering polytope Q(A) is integral.
(iii) For each submatriz A of M, the set packing polytope P(A) is integral.

(iv) For each submatriz A of M, the set partitioning polytope R(A) is inte-
gral.

Given a 0,1 matrix A, let p(A), n(A) denote respectively the column
vectors whose i* components p;(A), n;(A) are the number of +1s and the
number of —1s in the i® row of matrix A. Theorem 2.1 extends to 0, £1
matrices as follows.

Theorem 2.2 (Conforti, Cornuéjols [17]) Let M be a 0,%1 matriz. Then
the following statements are equivalent:

(i) M is balanced.

(ii) For each submatriz A of M, the generalized set covering polytope
Q(A) ={z: Az > 1 —n(A4), 0 <z <1} is integral.
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(i1i) For each submatriz A of M, the generalized set packing polytope
P(A)={x: Az <1—-n(A), 0 <z <1} is integral.

(iv) For each submatriz A of M, the generalized set partitioning polytope
R(A)={z: Az =1—-n(A), 0 <z <1} is integral.

To prove this theorem, we need the following two results. The first one is
an easy application of computation of determinants by cofactor expansion.

Remark 2.3 Let H be a 0,%1 hole matriz. If H is an even hole matriz, H
is singular, and if H is an odd hole matriz, det(H) = +2.

Lemma 2.4 If A is a balanced 0,1 matriz, then the generalized set parti-
tioning polytope R(A) is integral.

Proof: Assume that A contradicts the theorem and has the smallest size
(number of rows plus number of columns). Then R(A) is nonempty. Let =
be a fractional vertex of R(A). By the minimality of A, 0 < z; < 1 for all
j. It follows that A is square and nonsingular. So Z is the unique vector in
R(A).

Let a',...,a" denote the row vectors of A and let A; be the (n — 1) x n
submatrix of A obtained by removing row a‘. By the minimality of A, the set
partitioning polytope R(A4;) ={z € R" : Ajt =1 —n(A4;), 0 <z <1} isan
integral polytope. Since A is square and nonsingular, the polytope R(A;) has
exactly two vertices, say #°, 27 Since Z is in R(4;), then T = Az°+(1—-\)z7.
Since 0 < Z; < 1 for all j and z°,2" have 0,1 components, it follows that
29 + 27 = 1. Let k be any row of A;. Since both z° and 27 satisfy a*z =
1 — n(a*), this implies that a1 = 2(1 — n(a¥)), i.e. row k contains exactly
two nonzero entries. Applying this argument to two different matrices A;, it
follows that every row of A contains exactly two nonzero entries.

If A has a column j with only one nonzero entry ay;, remove column j and
row k. Since A is nonsingular, the resulting matrix is also nonsingular and
the absolute value of the determinant is unchanged. Repeating this process,
we get a square nonsingular matrix B of order at least 2, with exactly two
nonzero entries in each row and column (possibly B = A). Now B can be
put in block-diagonal form, where all the submatrices in the diagonal are
hole matrices. Since B is nonsingular, all these submatrices are nonsingular
and by Remark 2.3 they are odd hole matrices. Hence A is not balanced. O
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Theorem 2.5 Let A be a balanced 0, +1 matriz with rows a*,i € S, and let
S1, 59,53 be a partition of S. Then

T(A)={z € R": ax>1-n(da") forielb,
alr =1—n(a’) fori€ Sy,
a'x <1—n(a’) forie S,

0<z<1}

15 an integral polytope.

Proof: If T is a vertex of T'(A), it is a vertex of the polytope obtained
from T'(A) by deleting the inequalities that are not satisfied with equality by
Z. By Theorem 2.4, every vertex of this polytope has 0,1 components. O

Theorem 2.5 does not hold when the upper bound z < 1 is removed. To
see this, consider the matrix

s

I
O O = ===
[ eNoNell S
SO OO = O
SO = O O

e}

-0 O O O
o= O O OO

000O0 O0O0T1

Then (%, %, %, %, 2,1,1) is the unique solution of Ax = 1 —n(A) and there-
fore it is a fractional vertex of the polyhedron T'(A) with x < 1 removed, for

any partition of the rows of A into S, Sy and Sj3.

Proof of Theorem 2.2: Since balanced matrices are closed under taking
submatrices, Theorem 2.5 shows that (i) implies (ii), (iii) and (iv).

Assume that A contains an odd hole submatrix H. By Remark 2.3, the
vector x = (%, e %) is the unique solution of the system Hz =1 — n(H).
This proves all three reverse implications. O

2.1 Total Dual Integrality

A system of linear constraints is totally dual integral (TDI) if, for each integral
objective function vector ¢, the dual linear program has an integral optimal
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solution (if an optimal solution exists). Edmonds and Giles [38] proved that,
if a linear system Az < b is TDI and b is integral, then {z : Az < b} is an
integral polyhedron.

Ay
Theorem 2.6 (Fulkerson, Hoffman, Oppenheim [41]) Let A= | Ay | bea
Az
balanced 0,1 matriz. Then the following linear systemis TDI:
AQ.I' S 1
A3.Z' =1
z > 0.

Theorem 2.6 and the Edmonds-Giles theorem imply Theorem 2.1. In this
section, we prove the following more general result.

A

Theorem 2.7 (Conforti, Cornuéjols [17]) Let A = | Ay | be a balanced
A

0,1 matriz. Then the following linear system is T'DI:

AQ.Z‘ S 1-— TL(AQ)
Agl‘ =1- n(Ag)
0<z<1.

The following transformation of a 0, £1 matrix A into a 0,1 matrix B is
often seen in the literature: to every column a; of A, j =1,...,p, associate
two columns of B, say b} and b}’, where bj; = 1 if a;; = 1, 0 otherwise, and
b = 1if a;; = —1, 0 otherwise. Let D be the 0,1 matrix with p rows and
2p columns df and d} such that df; = df; =1 and df; = dj; = 0 for i # ;.



Ay
Given a 0,=£1 matrix A = | A, | and the associated 0,1 matrix B =
Az

By |, define the following two linear systems:

Az >1—n(A) (3)
Ayr <1 —n(Ay)

Asz =1 —n(A;s)

0<z <1,

Biy>1 (4)
By <1
Bsy=1
Dy=1
y > 0.

A vector x € RP satisfies (3) if and only if the vector (y7,y") = (2,1 —1x)
satisfies (4) and this transformation maps integer vectors into integer vectors.
Hence the polytope defined by (3) is integral if and only if the polytope
defined by (4) is integral. We show that, if A is a balanced 0,41 matrix,
then both (3) and (4) are TDI.

Ay

Lemma 2.8 If A = | Ay | is a balanced 0, %1 matriz, the corresponding
Az

system (4) is TDI.

Proof: The proof is by induction on the number m of rows of B. Let
c = (c,cN) € Z? denote an integral vector and Ry, Ry, R3 the index sets of
the rows of By, By, B3 respectively. The dual of min {cy : y satisfies (4)} is
the linear program



m P
max » u;+ »_vj (5)
i=1 j=1

uB+vD <c¢
UiZO,iERl

Since v; only appears in two of the constraints uB + vD < ¢ and no
constraint contains v; and vy, it follows that any optimal solution to (5)
satisfies

v; = min ( Zb g, =Y ). (6)
i=1

Let (@, 7) be an optimal solution of (5). If @ is integral, then so is @ by (6),
and we are done. So assume that i is fractional. Let b* be the corresponding
row of B, and let B, be the matrix obtained from B by removing row b°. By
induction on the number of rows of B, the system (4) associated with By is
TDI. Hence the system

p
max » u; + Y v

i#l =1
weBy +vD < c— |ug|bt (7)
U; > O,Z € Rl\{g}
u; < 0,1 € Ry\{l}

has an integral optimal solution (%, 7).

Since (@y, ..., U1, Ups1s- - -5 Um, U1, - - -,Up) is a feasible solution to (7)
and Theorem 2.5 shows that >/, u; + E?Zl v; is an integer number,

p p m p
Zuz QN) Z Zul Z@ = al—i_ijj_tﬂ’d
i#l j=1 =, j=1 i=1 j=1
Therefore the vector (u*, v*) = (U1, . . ., Ue—1, U], os1s - - - 5 Uy D1y - - -, Tp)

is integral, is feasible to (5) and has an objective function value not smaller
than (u,v), proving that the system (4) is TDI. O



Proof of Theorem 2.7: Let Ri, Ro, R3 be the index sets of the rows of
Ay, Ay, As. By Lemma 2.8, the linear system (4) associated with (3) is TDI.
Let d € RP be any integral vector. The dual of min {dx : z satisfies (3)} is
the linear program

max w(l—n(A))—t1
wA—t <d (8)
w; > 0,1 € R,
w; S O,Z S R2
t>0.

For every feasible solution (%, ) of (5) with ¢ = (¢, V) = (d,0), we
construct a feasible solution (w,?) of (8) with the same objective function
value as follows:

w = u
When the vector (u, ) is integral, the above transformation yields an integral

vector (w,t). Therefore (8) has an integral optimal solution and the linear
system (3) is TDI. O

4

This theorem does not hold when the upper bound x < 1 is dropped from
the linear system as shown by the example given after Theorem 2.5.

3 Colorings and Hypergraphs

3.1 Bicolorings

A k-coloring of a matrix A is a partition of columns of A into k sets or “colors”
(some of them may be empty). In this section we consider 2-colorings.
Berge [2] introduced the following notion. A 0,1 matrix is bicolorable if
its columns can be 2-colored into blue and red in such a way that every row
with two or more 1s contains a 1 in a blue column and a 1 in a red column.
Equivalently, for no row with at least two 1s all the 1s have the same color.
This notion provides the following characterization of balanced 0, 1 matrices.
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Theorem 3.1 (Berge [2]) A 0,1 matriz A is balanced if and only if every
submatriz of A s bicolorable.

Ghouila-Houri [43] introduced the notion of equitable bicoloring for a 0, +1
matrix A as follows. The columns of A are 2-colored into blue columns and
red columns in such a way that, for every row of A, the sum of the entries in
the blue columns differs from the sum of the entries in the red columns by
at most one.

Theorem 3.2 (Ghouila-Houri [43]) 4 0, £1 matriz A is totally unimodular
if and only if every submatriz of A has an equitable bicoloring.

This theorem generalizes a result of Heller and Tompkins [50] for matrices
with at most two nonzero entries per row.

A 0, %1 matrix A is bicolorable if its columns can be 2-colored into blue
columns and red columns in such a way that every row with two or more
nonzero entries either contains two entries of opposite sign in columns of the
same color, or contains two entries of the same sign in columns of different
colors. Equivalently, for no row with at least two nonzero entries all the 1s
have the same color, say blue, and all the —1’s are red. For a 0,1 matrix,
this definition coincides with Berge’s notion of bicoloring. Clearly, if a 0, £1
matrix has an equitable bicoloring as defined by Ghouila-Houri, then it is
bicolorable. So the theorem below implies that every totally unimodular
matrix is balanced.

Theorem 3.3 (Conforti, Cornuéjols [17]) A 0,£1 matriz A is balanced if
and only if every submatriz of A is bicolorable.

Proof: Assume first that A is balanced and let B be any submatrix of A.
Remove from B any row with fewer than two nonzero entries. Since B is
balanced, so is the matrix (B, —B). It follows from Theorem 2.5 that the
inequalities

Bz > 1-—n(B) (10)
—Bx > 1—n(—B)
0<x <1

10



define an integral polytope. Since it is nonempty (the vector (%, ce %) is a

solution), it contains a 0,1 vector z. Color a column j of B red if z; = 1 and
blue otherwise. By (10), this is a valid bicoloring of B.

Conversely, assume that A contains an odd hole matrix H. We claim
that H is not bicolorable. Suppose otherwise. Since H contains exactly 2
nonzero entries per row, the bicoloring condition shows that the vector of all
zeroes can be obtained by adding the blue columns and subtracting the red
columns. So H is singular, a contradiction to Remark 2.3. O

In Section 4.1, we prove a bicoloring theorem that extends all the above
results (Theorem 4.3).

Cameron and Edmonds [10] showed that the following simple algorithm
finds a bicoloring of a balanced matrix.

Algorithm (Cameron and Edmonds [10])
Input: A 0,+1 matrix A.
Output: A bicoloring of A or a proof that the matrix A is not balanced.

Stop if all columns are colored or if some row is incorrectly colored. Oth-
erwise, color a new column red or blue as follows.

If some row of A forces the color of a column, color this column accord-
ingly.

If no row of A forces the color of a column, arbitrarily color one of the
uncolored columns.

In the above algorithm, a row a’ forces the color of a column when all the
columns corresponding to the nonzero entries of a* have been colored except
one, say column k, and row a’, restricted to the colored columns, violates
the bicoloring condition. In this case, the bicoloring rule dictates the color
of column £.

When the algorithm fails to find a bicoloring, the sequence of forcings
that resulted in an incorrectly colored row identifies an odd hole submatrix
of A.

Note that a matrix A may be bicolorable even if A is not balanced. In

fact, the algorithm may find a bicoloring of A even if A is not balanced.
1 110

For example, if A= | 1 1 0 1 |, the algorithm may color the first two

1 011
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columns blue and the last two red, which is a bicoloring of A. For this reason,
the algorithm cannot be used as a recognition of balancedness.

3.2 k-Colorings

A 0,1 matrix A is k-colorable if there exists a k-coloring of its columns such
that for every row ¢ that has at least two 1s in colors J U L there are entries
a;j = ay = 1 where j € J and [ € L. This is equivalent to saying that every
pair of colors J, L constitutes a bicoloring (as defined in the previous section)
of the submatrix Ay, of A, induced by columns J U L.

Theorem 3.4 (Berge [4]) A 0,1 matriz A is balanced if and only if every
submatriz of A is k-colorable for every k.

Proof: The “if” part follows from Theorem 3.1. We now show that if every
column submatrix of A is bicolorable, then A is k-colorable for every k. By
Theorem 3.1 this proves the result. For a given k-coloring of A, let r(i) be
the number of colors that are represented in row i, i.e. the number of colors
J for which a;; = 1 for some j € J. Consider a k-coloring of A such that the
sum of 7(z) over all rows i of A is maximized. Suppose that this k-coloring
of A does not satisfy the above definition. Then there are colors J, L that
do not give a bicoloring of the matrix A;;. Let J', L' be a bicoloring of Ay,
and consider a new k-coloring of A where J and L are replaced by J' and
L' and all the other colors stay the same. In this new coloring the sum of
(i) over all rows i of A has increased, in comparison to the original one, a
contradiction. O

The above proof shows that if A is a balanced matrix one can efficiently
construct a k-coloring of A, that satisfies the above condition, using the
algorithm of Cameron and Edmonds.

Similarly the notion of equitable bicoloring is extended to the notion of
equitable k-coloring. A k-coloring of a 0, 1 matrix A is equitable if every pair
of colors J, L constitutes an equitable bicoloring of A;;. A similar argument
as in the proof above, gives the following result.

Theorem 3.5 (de Werra [36]) A 0, +1 matriz A is totally unimodular if and
only if every submatriz of A has an equitable k-coloring for every k.
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A 0,41 matrix A is k-colorable if there exists a k-coloring of its columns
so that every pair of colors J, L constitutes a bicoloring of A,.

Conjecture 3.6 (Conforti and Zambelli) A 0,£1 matriz A is balanced if
and only if every submatriz of A is k-colorable for every k.

For k£ = 2 the conjecture is equivalent to Theorem 3.3. This conjecture is
open for k£ = 3. Note that the conjecture holds for every totally unimodular
matrix A since every equitable k-coloring of A is a k-coloring that satisfies
the above condition. De Werra [37] gives a weaker notion of k-colorability of
a 0, £1 matrix and proves that balanced matrices satisfy it.

3.3 Balanced Hypergraphs

A 0,1 matrix A can be represented by a hypergraph. Then the definition of
balancedness for 0,1 matrices is a natural extension of the property of not
containing odd cycles for graphs. In fact, this is the motivation that led Berge
[2] to introduce the notion of balancedness: A hypergraph H = (V, ), where
V' represents the column set and £ represents the row set of A, is balanced
if every odd cycle C' of H has an edge containing at least three nodes of C'.
Equivalently, H is balanced if the associated 0,1 matrix A is balanced. We
refer to Berge [6] for an introduction to the theory of hypergraphs. Several re-
sults on bipartite graphs generalize to balanced hypergraphs, such as Konig’s
bipartite matching theorem, as stated in the next theorem. In a hypergraph,
a matching is a set of pairwise nonintersecting edges and a transversal is a
node set intersecting all the edges.

Theorem 3.7 (Berge, Las Vergnas [7]) In a balanced hypergraph, the mazi-
mum cardinality of a matching equals the minimum cardinality of a transver-
sal.

Proof: Follows from Theorem 2.6 applied with A; = A3 = () and the primal
objective function max}:; x;. O

The next result generalizes a theorem of Gupta [47] on bipartite multi-
graphs.

13



Theorem 3.8 (Berge [5]) In a balanced hypergraph H = (V,E), the mini-
mum number of nodes in an edge equals the maximum cardinality of a family
of disjoint transversals.

Proof: Let €,,;,;, be the minimum cardinality of an edge in H, and let A be
the incidence matrix of 7. Since A is balanced, by Theorem 3.4, A is €,,,-
colorable and this coloring induces a partition of V' in €,,;, colors. Let J be
a color. We show that .J is a transversal of H. Assume not; then there is
an edge e that does not contain any node colored J. Since |e| > €, there
exists a color, say L, that contains at least two nodes of e. This shows that
the submatrix A;; is not bicolored, a contradiction. O

The chromatic number of a hypergraph is the minimum number of colors
needed to color its nodes so that no edge contains two nodes of the same
color.

Theorem 3.9 (Berge [5]) In a balanced hypergraph H = (V, &), the mazi-
mum number of nodes in an edge equals the chromatic number of H.

Proof: Let €4, be the maximum number of nodes in an edge of H, and let
A be the incidence matrix of H. Since A is balanced, it is €,,,,-colorable by
Theorem 3.4. By the same argument as before, such a coloring provides a
coloring of H. O

One of the first results on matchings in graphs is the following celebrated
theorem of Hall.

Theorem 3.10 (Hall [49]) A bipartite graph has no perfect matching if and
only if there exist disjoint node sets R and B such that |B| > |R| and every
edge having one endnode in B has the other in R.

The following result generalizes Hall’s theorem to balanced hypergraphs.
Theorem 3.11 (Conforti, Cornuéjols, Kapoor, Vuskovié¢ [20]) A balanced
hypergraph H = (V,€) has no perfect matching if and only if there exist

disjoint node sets R and B such that |B| > |R| and every edge contains at
least as many nodes in R as in B.

14



We give a short polyhedral proof of Theorem 3.11, due to Schrijver [65].
Huck and Triesh [55] give a combinatorial proof.

Proof: Assume H admits a perfect matching M. Then for every disjoint
subsets R, B of V such that |[BNe| < |RNe| for every e € £, we have:

[Bl=3_ [Bne[< > [RNe|=|R|.
ecM ecM

So the condition is necessary.

We prove sufficiency: Assume H admits no perfect matching and let A
be the node-edge incidence matrix of H. Then by Theorem 2.1, the system
Ay =1, y > 0 defines an integral polytope. Therefore, since ‘H has no perfect
matching, this system has no solution. Hence, by Farkas’ lemma, there is a
vector x such that AT2x > 0 and 172 < 0. We can assume —1 < 2 < 1. Let
z=1-—x. Then 0 < z < 2, ATz < AT1 and 17z > 171 = |V/|. Consider
the linear program:

min  (AT1)Tu + 2%
Au+1Iv >1
u,v > 0.

By Theorem 2.6 its constraints form a TDI system. Since the system
satisfied by z corresponds to the dual of the above linear program, it follows
that it has an integral solution z. So there is an integral vector x such that
ATz >0, 1"2 <0, -1 <2 < 1. Nowset B = {v € V|z, = —1} and
R ={v € Vl]z, =1}. Then B, R satisfy the conditions of the theorem. O

It is well known that a bipartite graph with maximum degree A contains
A edge-disjoint matchings. The same property holds for balanced hyper-
graphs. The following result is equivalent to Theorem 3.9. We provide a
proof based on Theorem 3.11.

Corollary 3.12 The edges of a balanced hypergraph H with maximum degree
A can be partitioned into A matchings.

Proof: By adding edges containing a unique node, we can assume that # is

A-regular. (This operation does not destroy the property of being balanced).
We now show that 7 has a perfect matching. Assume not. By Theorem 3.11,
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there exist disjoint node sets R and B such that |B| > |R| and |[RNe| >
|B N e| for every edge e of H. Adding these inequalities over all edges, we
get |R| > |B| since H is A-regular, a contradiction. So #H contains a perfect
matching M. Removing the edges of M, the result now follows by induction.
([

3.4 2-Section Graphs and Clique-Hypergraphs

The main result of this section was found by Prisner [63].

The 2-section graph of a hypergraph H = (V, &) is the simple undirected
graph G = (V, E) having the same node set as H; two of its nodes are
adjacent if and only if they belong to the same edge of H.

A hypergraph H = (V,€) is a clique-hypergraph if £ is the family of all
the maximal cliques of its 2-section graph G. Obviously, if H is a clique-
hypergraph, H does not contain any repeated or dominated edges. In [48]
an algorithm is given, to list the set I of all maximal cliques of a graph
G = (V, E). Its running time is O(|V| x |E| x |K]). So the clique-hypergraph
of a graph G can be efficiently constructed.

Lemma 3.13 A hypergraph H = (V,E) is a clique-hypergraph if and only if
H contains no dominated or repeated edge, and for every triple of edges, say
e1, s, €3, the set of nodes Viaz3 = (€1 Neg) U (ea Ne3) U (eg Nes) is contained
in some edge of H.

Proof: Let G be the 2-section graph of H. Since Vjo3 is contained in a clique
of G, the condition is obviously necessary. We now prove sufficiency. If H is
not a clique-hypergraph, then some set of nodes pairwise adjacent in G is not
contained in and edge of H; let V' be a minimal such set. Clearly |V'| > 3.
By the minimality of V’, for every v € V', the set V'\v is contained in an edge
e, of H. Assume {vy, ve,v3} C V'. Now V' C (e, Ney, ) U(ey, Ney, ) U (e, Ney,)
and e, €,,, €,, satisfy the above conditions. O

Let us define a hypergraph to be semi-balanced if its incidence matrix
contains no 3 x 3 hole matrix. Balanced hypergraphs are obviously semi-
balanced.

Given hypergraph H = (V,E), let &4, be the subset of &€ consisting of
one copy of every maximal edge of H, and let He = (V, Enaz)-
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Lemma 3.14 Let H = (V,E) be a semi-balanced hypergraph. Then Hyper =
(V, Emaz) 1S a clique-hypergraph.

Proof: By construction, H,,.,; contains no dominated or repeated edge. So
assume H,,q, is not a clique-hypergraph. By Lemma 3.13, H,,., contains
edges ey, eq, e3 such that the set Vjs3 is not contained in any other edge of
Humae- In particular, there exist nodes v € (e1MNey)\ e3 and vy3, vo3 similarly
defined. Let A be the incidence matrix of H. Now the rows and columns of
A corresponding to vi9, U13, U923 and ey, e, €3 induce a 3 x 3 hole matrix. O

Lemma 3.15 Let H = (V,€) be a semi-balanced hypergraph not containing
any repeated edges. Then every edge of Hpae contains two vertices that do
not belong to any other edge of H.

Proof: Obviously H and H,,q, have the same 2-section graph G. Further-
more, since H is semi-balanced, so is H, 4. S0 by Lemma 3.14, H,,q. is the
clique-hypergraph of G. Assume the lemma is false, and let e € &,,,, be
an edge violating the above condition. Obviously, e contains at least three
nodes. Since every pair of nodes in e belong to some other edge of &4,
G is also the 2-section graph of the hypergraph ... \ e. However, since
e is missing, e \ € is not the clique-hypergraph of G. By Lemma 3.14,
Hmaz \ € is not semi-balanced and hence both #H,,,4., H, are not semi-balanced,
a contradiction. O

Corollary 3.16 (Prisner [63]) Let H be a balanced hypergraph that is the
clique-hypergraph of G. Then the number of edges of H is bounded by the
number of edges of G.

Proof: By Lemma 3.15, every edge of H contains an edge of G that belongs
to no other edge of H. O

4 Related Integer Polytopes

4.1 k-Balanced Matrices

We introduce a hierarchy of balanced 0, +1 matrices that contains as its two
extreme cases the balanced and totally unimodular matrices. The following
well known result of Camion will be used.

17



A 0,41 matrix which is not totally unimodular but whose proper sub-
matrices are all totally unimodular is said to be almost totally unimodular.
Camion [12] proved the following:

Theorem 4.1 (Camion [12] and Gomory [cited in [12]]) Let A be an almost
totally unimodular 0, £1 matriz. Then A is square, det A = £2 and A~! has
only j:% entries. Furthermore, each row and each column of A has an even
number of nonzero entries and the sum of all entries in A equals 2 mod 4.

Proof: Clearly A is square, say n X n. If n = 2, then indeed, det A = +2.
Now assume n > 3. Since A is nonsingular, it contains an (n —2) x (n — 2)
—1

nonsingular submatrix B. Let A = ( g g > and U = ( —gB_l ? > .
1 B~C

0 E-DB'C
matrix £ — DB 'C has all entries equal to 0,41. Suppose to the contrary
that £ — DB !C has an entry different from 0, £1 in row ¢ and column j.
Denoting the corresponding entry of E by e;;, the corresponding column of
C by ¢ and row of D by d,

B! 0 B d (1 B¢
—d'B~! 1 d’ €ij N 0 €ij—diB_ICj

and consequently A has an (n — 1) x (n — 1) submatrix with a determinant
different from 0, +1, a contradiction.

Consequently, det A = +det UA = +det(E — DB~ 'C) = £2.

So, every entry of A™! is equal to 0, 43. Suppose A" has an entry equal
to 0, say in row ¢ and column j. Let A be the matrix obtained from A by
removing column 4 and let A7 be the j column of A~! with row i removed.
Then AhJ = v/, where w7 denotes the j* unit vector. Since A has rank n—1,
this linear system of equations has a unique solution 7. Since A is totally
unimodular and / is integral, this solution A’ is integral. Since h? # 0, this
contradicts the fact that every entry of A/ is equal to 0, :I:%. So A~! has only
+3 entries.

This property and the fact that AA~! and A=A are integral, imply that
A has an even number of nonzero entries in each row and column.

Finally, let o denote a column of A™' and S = {i : o; = +1} and
S ={i:a; = —3}. Let k denote the sum of all entries in the columns of A

Then det U = +£1 and UA = ( > . We claim that the 2 x 2
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indexed by S. Since Aq is a unit vector, the sum of all entries in the columns
of A indexed by S equals k+ 2. Since every column of A has an even number
of nonzero entries, k is even, say k = 2p for some integer p. Therefore, the
sum of all entries in A equals 4p + 2. O

For any positive integer k, we say that a 0, +1 matrix A is k-balanced if
A does not contain any almost totally unimodular submatrix with at most
2k nonzero entries in each row. Truemper [70] gives a construction of all the
minimal matrices that are not k-balanced.

Note that every almost totally unimodular matrix contains at least 2
nonzero entries per row and per column. So the odd hole matrices are the
almost totally unimodular matrices with at most 2 nonzero entries per row.
Therefore the balanced matrices are the 1-balanced matrices and the to-
tally unimodular matrices with n columns are the k-balanced matrices for
k > |n/2]. The class of k-balanced matrices was introduced by Truemper
and Chandrasekaran [72] for 0,1 matrices and by Conforti, Cornuéjols and
Truemper [24] for 0, +1 matrices. Let k denote a column vector whose entries
are all equal to k.

Theorem 4.2 (Conforti, Cornuéjols and Truemper [24]) Let A be an m X n
k-balanced 0,41 matriz with rows a*, i € [m], b be a vector with entries b;,
i € [m], and let Sy, Ss, Ss be a partition of [m|. Then

P(Ab)={x € R" : a'w <b fori€ S,
a'z = b; fori € Sy
a‘x > b; fori € S,
0<z<1}

is an integral polytope for all integral vectors b such that —n(A) < b <
k —n(A).

Proof: Assume the contrary and let A be a k-balanced matrix of smallest
order such that P(A,b) has a fractional vertex x for some vector b such that
—n(A) < b <k —n(A) and some partition Sy, Sz, S5 of [m]. Then by the
minimality of A, T satisfies all the constraints in S;US>US3 at equality. So we
may assume S; = S3 = (). Furthermore all the components of x are fractional,
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otherwise let A/ be the column submatrix of A corresponding to the fractional
components of £ and AP be the column submatrix of A corresponding to the
components of T that are equal to 1. Let b/ = b — p(AP) + n(AP). Then
—n(AT) < b/ <k —n(A7) since b/ = b — p(AP) + n(AP) = A’Z > n(A’) and
because b/ = b—p(AP) +n(AP) < b+n(AP) < k—n(A)+n(AP) < k—n(AT).

Since the restriction of Z to is fractional components is a vertex of P(A7, b))
with S; = S5 = (), the minimality of A is contradicted. So A is a square non-
singular matrix which is not totally unimodular. Let G’ be an almost totally
unimodular submatrix of A. Since A is not k-balanced, G contains a row
i such that p;(G) + n;(G) > 2k. Let A® be the submatrix of A obtained
by removing row i and let b* be the corresponding subvector of b. By the
minimality of A, P(A? b*) with S; = S3 = () is an integral polytope and since
A is nonsingular, P(A% ') has exactly two vertices, say 2! and 2%. Since
T is a vector whose components are all fractional and Z can be written as
the convex combination of the 0,1 vectors 2! and 2%, then 2' + 22 = 1. For
¢ =1,2, define

Since z' 4+ 2?2 = 1, it follows that |L(1)] + |L(2)| = pi(G) + ni(G) > 2k.
Assume w.l.o.g. that |L(1)| > k. Now this contradicts

|L(1)| = Zgijzjl- + nZ(G) S bl + nZ(A) S k
J
where the first inequality follows from A’z! = b'. O

This theorem generalizes previous results by Hoffman and Kruskal [51]
for totally unimodular matrices, Berge [3] for 0,1 balanced matrices, Con-
forti and Cornuéjols [17] for 0,41 balanced matrices, and Truemper and
Chandrasekaran [72] for k-balanced 0,1 matrices.

A 0,+1 matrix A has a k-equitable bicoloring if its columns can be parti-
tioned into blue columns and red columns so that:

e the bicoloring is equitable for the row submatrix A’ determined by the
rows of A with at most 2k nonzero entries,

e every row with more than 2k nonzero entries contains k pairwise disjoint
pairs of nonzero entries such that each pair contains either entries of

20



opposite sign in columns of the same color or entries of the same sign
in columns of different colors.

Obviously, an m x n 0, +1 matrix A is bicolorable if and only if A has a
1-equitable bicoloring, while A has an equitable bicoloring if and only if A
has a k-equitable bicoloring for k > |n/2]. The following theorem provides
a new characterization of the class of k-balanced matrices, which generalizes
the bicoloring results of Section 3.1 for balanced and totally unimodular
matrices.

Theorem 4.3 (Conforti, Cornuéjols and Zambelli [26]) A 0, £1 matriz A is
k-balanced if and only if every submatriz of A has a k-equitable bicoloring.

Proof: Assume first that A is k-balanced and let B be any submatrix of A.
Assume, up to row permutation, that

Bl
5= ()

where B’ is the row submatrix of B determined by the rows of B with 2k or
fewer nonzero entries. Consider the system

!
Bz > {B IJ
- 2

—B'z > —{Bll-‘

2
k —n(B") (11)
k —n(—B")
1

B’z
_B".Z'
0<z

IN IV IV

Since B is k-balanced, also ( _BB ) is k-balanced. Therefore the con-

straint matrix of system (11) above is k-balanced. One can readily verify
that —n(B') < |5t| < k- n(B') and —n(-B') < — [B2] <k —n(-B).

2
Therefore, by Theorem 4.2 applied with S; = S = (), system (11) defines

an integral polytope. Since the vector (1,...,3) is a solution for (11), the

polytope is nonempty and contains a 0,1 point Z. Color a column ¢ of B
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blue if z; = 1, red otherwise. It can be easily verified that such a bicoloring
is, in fact, k-equitable.

Conversely, assume that A is not k-balanced. Then A contains an almost
totally unimodular matrix B with at most 2k nonzero elements per row.
Suppose that B has a k-equitable bicoloring, then such a bicoloring must be
equitable since each row has, at most, 2k nonzero elements. By Theorem 4.1,
B has an even number of nonzero elements in each row. Therefore the sum of
the columns colored blue equals the sum of the columns colored red, therefore
B is a singular matrix, a contradiction. O

Given a 0, +1 matrix A and positive integer k, one can find in polynomial
time a k-equitable bicoloring of A or a certificate that A is not k-balanced
as follows:

Find a basic feasible solution of (11). If the solution is not integral, A
is not k-balanced by Theorem 4.2. If the solution is a 0,1 vector, it yields a
k-equitable bicoloring as in the proof of Theorem 4.3.

Note that, as with the algorithm of Cameron and Edmonds [10] discussed
in Section 3.1, a 0,1 vector may be found even when the matrix A is not k-
balanced.

Using the fact that the vector (3, ...,3) is a feasible solution of (11), a
basic feasible solution of (11) can actually be derived in strongly polynomial
time using an algorithm of Megiddo [59].

4.2 Perfect and Ideal 0, +1 Matrices

A 0,1 matrix A is said to be perfect if the set packing polytope P(A) is
integral. A 0,1 matrix A is ideal if the set covering polytope Q(A) is integral.
The study of perfect and ideal 0,1 matrices is a central topic in polyhedral
combinatorics. Theorem 2.1 shows that every balanced 0,1 matrix is both
perfect and ideal.

The integrality of the set packing polytope associated with a (0, 1) matrix
A is related to the notion of perfect graph. A graph G is perfect if, for
every induced subgraph H of G, the chromatic number of H equals the size
of its largest clique. The fundamental connection between the theory of
perfect graphs and integer programming was established by Fulkerson [40],
Lovasz [57] and Chvéatal [14]. The clique-node matriz of a graph G is a 0,1
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matrix whose columns are indexed by the nodes of G' and whose rows are the
incidence vectors of the maximal cliques of G.

Theorem 4.4 (Lovasz [57], Fulkerson [40], Chvatal [14]) Let A be a 0,1
matriz. The set packing polytope P(A) is integral if and only if the rows of
A of maximal support form the clique-node matriz of a perfect graph.

Now we extend the definition of perfect and ideal 0,1 matrices to 0, £1
matrices. A 0,41 matrix A is ideal if the generalized set covering polytope
Q(A) = {z : Az > 1 —n(A), 0 <z < 1} is integral. A 0,£1 matrix
A is perfect if the generalized set packing polytope P(A) = {z : Az <
1 —n(A), 0 <z <1} is integral. By Theorem 2.2, balanced 0, +1 matrices
are both perfect and ideal.

Hooker [54] was the first to relate idealness of a 0, £1 matrix to that of
a family of 0,1 matrices. A similar result for perfection was obtained in [19].
These results were strengthened by Guenin [46] and by Boros, Cepek [8] for
perfection, and by Nobili, Sassano [61] for idealness. The key tool for these
results is the following:

Given a 0, &1 matrix A, let P and R be 0,1 matrices of the same dimen-
sion as A, with entries p;; = 1 if and only if a;; = 1, and r;; = 1 if and only if

: P : .
a;; = —1. The matrix Dy = ( 7 ]I% > is the 0,1 extension of A. Note that
the transformation ™ = z and = = 1 — z maps every vector = in P(A) into

a vector in {(zF,27) > 0: Pzt 4+ Rz~ <1, 27 +2~ = 1} and every vector
z in Q(A) into a vector in {(z,27) >0: Pzt + Re~ > 1, 2" +2~ =1},
So P(A) and Q(A) are respectively the faces of P(D,) and Q(D,), obtained
by setting the inequalites 27 + 2~ < 1 and ™ + 2= > 1 at equality. Thus,
if P(D,) is an integral polytope, then so is P(A). Similarly Q(D,) integral
implies Q(A) integral. To get a converse, we introduce the following notion.

Consider a 0,41 matrix A with two rows a' and a? such that there is
one index k such that agaf = —1 and, for all j # k, aja} = 0. A disjoint
implication of A is the 0, £1 vector a' +a?. For a 0, &1 matrix A, the matrix
AT obtained by recursively adding all disjoint implications and removing all
dominated rows (those whose support is not maximal in the packing case;

those whose support is not minimal in the covering case) is called the disjoint
completion of A. Note that P(A) = P(A") and Q(A) = Q(A™).

23



Theorem 4.5 (Nobili, Sassano [61]) Let A be a 0,1 matriz. Then A is
ideal if and only if the 0,1 matriz D 4+ 15 ideal.

Furthermore A is ideal if and only if min{cz : x € Q(A)} has an integral
optimum x for every vector ¢ € {0, £1, +o0}".

Theorem 4.6 (Guenin [46]) Let A be a 0,+1 matriz such that P(A) is not
contained in any of the hyperplanes {z : v; =0} or {x : x; =1}. Then A is
perfect if and only if the 0,1 matriz D4+ is perfect.

Note that this result does not hold when the assumption on the hyper-

planes {x : z; = 0} and {z : z; = 1} is dropped. For example, con-
1 1 -1

sider A= | —=1 1 1 |. Then P(A) is an integral polytope since it
1 -1 1

only contains the point 0, whereas P(D4+) is not an integral polytope since
A"t = A and P(D,) has the fractional vertex (z,27) where 2% = (3, 3, 3)
and = = 0.

Theorem 4.7 (Guenin [46]) Let A be a 0,£+1 matriz such that P(A) is not
contained in any of the hyperplanes {x : x; = 0} or {x : x; = 1}. Then
A is perfect if and only if max{cz : x € P(A)} admits an integral optimal
solution for every ¢ € {0,+1}". Moreover, if A is perfect, the linear system
Ar <1—-n(A),0<x<1is TDL

This is the natural extension of the Lovész’s theorem for perfect 0,1
matrices. The next theorem characterizes perfect 0,41 matrices in terms
of excluded submatrices. A row of a 0,+1 matrix A is trivial if it contains
at most one nonzero entry. Note that trivial rows can be removed without
changing P(A).

Theorem 4.8 (Guenin [46]) Let A be a 0,%+1 matriz such that P(A) is not

contained in any of the hyperplanes {z : v; =0} or {x : x; =1}. Then A is
perfect if and only if At does not contain

1) ( _i } ) or ( _1 :1 ) as a submatriz, or
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2) a column submatriz which, without its trivial rows, is obtained from a
manimally imperfect 0,1 matriz B by switching signs of all entries in a
subset of the columns of B.

For ideal 0, =1 matrices, a similar characterization was obtained in terms
of excluded “weak minors” by Nobili and Sassano [61].

4.3 Propositional Logic

In propositional logic, atomic propositions xi,...,%j,...,x, can be either
true or false. A truth assignmentis an assignment of ”true” or ”false” to every
atomic proposition. A [literal is an atomic proposition z; or its negation —z;.
A clause is a disjunction of literals and is satisfied by a given truth assignment
if at least one of its literals is true.

A survey of the connections between propositional logic and integer pro-
gramming can be found in [53].

A truth assignment satisfies a set of m clauses

\V z;v(\ —z;) fori=1....m

JEP; JEN;
if and only if the corresponding 0, 1 vector satisfies the system of inequalities

daj— > x;>1—|N;| fori=1...,m.

JEPR; JEN;

The above system of inequalities is of the form
Ax > 1—n(A), (12)
where A is an m x n 0,£1 matrix.

We consider three classical problems in logic. The satisfiability problem
(SAT) associated to a set S of clauses, consists of finding a truth assignment
that satisfies all the clauses in S or showing that none exists. Equivalently,
SAT consists of finding a 0,1 solution = to (12) or showing that none exists.

The weighted mazimum satisfiability problem (MAXSAT) asociated to a
set S of clauses and a weight vector w whose components are indexed by the
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clauses in S consists of finding a truth assignment that maximizes the total
weight of the satisfied clauses. MAXSAT can be formulated as the integer
program:

min Y WS
Arx +s>1—n(A)
z € {0,1}" s € {0,1}™.

Logical inference in propositional logic is associated to a set S of clauses
(the premises) and a clause C' (the conclusion), and consists of deciding
whether every truth assignment that satisfies all the premises in S also sat-
isfies the conclusion C.

Let Ax > 1 —n(A) be the system of inequalities associated with the set
S of premises. The conclusion C' = (V ecp(c) ;) V (Vjen(c) ~2;) cannot be
deduced from S if and only if there exists a 0, 1 vector satisfying the following
system:

Ax > 1 —n(A),
z; =0 forall j € P(C),
z; =1 forall j € N(C).

Equivalently, the conclusion C' can be represented by the inequality

> wi— ) @z 1-|N(O),

JEP(C) JEN(C)

or, more compactly, cx > 1 — |N(C')| where ¢ denotes the n-vector with
components ¢; = 1 for j € P(C), ¢; = —1for j € N(C) and ¢; = 0 otherwise.
Then C' cannot be deduced from S if and only if the integer program

min {cx: Ax > 1 —n(A), z € {0,1}"} (13)

has a solution with value —|N(C')|.

These three problems are NP-hard in general but SAT and logical in-
ference can be solved efficiently for Horn clauses, clauses with at most two
literals and several related classes [9], [13], [T1]. MAXSAT remains NP-hard
for Horn clauses with at most two literals [42]. A set S of clauses is balanced
if the corresponding 0, £1 matrix A defined in (12) is balanced. Similarly, a
set of clauses is ideal if A is ideal. By Theorem 2.2, every balanced set of
clauses is ideal. The vertices of (12) are integral for an ideal set of clauses,
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which implies that the underlying integer program can be solved as a linear
program in that case:

Theorem 4.9 Let S be an ideal set of clauses. Then SAT, MAXSAT and
logical inference can be solved in polynomial time by linear programminyg.

This has consequences for probabilistic logic as defined by Nilsson [60].
Being able to solve MAXSAT in polynomial time provides a polynomial
time separation algorithm for probabilistic logic via the ellipsoid method,
as observed by Georgakopoulos, Kavvadias and Papadimitriou [42]. Hence
probabilistic logic is solvable in polynomial time for ideal sets of clauses.

Lemma 4.10 Let S be an ideal set of clauses. If every clause of S contains
more than one literal then, for every atomic proposition x;, there exist at
least two truth assignments satisfying S, one in which x; is true and one in
which x; is false.

Proof: Since the point z; = 1/2, j = 1,...,n belongs to the polytope
Q(A) ={z: Az >1—-n(A), 0 <z <1} and Q(A) is an integral polytope,
then the above point can be expressed as a convex combination of 0, 1 vectors
in Q(A). Clearly, for every index j, there exists in the convex combination a
0,1 vector with z; = 0 and another with z; = 1. O

A consequence of Lemma 4.10 is that, for an ideal set of clauses, SAT can
be solved more efficiently than by general linear programming.

Theorem 4.11 (Conforti, Cornuéjols [16]) Let S be an ideal set of clauses.
Then S s satisfiable if and only if a recursive application of the following
procedure stops with an empty set of clauses.

Recursive Step

If S =0 then S is satisfiable.

If S contains a clause C' with a single literal (unit clause), set the corre-
sponding atomic proposition x; so that C is satisfied. Eliminate from S all
clauses that become satisfied and remove x; from all the other clauses. If a
clause becomes empty, then S is not satisfiable (unit resolution).

If every clause in S contains at least two literals, choose any atomic propo-
sition xj appearing in a clause of S and add to S one of the clauses x; and
_|.Tj.
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The above algorithm for SAT can also be used to solve the logical inference
problem when S is an ideal set of clauses, see [16]. For balanced (or ideal)
sets of clauses, it is an open problem to solve MAXSAT in polynomial time
by a direct method, without appealing to polynomial time algorithms for
general linear programming.

4.4 Nonlinear 0,1 Optimization

Consider the nonlinear 0, 1 maximization problem

max Xk:ak H T, H (1—x)

JET,  jERy
z € {0,1}"

where, w.l.0.g., all ordered pairs (7}, Ry) are distinct and Ty N Ry = (). This is
an NP-hard problem. A standard linearization of this problem was proposed
by Fortet [39]:

max Zakyk
yp —x; < 0 forallk st. a, >0, for all j €T}
yp +x; < 1forallkst. a,>0, for all j € Ry,
yk—ij—l—Z:cj > 1—|T| for all k s.t. ar, <0
JET}, JERy
Uk, ©; € {0,1} for all k and j.

When the constraint matrix is balanced, this integer program can be
solved as a linear program, as a consequence of Theorem 2.7. Therefore, in
this case, the nonlinear 0,1 maximization problem can be solved in polyno-
mial time. The relevance of balancedness in this context was pointed out by
Crama [33].

5 The Structure of Balanced Matrices

5.1 Bipartite Representation of a 0, £1 Matrix

In an undirected graph, a hole is a chordless cycle of length greater than 3.
A cycle is balanced if its length is a multiple of 4. A graph is balanced if
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all its chordless cycles are balanced. Clearly, a balanced graph is simple and
bipartite.

The bipartite representation of a 0,1 matrix A is the bipartite graph
G(A) = (VT U Ve E) having a node in V" for every row of A, a node in V¢
for every column of A and an edge ¢7 joining nodes ¢ € V" and j € V¢ if and
only if the entry a;; of A equals 1.

Note that a 0,1 matrix is balanced if and only if its bipartite representa-
tion is a balanced graph.

The bipartite representation of a 0,+1 matriz A is the signed bipartite
graph G(A) = (V"UV*, E) having a node in V" for every row of A, a node in
V¢ for every column of A and an edge ij joining nodes : € V" and j € V¢ if
and only if the entry a;; is nonzero. Furthermore a;; is the sign of the edge ij.
This concept extends the one introduced above. Conversely, for a bipartite
graph G = (V"UV*® FE), with signs £1 on its edges, there is a unique matrix
A for which G = G(A) (up to transposition of the matrix, permutation of
rows and permutation of columns).

5.2 Signing 0,1 Matrices: Camion’s Algorithm and
Truemper’s Theorem

A 0, 1 matrix is balanceable if its nonzero entries can be signed +1 or -1 so that
the resulting 0, 1 matrix is balanced. A bipartite graph G is balanceable if
G = G(A) and A is a balanceable matrix.

Camion [12] observed that the signing of a balanceable matrix into a
balanced matrix is unique up to multiplying rows or columns by —1, and he
gave a simple algorithm to obtain this signing. We present Camion’s result
next.

Let A be a 0, £1 matrix and let A" be obtained from A by multiplying a
set S of rows and columns by —1. A is balanced if and only if A" is. Note
that, in the bipartite representation of A, this corresponds to switching signs
on all edges of the cut §(S). Now let R be a 0,1 matrix and G(R) its bipartite
representation. Since every edge of a maximal forest F' of G(R) is contained
in a cut that does not contain any other edge of F', it follows that if R is
balanceable, there exists a balanced signing of R in which the edges of F
have any specified (arbitrary) signing.

This implies that, if a 0,1 matrix A is balanceable, one can find a balanced
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signing of A as follows.

CAMION’S SIGNING ALGORITHM

Input: A 0,1 matrix A and its bipartite representation G, a mazimal
forest F' of G and an arbitrary signing of the edges of F.

Output: A signing of G in which the edges of F' are signed as specified
in the input, and if A is balanceable then the signing is balanced.

Index the edges of G eq,...,e,, so that the edges of F' come first, and
every edge e;, j > |F|+1, together with edges having smaller indices, closes
a hole Hj of G. For j = |F|+1,...,n, signe; so that the sum of the weights
of Hj is congruent to 0 mod 4.

Note that the rows and columns corresponding to the nodes of H; define
a hole submatrix of A.

The fact that there exists an indexing of the edges of G as required in the
signing algorithm follows from the following observation. For j > |F|+ 1, we
can select e; so that the path connecting the endnodes of e; in the subgraph
(V(G),{e1,...,ej_1}) is shortest possible. The hole H; identified this way is
also a hole in G. This forces the signing of e;, since all the other edges of H;
are signed already. So, once the (arbitrary) signing of F' has been chosen,
the signing of G is unique. Therefore we have the following result.

Theorem 5.1 If the input matriz A is a balanceable 0,1 matriz, Camion’s
signing algorithm produces a balanced 0,+1 matrix B. Furthermore every
balanced 0, 1 matriz that arises from A by signing its nonzero entries either
+1 or —1, can be obtained by switching signs on rows and columns of B.

If one applies Camion’s algorithm to the bipartite representation of the
following matrix, the signing produced would leave one of the four holes
unbalanced, proving that the matrix is not balanceable.

1101
1 011
0111

Assume that we have an algorithm to check if a bipartite graph is bal-
anceable. Then, we can check whether a signed bipartite graph G is balanced

30



as follows. Let G’ be a copy of G that is not signed. Test whether G’ is bal-
anceable. If it is not, then GG is not balanced. Otherwise, let ' be a maximal
forest of G'. Run the signing algorithm on G’ with the edges of F signed as
they are in G. Then G is balanced if and only if the signing of G’ coincides
with the signing of G.

We now give a characterization due to Truemper [71] of the bipartite
graphs that are balanceable.

In a bipartite graph, a wheel (H,v) consists of a hole H and a node v
having at least three neighbors in H. The wheel (H, v) is odd if v has an odd
number of neighbors in H. A 3-path configuration is an induced subgraph
consisting of three internally node-disjoint paths connecting two nonadjacent
nodes u and v and containing no edge other than those of the paths. If u and
v are in opposite sides of the bipartition, i.e. the three paths have an odd
number of edges, the 3-path configuration is called a $-odd-path configuration.
In Figure 1, solid lines represent edges and dotted lines represent paths with
at least one edge.

Figure 1: An odd wheel and a 3-odd-path configuration

Both a 3-odd-path configuration and an odd wheel have the following
properties: each edge belongs to exactly two holes and the total number of
edges is odd. Therefore in any signing, the sum of the labels of all holes
is equal to 2 mod 4. This implies that at least one of the holes is not bal-
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anced, showing that neither 3-odd-path configurations nor odd wheels are
balanceable. These are in fact the only minimal bipartite graphs that are
not balanceable, as shown by the following theorem.

Theorem 5.2 (Truemper [71]) A bipartite graph is balanceable if and only if
it does not contain an odd wheel or a 3-odd-path configuration as an induced
subgraph.

We prove Theorem 5.2 following Conforti, Gerards and Kapoor [27].

For a connected bipartite graph G that contains a clique cutset K; with
t nodes, let G, ..., G! be the connected components of G \ K;. The blocks
of G are the subgraphs G; induced by V(G;) UK, for i =1,...,n.

Lemma 5.3 If a connected bipartite graph G contains a K, or Ky cutset,
then G is balanceable if and only if each block is balanceable.

Proof: If G is balanceable, then so are the blocks. Therefore we only have to
prove the converse. Assume that all the blocks are balanceable. Give each
block a balanced signing. If the cutset is a K cutset, this yields a balanced
signing of GG. If the cutset is a K5 cutset, re-sign each block so that the edge
of that K5 has the sign +1. Now take the union of these signings. This yields
a balanced signing of G again. O

Thus, in the remainder of the proof, we can assume that G is a connected
bipartite graph with no K; or K, cutset.

Lemma 5.4 Let H be a hole of G. If G # H, then H is contained in a
3-path configuration or a wheel of G.

Proof: Choose two nonadjacent nodes v and w in H and a uw-path P =
u,x,...,2 w whose intermediate nodes are in G\ H such that P is as short
as possible. Such a pair of nodes u, w exists since G # H and G has no K
or Ky cutset. If + = z, then H is contained in a 3-path configuration or a
wheel. So assume x # z. By our choice of P, u is the only neighbor of z in
H and w is the only neighbor of z in H.

Let Y be the set of nodes in V(H) — {u,w} that have a neighbor in P.
If Y is empty, H is contained in a 3-path configuration. So assume Y is
nonempty. By the minimality of P, the nodes of Y are pairwise adjacent and
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they are adjacent to v and w. This implies that Y contains a single node y
and that y is adjacent to w and w. But then V(H) U V(P) induces a wheel
with center y. O

For e € E(G), let G° denote the graph with a node vy for each hole H
of G containing e and an edge vy, vg, if and only if there exists a wheel or a
3-path configuration containing both holes H; and Hj;.

Lemma 5.5 G° is a connected graph.

Proof: Suppose not. Let e = uw. Choose two holes Hy and Hs of G with vy,
and vy, in different connected components of G¢, with the minimum distance
d(Hy, Hy) in G \ {u,v} between V(H;) — {u,w} and V(Hy) — {u,w} and,
subject to this, with the smallest |V (H;) UV (Hs)].

Let T be a shortest path from V(H;) — {u,v} to V(Hs) — {u,v} in G\
{u,v}. Note that T is just a node of V(H;) NV (H3) \ {u, v} when this set is
nonempty. The graph G’ induced by the nodes in H;, Hy and T has no K;
or Ky cutset. By Lemma 5.4, H; is contained in a 3-path configuration or
a wheel of G'. Since each edge of a 3-path configuration or a wheel belongs
to two holes, there exists a hole H3 # H; containing edge e in G'. Since
vy, and vy, are adjacent in G°, it follows that vy, and vy, are in different
components of G¢. Since H; and Hj are distinct holes, H3 contains a node
in V(Hy)UV(T)\V(H,). If H; contains a node in V(T') \ (V(H,) UV (Hs)),
then V(H,) NV (Hz) = {u,v} and d(Hs, Hy) < d(Hy, Hs) a contradiction to
the choice of Hy, Hs.

Therefore H3 contains a node = in V' (Hy) \ V(H;). By our choice of Hy,
H,, we have that V(H;) N V(Hs) \ {u,v} is nonempty. Let P, = H; \ e
and P, = H, \ e and let s, t be the nodes in V(H;) N V(H,) such that the
st-subpath P;' of P, contains z and is shortest. Let P be the st-subpath of
P;. Since H, is a hole, P}' contains an intermediate node z € V(H;)\ V (H>).
Now V(Hj) UV (H,) is contained in V(H;) UV (H3) \ 2z, a contradiction to
our choice of Hy, H,. O

Proof of Theorem 5.2: We showed already that odd wheels and 3-odd-
path configurations are not balanceable. It remains to show that, conversely,
if G contains no odd wheel or 3-odd-path configuration, then G is balance-
able. Suppose G is a counterexample with the smallest number of nodes. By
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Lemma 5.3, G is connected and has no K; or K, cutset. Let e = uv be an
edge of G. Since G \ {u, v} is connected, there exists a spanning tree F' of
G where u and v are leaves. Arbitrarily sign F' and use Camion’s signing
algorithm in G \ {u} and G'\ {v}. By the minimality of G, these two graphs
are balanceable and therefore Camion’s algorithm yields a unique signing
of all the edges except e. Furthermore, all holes not going through edge e
are balanced. Since G is not balanceable, any signing of e yields some holes
going through e that are balanced and some that are not. By Lemma 5.5,
there exists a wheel or a 3-path configuration C' containing an unbalanced
hole H;, and a balanced hole H; both going through edge e. Now we use
the fact that each edge of C belongs to exactly two holes of C'. Since the
holes of C' distinct from H; and H; do not go through e, they are balanced.
Furthermore, applying the above fact to all edges of C', the sum of all labels
in C'is 1 mod 2, which implies that C' has an odd number of edges. Thus C
is an odd wheel or a 3-odd-path configuration, a contradiction. O

5.3 Decomposition Theorems

In this section, we present decomposition theorems for balanced 0, 1 matrices
due to Conforti, Cornuéjols and Rao [23] and balanceable 0, 1 matrices due to
Conforti, Cornuéjols, Kapoor and Vuskovié [21]. We state the decomposition
theorems in terms of the bipartite representation of such matrices, as defined
in Section 5.1.

5.3.1 Cutsets

A set S of nodes (edges) of a connected graph G is a node (edge) cutset if the
subgraph of G obtained by removing the nodes (edges) in S, is disconnected.

For a node x, let N(z) denote the set of all neighbors of z. In a bipartite
graph, an extended star is defined by disjoint subsets 7', A, N of V(G) and
a node x € T such that

() N c N(),
(ii) every node of A is adjacent to every node of T,

(iii) A # 0 and if [T] > 2, then |A| > 2.
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Figure 2: Extended star

Figure 3: A 1-join, a 2-join and a 6-join

This concept was introduced by Conforti, Cornuéjols and Rao [23] and is
illustrated in Figure 2. An extended star cutset is one where TU AU N is a
node cutset. An extended star cutset with N = () is called a biclique cutset.
An extended star cutset having T' = {x} is called a star cutset. Note that a
star cutset is a special case of a biclique cutset.

A graph G has a I-join if its nodes can be partitioned into sets H; and
H,, with |Hy| > 2 and |H| > 2, so that A; C Hy, Ay C H, are nonempty,
all nodes of A; are adjacent to all nodes of Ay and these are the only adja-
cencies between H; and H,. This concept was introduced by Cunningham
and Edmonds [35].

A graph G has a 2-join if its nodes can be partitioned into sets H; and
H, so that Ay, By C Hy, Ay, By C Hy where Ay, By, Ay, By are nonempty
and disjoint, all nodes of A; are adjacent to all nodes of Ay, all nodes of By
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Figure 4: Ry

are adjacent to all nodes of By and these are the only adjacencies between
H, and H,. Also, for i = 1,2, H; has at least one path from A; to B; and
if A; and B; are both of cardinality 1, then the graph induced by H; is not
a chordless path. We also say that E(Ka,4,) U E(Kp,p,) is a 2-join of G.
This concept was introduced by Cornuéjols and Cunningham [32].

In a connected bipartite graph G, let A;, + = 1,...,6, be disjoint non-
empty node sets such that, for each i, every node in A; is adjacent to every
node in A;_; U A;;; (indices are taken modulo 6), and these are the only
edges in the subgraph A induced by the node set U?_; A;. Assume that E(A)
is an edge cutset but that no subset of its edges forms a 1-join or a 2-join.
Furthermore assume that no connected component of G\ E(A) contains a
node in A; U A3 U A5 and a node in A, U A4 U Ag. Let G135 be the union
of the components of G \ E(A) containing a node in A; U A3 U A5 and Gagg
be the union of components containing a node in A, U Ay U Ag. The set
E(A) constitutes a 6-join if the graphs G135 and Gaye contain at least four
nodes each. This concept was introduced by Conforti, Cornuéjols, Kapoor
and Vuskovié¢ [21].
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5.3.2 Main Theorem

A graph is strongly balanceable if it is balanceable and contains no cycle

with exactly one chord. This class of bipartite graphs is well studied in the

literature, see [28]. We discuss it in Section 5.5.2. The following graph, which

is not strongly balanceable, plays an important role: Ry is the bipartite

graph on ten nodes defined by the cycle C' = xzy,..., 219,21 of length ten

with chords x;z;,5, 1 < ¢ < 5, see Figure 4. Equivalently, R, is the bipartite
11010

(R )

011 1
representation of the matrix [ 1 0 1 0 |, which appears in Seymour’s
010 1

10101
decomposition of totally unimodular matrices [66]. Note that the signing of
Ry that assigns +1 to the edges of C and —1 to all the other edges is a
balanced signing of Ry5. The corresponding 0,£1 matrix is actually totally
unimodular.

Theorem 5.6 (Conforti, Cornuéjols, Kapoor and Vuskovié [21] ) A balance-
able bipartite graph that is not strongly balanceable is either Ryy or contains
a 2-join, a 6-join or an extended star cutset.

Figure 5 exhibits examples showing that none of the three kinds of cutsets
can be dropped from Theorem 5.6.

Q&

Figure 5: Examples showing that no cutset can be dropped in the theorem

37



Connected 6-Holes

A triad consists of three internally node-disjoint paths ¢,...,u; t,...,v and
t,...,w, where t, u, v, w are distinct nodes and u, v, w belong to the same
side of the bipartition. Furthermore, the graph induced by the nodes of the
triad contains no other edges than those of the three paths. Nodes u, v and
w are called the attachments of the triad.

A fan consists of a chordless path x, ...,y together with a node z adjacent
to at least one node of the path, where z, y and z are distinct nodes all
belonging to the same side of the bipartition. Nodes x, y and z are called
the attachments of the fan.

A connected 6-hole X2 is a graph induced by two disjoint node sets T'(X)
and B(X) such that each induces either a triad or a fan, the attachments of
T(X) and B(X) induce a 6-hole and there are no other adjacencies between
the nodes of T'(X) and B(X). Figure 6 depicts the four types of connected
6-holes.

The following theorem concerns the class of balanceable bipartite graphs
that do not contain a connected 6-hole or Ry as induced subgraph.

Theorem 5.7 (Conforti, Cornuéjols and Rao [23]) A balanceable bipartite
graph not containing Ry or a connected 6-hole as induced subgraph either is
strongly balanceable or contains a 2-join or an extended star cutset.

So it remains to find a decomposition of balanceable bipartite graphs that
contain Ry or connected 6-holes as induced subgraph. This is accomplished
as follows.

Theorem 5.8 (Conforti, Cornuéjols, Kapoor and Vuskovié¢ [21]) A balance-
able bipartite graph containing Ry as a proper induced subgraph has a biclique
cutset.

Theorem 5.9 ([21]) A balanceable bipartite graph that contains a connected
6-hole as induced subgraph, has an extended star cutset or a 6-join.

Now Theorem 5.6 follows from Theorems 5.7, 5.8 and 5.9.
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Figure 6: The four types of connected 6-holes
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5.4 Recognition Algorithm

Conforti, Cornuéjols, Kapoor and Vuskovié¢ [21] give a polynomial time algo-
rithm to check whether a 0, +1 matrix A is balanced. The algorithm works
on the bipartite representation G(A) introduced. Since each edge of G(A) is
signed +1 or —1 according to the corresponding entry in the matrix A, we
call G a signed bipartite graph.

Let G be a connected signed bipartite graph. The removal of a node
cutset or edge cutset disconnects G into two or more connected components.
From these components we construct blocks of decomposition by adding some
new nodes and signed edges. We say that a decomposition is balancedness
preserving when it has the following property: all the blocks are balanced if
and only if G itself is balanced. The central idea in the algorithm is to de-
compose G using balancedness preserving decompositions into a polynomial
number of basic blocks that can be checked for balancedness in polynomial
time.

For the 2-join and 6-join, the blocks can be defined so that the decom-
positions are balancedness preserving. For the extended star cutset it is
not known how to construct blocks of decomposition that are balancedness
preserving and generate a polynomial decomposition tree. To overcome this
problem, the algorithm uses the idea of cleaning, first introduced by Conforti
and Rao [29], [30]. An input graph G is first transformed into a clean graph
G' (to be defined later), and then G’ is decomposed, the decompositions in
G' being balancedness preserving.

Recently Zambelli [74], based on an idea introduced by Chudnovsky and
Seymour for recognizing Berge graphs [15], has given a polynomial algorithm
to test balancedness in a signed bipartite graph that does not use the de-
composition theorem: it uses cleaning and shortest paths techniques. We
summarize here the ideas behind his algorithm.

The algorithm first detects whether the input graph has a 3-odd-path
configuration (as defined in Section 5.2), based on the following result:

In a bipartite graph G, consider a 3-odd-path configuration with the small-
est number of nodes, induced by paths Pi, Py, P3 connecting nodes u and v.
Let m; be a middle node of path P;. In a subgraph obtained from G by re-
mowving some neighbors of u and v, any shortest path from m; to u and v can
be substituted for P; yielding another smallest 3-odd-path configuration.
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This result yields a polynomial time algorithm to detect whether a bipar-
tite graph contains a 3-odd-path configuartion.

A detectable 3-wheel is a wheel (H,v) where v has three neighbors in H
and two of the neighbors of v in H have distance two in H. By an analogous
method Zambelli shows the following:

There exists a polynomial time algorithm that checks whether a bipartite
graph that does not contain a 3-odd-path configuration, contains a detectable
3-wheel.

By Theorem 5.2, if a bipartite graph contains a 3-odd-path configuration
or a detectable 3-wheel, it is not balanceable.

A node v is major for a hole H if v has at least three neighbors in H.
The following result is proved by Conforti, Cornuéjols, Kapoor and Vuskovi¢
[21].

Theorem 5.10 Let H be a smallest unbalanced hole in a signed bipartite
graph. Then H contains two edges such that every major node for H 1is
adjacent to at least one of the endnodes of these two edges.

A signed bipartite graph is clean if it is either balanced or contains a
smallest unbalanced hole H with no major vertices for H.

Based on the above theorem a polynomial time algorithm is constructed
in [21], that takes as input a signed bipartite graph G and outputs a clean
graph G', such that G is balanced if and only if G’ is balanced.

Let GG be a signed bipartite graph that does not contain a 3-odd path
configuration nor a detectable 3-wheel. The last step of Zambelli’s algorithm
is based on the following:

Let G be a clean signed bipartite graph that does not contain a 3-odd-
path configuration or a detectable 3-wheel. There exists a polynomial time
algorithm, based on shortest path methods, that checks whether G is balanced.

The algorithms outlined in this section recognize in polynomial time
whether a signed bipartite graph contains an unbalanced hole. Interestingly
Kapoor [56] has shown that it is NP-complete to recognize whether a signed
bipartite graph contains an unbalanced hole going through a prespecified
node.
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5.5 More Decomposition Theorems

Several subclasses of balanced matrices have beautiful decomposition prop-
erties of their own. Totally unimodular matrices for example can be decom-
posed using a deep theorem of Seymour [66]. This result is surveyed in [64],
[62] or [31] and we do not review it here. We review instead the structure
and properties of several other classes of balanced matrices.

5.5.1 Totally Balanced 0,1 Matrices

A 0,1 matrix A is totally balanced if every hole submatrix of A is the 2 x 2
submatrix of all 1s. Equivalently, a bipartite graph G is totally balanced if
every hole of G has length 4. Totally balanced matrices arise in location
theory. Several authors (Golumbic and Goss [45], Anstee and Farber [1],
Hoffman, Kolen and Sakarovitch [52] and Lubiw [58] among others) have
given properties of these matrices.

A biclique is a complete bipartite graph with at least one node from each
side of the bipartition. For a node u, let N(u) denote the set of all neighbors
of u. An edge wv is bisimplicial if the node set N(u) U N(v) induces a
biclique. The following theorem of Golumbic and Goss [45] characterizes
totally balanced bipartite graphs.

Theorem 5.11 (Golumbic, Goss, [45]) A totally balanced bipartite graph has
a bisimplicial edge.

This theorem yields a polynomial time algorithm to test whether a bipar-
tite graph G is totally balanced: for if e is a bisimplicial edge of GG, then G
is totally balanced if and only if G'\ e is totally balanced.

A 0,1 matrix A is in standard greedy form if it contains no 2 x 2 subma-

trix of the form 1 (1) , where the order of the rows and columns in the

submatrix is the same as in the matrix A. This name comes from the fact
that the linear program

mazx Z Yi

yA
0 <y

(14)

IA A
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can be solved by a greedy algorithm. Namely, given yy,...,yr_1 such that

f;llaijyi <¢, j=1l,...,nand 0 < y; <p;, ©=1,...,k—1, set y; to
the largest value such that 3%, ai;y; <c¢j, J=1,...,nand 0 < yp < pg.
The resulting greedy solution is an optimum solution to this linear program.
What does this have to do with totally balanced matrices? The answer is in

the next theorem.

Theorem 5.12 (Anstee, Farber [1], Hoffman, Kolen, Sakarovitch [52], Lu-
biw [58]) A 0,1 matriz is totally balanced if and only if its rows and columns
can be permuted into standard greedy form.

This transformation can be performed in time O(nm?) [52].
Totally balanced 0,1 matrices come up in various ways in the context of
facility location problems on trees. For example, the covering problem

n m
min Z CjT; +Z DiZi
1 1

Zaija:j+zi > 1, izl,...,m (15)
J
.’I?j,ZZ' € {0,1}

can be interpreted as follows: ¢; is the set up cost of establishing a facility
at site j, p; is the penalty if client 7 is not served by any facility, and a;; = 1
if a facility at site j can serve client ¢, 0 otherwise.

When the underlying network is a tree and the facilities and clients are
located at nodes of the tree, it is customary to assume that a facility at site j
can serve all the clients in a neighborhood subtree of j, namely, all the clients
within distance r; from node j.

An intersection matriz of the set {S1,..., S, } versus {Ry, ..., R,}, where
Si,i=1,...,m,and R;, j =1,...,n, are subsets of a given set, is defined to
be the m x n 0,1 matrix A = (a;;) where a;; = 1 if and only if S; N R; # 0.

Theorem 5.13 (Giles [44]) The intersection matriz of neighborhood subtrees
versus nodes of a tree s totally balanced.

It follows that the above location problem on trees (15) can be solved
as a linear program (by Theorem 2.1 and the fact that totally balanced
matrices are balanced). In fact, by using the standard greedy form of the
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neighborhood subtrees versus nodes matrix, and by noting that (15) is the
dual of (14), the greedy solution described earlier for (14) can be used, in
conjunction with complementary slackness, to obtain an elegant solution of
the covering problem. The above theorem of Giles has been generalized as
follows.

Theorem 5.14 (Tamir [67]) The intersection matriz of neighborhood sub-
trees versus neighborhood subtrees of a tree is totally balanced.

Other classes of totally balanced 0, 1 matrices arising from location prob-
lems on trees can be found in [68].

5.5.2 Restricted and Strongly Balanced Matrices

A signed bipartite graph G is restricted balanced if the weight of every cycle
of G is congruent to 0 mod 4. A signed bipartite graph is strongly balanced if
every cycle of weight 2 mod 4 has at least two chords. Restricted (strongly,
resp.) balanced 0,41 matrices are defined to be the matrices whose bipar-
tite representation is a restricted (strongly, resp.) balanced bipartite graph.
It follows from the definition that restricted balanced 0,41 matrices are
strongly balanced, and it can be shown that strongly balanced 0, +1 matri-
ces are totally unimodular, see [28]. Restricted (strongly, resp.) balanceable
0,1 matrices are those where the nonzero entries can be signed +1 or —1 so
that the resulting 0, +1 matrix is restricted (strongly, resp.) balanced.

Theorem 5.15 (Conforti, Rao [28]) A strongly balanceable bipartite graph
either is restricted balanceable or contains a 1-join.

Crama, Hammer and Ibaraki [34] define a 0, £1 matrix A to be strongly
unimodular if every basis of (A, I) can be put in triangular form by permu-
tation of rows and columns.

Theorem 5.16 (Crama, Hammer, Ibaraki [34]) A 0,1 matriz is strongly
unimodular if and only if it s strongly balanced.

Yannakakis [73] has shown that a restricted balanceable 0, 1 matrix hav-
ing both a row and a column with more than two nonzero entries has a very
special 3-separation: the bipartite graph representation has a 2-join consist-
ing of two single edges. A bipartite graph is 2-bipartite if all the nodes in one
side of the bipartition have degree at most 2.
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Theorem 5.17 (Yannakakis [73]) A restricted balanceable bipartite graph
either is 2-bipartite or contains a cutnode or contains a 2-join consisting of
two edges.

Based on this theorem, Yannakakis designed a linear time algorithm for
checking whether a 0, £1 matrix is restricted balanced. A different algorithm
for this recognition problem was given by Conforti and Rao [28]:

Construct a spanning forest in the bipartite graph and check if there exists
a cycle of weight 2 mod 4 which is either fundamental or is the symmetric
difference of fundamental cycles. If no such cycle exists, the signed bipartite
graph s restricted balanced.

A bipartite graph is linear if it does not contain a cycle of length 4. Note
that an extended star cutset in a linear bipartite graph is always a star cutset,
due to Condition (ii) in the definition of extended star cutsets. Conforti and
Rao [29] proved the following theorem for linear balanced bipartite graphs:

Theorem 5.18 (Conforti, Rao [29]) A linear balanced bipartite graph either
18 restricted balanced or contains a star cutset.

A cycle C' in a signed bipartite graph G is unbalanced if the sum of the
weights of the edges in C' is congruent to 2 mod 4. It is easy to see that a
signed bipartite graph has a balanced cycle if and only if it has a balanced
hole. It follows that the following two classes of graphs are equivalent: signed
bipartite graphs in which all cycles are unbalanced, and signed bipartite
graphs in which all holes are unbalanced. These graphs are characterized
by Conforti, Cornuéjols and Vuskovié¢ in [25], where a linear algorithm for
testing membership in this class is given.

5.6 Some Conjectures and Open Questions
5.6.1 Eliminating Edges

Conjecture 5.19 (Conforti, Cornuéjols, Kapoor, Vuskovié [21]) In a bal-
anced signed bipartite graph G, either every edge belongs to some Ry, or
some edge can be removed from G so that the resulting signed bipartite graph
15 still balanced.
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The condition on Ry is necessary since removing any edge from Rig
yields a wheel with three spokes or a 3-odd-path configuration as induced
subgraph. This conjecture implies that given a 0, £1 balanced matrix we can
sequentially turn the nonzero entries to zero until every nonzero belongs to
some R;y matrix, while maintaining balanced 0, £1 matrices at each steps.
For 0,1 matrices, the above conjecture reduces to the following:

Conjecture 5.20 (Conforti, Rao [29]) Fvery balanced bipartite graph con-
tains an edge which is not the unique chord of a cycle.

It follows from the definition that restricted balanced signed bipartite
graphs are exactly the ones such that the removal of any subset of edges
leaves a restricted balanced signed bipartite graph.

Conjecture 5.19 holds for signed bipartite graphs that are strongly bal-
anced since, by definition, the removal of any edge leaves a chord in every
unbalanced cycle.

Theorem 5.11 shows that the graph obtained by eliminating a bisimpli-
cial edge in a totally balanced bipartite graph is totally balanced. Hence
Conjecture 5.20 holds for totally balanced bipartite graphs.

5.6.2 Strengthening the Decomposition Theorems

The extended star decomposition is not balancedness preserving. This heav-
ily affects the running time of the recognition algorithm for balancedness.
Therefore it would be desirable to find strengthenings of Theorem 5.6 that
only use operations that preserve balancedness. We have been unable to
obtain these results even for linear balanced bipartite graphs [30].

Another direction in which the main theorem might be strengthened is
as follows.

Conjecture 5.21 ([21]) Every balanceable bipartite graph G which is not
stgnable to be totally unimodular has an extended star cutset.

This conjecture was shown to hold when G is the bipartite representation
of a balanced 0,1 matrix [23].
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