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Abstra
tA 0;�1 matrix is balan
ed if, in every submatrix with two nonzeroentries per row and 
olumn, the sum of the entries is a multiple of four.This de�nition was introdu
ed by Truemper and generalizes the notionof balan
ed 0; 1 matrix introdu
ed by Berge. In this tutorial, we surveywhat is 
urrently known about these matri
es: polyhedral results,
ombinatorial and stru
tural theorems, and re
ognition algorithms.
1 Introdu
tionA 0;�1 matrix H is a hole matrix if H 
ontains two nonzero entries perrow and per 
olumn and no proper submatrix of H has this property. Ahole matrix H is square, say of order n, and its rows and 
olumns 
an bepermuted so that its nonzero entries are hi;i, 1 � i � n, hi;i+1, 1 � i � n� 1,hn;1 and no other. Note that n � 2 and the sum of the entries of H is even.A hole matrix is odd if the sum of its entries is 
ongruent to 2 mod 4 andeven if the sum of its entries is 
ongruent to 0 mod 4.A 0;�1 matrix A is balan
ed if no submatrix of A is an odd hole matrix.This notion is due to Truemper [69℄ and it extends the de�nition of balan
ed0; 1 matri
es introdu
ed by Berge [2℄. The 
lass of balan
ed 0;�1 matri
esin
ludes balan
ed 0; 1 matri
es and totally unimodular 0;�1 matri
es. (Amatrix is totally unimodular if every square submatrix has determinant equalto 0;�1. The fa
t that total unimodularity implies balan
edness follows, forexample, from Camion's theorem [11℄ whi
h states that a 0;�1 matrix Ais totally unimodular if and only if A does not 
ontain a square submatrixwith an even number of nonzero entries per row and per 
olumn whose sumof the entries is 
ongruent to 2 mod 4.) In this tutorial, we survey what is
urrently known about balan
ed matri
es: polyhedral results, 
ombinatorialand stru
tural theorems, and re
ognition algorithms. Previous surveys onthis topi
 appear in [22℄, [18℄.
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2 Integer PolytopesA polytope is integral if all its verti
es have only integer-valued 
omponents.The set pa
king polytope, de�ned by an n�m 0; 1 matrix A, isP (A) = fx 2 Rn : Ax � 1; 0 � x � 1g;where 1 denotes a 
olumn ve
tor of appropriate dimension whose entries areall equal to 1.The next theorem 
hara
terizes a balan
ed 0; 1 matrix A in terms of theset pa
king polytope P (A) as well as the set 
overing polytope Q(A) and theset partitioning polytope R(A):Q(A) = fx : Ax � 1; 0 � x � 1g;R(A) = fx : Ax = 1; 0 � x � 1g:Theorem 2.1 (Berge [3℄, Fulkerson, Ho�man, Oppenheim [41℄) Let M be a0; 1 matrix. Then the following statements are equivalent:(i) M is balan
ed.(ii) For ea
h submatrix A of M , the set 
overing polytope Q(A) is integral.(iii) For ea
h submatrix A of M , the set pa
king polytope P (A) is integral.(iv) For ea
h submatrix A of M , the set partitioning polytope R(A) is inte-gral.Given a 0;�1 matrix A, let p(A), n(A) denote respe
tively the 
olumnve
tors whose ith 
omponents pi(A), ni(A) are the number of +1s and thenumber of �1s in the ith row of matrix A. Theorem 2.1 extends to 0;�1matri
es as follows.Theorem 2.2 (Conforti, Cornu�ejols [17℄) Let M be a 0;�1 matrix. Thenthe following statements are equivalent:(i) M is balan
ed.(ii) For ea
h submatrix A of M , the generalized set 
overing polytopeQ(A) = fx : Ax � 1� n(A); 0 � x � 1g is integral.3



(iii) For ea
h submatrix A of M , the generalized set pa
king polytopeP (A) = fx : Ax � 1� n(A); 0 � x � 1g is integral.(iv) For ea
h submatrix A of M , the generalized set partitioning polytopeR(A) = fx : Ax = 1� n(A); 0 � x � 1g is integral.To prove this theorem, we need the following two results. The �rst one isan easy appli
ation of 
omputation of determinants by 
ofa
tor expansion.Remark 2.3 Let H be a 0;�1 hole matrix. If H is an even hole matrix, His singular, and if H is an odd hole matrix, det(H) = �2.Lemma 2.4 If A is a balan
ed 0;�1 matrix, then the generalized set parti-tioning polytope R(A) is integral.Proof: Assume that A 
ontradi
ts the theorem and has the smallest size(number of rows plus number of 
olumns). Then R(A) is nonempty. Let �xbe a fra
tional vertex of R(A). By the minimality of A, 0 < �xj < 1 for allj. It follows that A is square and nonsingular. So �x is the unique ve
tor inR(A).Let a1; : : : ; an denote the row ve
tors of A and let Ai be the (n� 1)� nsubmatrix of A obtained by removing row ai. By the minimality of A, the setpartitioning polytope R(Ai) = fx 2 Rn : Aix = 1� n(Ai); 0 � x � 1g is anintegral polytope. Sin
e A is square and nonsingular, the polytope R(Ai) hasexa
tly two verti
es, say xS; xT . Sin
e �x is in R(Ai), then �x = �xS+(1��)xT .Sin
e 0 < �xj < 1 for all j and xS; xT have 0,1 
omponents, it follows thatxS + xT = 1. Let k be any row of Ai. Sin
e both xS and xT satisfy akx =1 � n(ak), this implies that ak1 = 2(1 � n(ak)), i.e. row k 
ontains exa
tlytwo nonzero entries. Applying this argument to two di�erent matri
es Ai, itfollows that every row of A 
ontains exa
tly two nonzero entries.If A has a 
olumn j with only one nonzero entry akj, remove 
olumn j androw k. Sin
e A is nonsingular, the resulting matrix is also nonsingular andthe absolute value of the determinant is un
hanged. Repeating this pro
ess,we get a square nonsingular matrix B of order at least 2, with exa
tly twononzero entries in ea
h row and 
olumn (possibly B = A). Now B 
an beput in blo
k-diagonal form, where all the submatri
es in the diagonal arehole matri
es. Sin
e B is nonsingular, all these submatri
es are nonsingularand by Remark 2.3 they are odd hole matri
es. Hen
e A is not balan
ed. 24



Theorem 2.5 Let A be a balan
ed 0;�1 matrix with rows ai; i 2 S, and letS1; S2; S3 be a partition of S. ThenT (A) = fx 2 Rn : aix � 1� n(ai) for i 2 S1;aix = 1� n(ai) for i 2 S2;aix � 1� n(ai) for i 2 S3;0 � x � 1gis an integral polytope.Proof: If �x is a vertex of T (A), it is a vertex of the polytope obtainedfrom T (A) by deleting the inequalities that are not satis�ed with equality by�x. By Theorem 2.4, every vertex of this polytope has 0; 1 
omponents. 2Theorem 2.5 does not hold when the upper bound x � 1 is removed. Tosee this, 
onsider the matrix
A = 0BBBBBBBBBBB�

1 1 1 1 �1 0 01 1 0 0 0 0 01 0 1 0 0 0 01 0 0 1 0 0 00 0 0 0 �1 1 10 0 0 0 0 1 00 0 0 0 0 0 1
1CCCCCCCCCCCA :

Then (12 ; 12 ; 12 ; 12 ; 2; 1; 1) is the unique solution of Ax = 1�n(A) and there-fore it is a fra
tional vertex of the polyhedron T (A) with x � 1 removed, forany partition of the rows of A into S1, S2 and S3.Proof of Theorem 2.2: Sin
e balan
ed matri
es are 
losed under takingsubmatri
es, Theorem 2.5 shows that (i) implies (ii), (iii) and (iv).Assume that A 
ontains an odd hole submatrix H. By Remark 2.3, theve
tor x = (12 ; : : : ; 12) is the unique solution of the system Hx = 1 � n(H).This proves all three reverse impli
ations. 22.1 Total Dual IntegralityA system of linear 
onstraints is totally dual integral (TDI) if, for ea
h integralobje
tive fun
tion ve
tor 
, the dual linear program has an integral optimal5



solution (if an optimal solution exists). Edmonds and Giles [38℄ proved that,if a linear system Ax � b is TDI and b is integral, then fx : Ax � bg is anintegral polyhedron.Theorem 2.6 (Fulkerson, Ho�man, Oppenheim [41℄) Let A = 0B� A1A2A3 1CA be abalan
ed 0; 1 matrix. Then the following linear systemis TDI:A1x � 1 (1)A2x � 1A3x = 1x � 0:Theorem 2.6 and the Edmonds-Giles theorem imply Theorem 2.1. In thisse
tion, we prove the following more general result.Theorem 2.7 (Conforti, Cornu�ejols [17℄) Let A = 0B� A1A2A3 1CA be a balan
ed0;�1 matrix. Then the following linear system is TDI:A1x � 1� n(A1) (2)A2x � 1� n(A2)A3x = 1� n(A3)0 � x � 1:The following transformation of a 0;�1 matrix A into a 0; 1 matrix B isoften seen in the literature: to every 
olumn aj of A, j = 1; : : : ; p, asso
iatetwo 
olumns of B, say bPj and bNj , where bPij = 1 if aij = 1, 0 otherwise, andbNij = 1 if aij = �1, 0 otherwise. Let D be the 0; 1 matrix with p rows and2p 
olumns dPj and dNj su
h that dPjj = dNjj = 1 and dPij = dNij = 0 for i 6= j.
6



Given a 0;�1 matrix A = 0B� A1A2A3 1CA and the asso
iated 0; 1 matrix B =0B� B1B2B3 1CA, de�ne the following two linear systems:A1x � 1� n(A1) (3)A2x � 1� n(A2)A3x = 1� n(A3)0 � x � 1;B1y � 1 (4)B2y � 1B3y = 1Dy = 1y � 0:A ve
tor x 2 Rp satis�es (3) if and only if the ve
tor (yP ; yN) = (x; 1�x)satis�es (4) and this transformation maps integer ve
tors into integer ve
tors.Hen
e the polytope de�ned by (3) is integral if and only if the polytopede�ned by (4) is integral. We show that, if A is a balan
ed 0;�1 matrix,then both (3) and (4) are TDI.Lemma 2.8 If A = 0B� A1A2A3 1CA is a balan
ed 0;�1 matrix, the 
orrespondingsystem (4) is TDI.Proof: The proof is by indu
tion on the number m of rows of B. Let
 = (
P ; 
N) 2 Z2p denote an integral ve
tor and R1; R2; R3 the index sets ofthe rows of B1; B2; B3 respe
tively. The dual of min f
y : y satis�es (4)g isthe linear program 7



max mXi=1 ui + pXj=1 vj (5)uB + vD � 
ui � 0; i 2 R1ui � 0; i 2 R2:Sin
e vj only appears in two of the 
onstraints uB + vD � 
 and no
onstraint 
ontains vj and vk, it follows that any optimal solution to (5)satis�es vj = min (
Pj � mXi=1 bPijui; 
Nj � mXi=1 bNijui): (6)Let (�u; �v) be an optimal solution of (5). If �u is integral, then so is �v by (6),and we are done. So assume that �u` is fra
tional. Let b` be the 
orrespondingrow of B, and let B` be the matrix obtained from B by removing row b`. Byindu
tion on the number of rows of B, the system (4) asso
iated with B` isTDI. Hen
e the systemmax Xi 6=` ui + pXj=1 vju`B` + vD � 
� b�u`
b` (7)ui � 0; i 2 R1nf`gui � 0; i 2 R2nf`ghas an integral optimal solution (~u; ~v).Sin
e (�u1; : : : ; �u`�1; �u`+1; : : : ; �um; �v1; : : : ; �vp) is a feasible solution to (7)and Theorem 2.5 shows that Pmi=1 �ui +Ppj=1 �vj is an integer number,Xi 6=` ~ui + pXj=1 ~vj � dXi 6=` �ui + pXj=1 �vje = mXi=1 �ui + pXj=1 �vj � b�u`
:Therefore the ve
tor (u�; v�) = (~u1; : : : ; ~u`�1; b�u`
; ~u`+1; : : : ; ~um; ~v1; : : : ; ~vp)is integral, is feasible to (5) and has an obje
tive fun
tion value not smallerthan (�u; �v), proving that the system (4) is TDI. 28



Proof of Theorem 2.7: Let R1; R2; R3 be the index sets of the rows ofA1; A2; A3. By Lemma 2.8, the linear system (4) asso
iated with (3) is TDI.Let d 2 Rp be any integral ve
tor. The dual of min fdx : x satis�es (3)g isthe linear program max w(1� n(A))� t1wA� t � d (8)wi � 0; i 2 R1wi � 0; i 2 R2t � 0:For every feasible solution (�u; �v) of (5) with 
 = (
P ; 
N) = (d; 0), we
onstru
t a feasible solution ( �w; �t) of (8) with the same obje
tive fun
tionvalue as follows:�w = �u�tj = ( 0 if �vj = �Pi bNij �uiPi bPij�ui �Pi bNij �ui � dj if �vj = dj �Pi bPij�ui: (9)When the ve
tor (�u; �v) is integral, the above transformation yields an integralve
tor ( �w; �t). Therefore (8) has an integral optimal solution and the linearsystem (3) is TDI. 2This theorem does not hold when the upper bound x � 1 is dropped fromthe linear system as shown by the example given after Theorem 2.5.3 Colorings and Hypergraphs3.1 Bi
oloringsA k-
oloring of a matrixA is a partition of 
olumns of A into k sets or \
olors"(some of them may be empty). In this se
tion we 
onsider 2-
olorings.Berge [2℄ introdu
ed the following notion. A 0; 1 matrix is bi
olorable ifits 
olumns 
an be 2-
olored into blue and red in su
h a way that every rowwith two or more 1s 
ontains a 1 in a blue 
olumn and a 1 in a red 
olumn.Equivalently, for no row with at least two 1s all the 1s have the same 
olor.This notion provides the following 
hara
terization of balan
ed 0; 1 matri
es.9



Theorem 3.1 (Berge [2℄) A 0; 1 matrix A is balan
ed if and only if everysubmatrix of A is bi
olorable.Ghouila-Houri [43℄ introdu
ed the notion of equitable bi
oloring for a 0;�1matrix A as follows. The 
olumns of A are 2-
olored into blue 
olumns andred 
olumns in su
h a way that, for every row of A, the sum of the entries inthe blue 
olumns di�ers from the sum of the entries in the red 
olumns byat most one.Theorem 3.2 (Ghouila-Houri [43℄) A 0;�1 matrix A is totally unimodularif and only if every submatrix of A has an equitable bi
oloring.This theorem generalizes a result of Heller and Tompkins [50℄ for matri
eswith at most two nonzero entries per row.A 0;�1 matrix A is bi
olorable if its 
olumns 
an be 2-
olored into blue
olumns and red 
olumns in su
h a way that every row with two or morenonzero entries either 
ontains two entries of opposite sign in 
olumns of thesame 
olor, or 
ontains two entries of the same sign in 
olumns of di�erent
olors. Equivalently, for no row with at least two nonzero entries all the 1shave the same 
olor, say blue, and all the �1's are red. For a 0; 1 matrix,this de�nition 
oin
ides with Berge's notion of bi
oloring. Clearly, if a 0;�1matrix has an equitable bi
oloring as de�ned by Ghouila-Houri, then it isbi
olorable. So the theorem below implies that every totally unimodularmatrix is balan
ed.Theorem 3.3 (Conforti, Cornu�ejols [17℄) A 0;�1 matrix A is balan
ed ifand only if every submatrix of A is bi
olorable.Proof: Assume �rst that A is balan
ed and let B be any submatrix of A.Remove from B any row with fewer than two nonzero entries. Sin
e B isbalan
ed, so is the matrix (B;�B). It follows from Theorem 2.5 that theinequalities Bx � 1� n(B) (10)�Bx � 1� n(�B)0 � x � 110



de�ne an integral polytope. Sin
e it is nonempty (the ve
tor (12 ; : : : ; 12) is asolution), it 
ontains a 0,1 ve
tor �x. Color a 
olumn j of B red if �xj = 1 andblue otherwise. By (10), this is a valid bi
oloring of B.Conversely, assume that A 
ontains an odd hole matrix H. We 
laimthat H is not bi
olorable. Suppose otherwise. Sin
e H 
ontains exa
tly 2nonzero entries per row, the bi
oloring 
ondition shows that the ve
tor of allzeroes 
an be obtained by adding the blue 
olumns and subtra
ting the red
olumns. So H is singular, a 
ontradi
tion to Remark 2.3. 2In Se
tion 4.1, we prove a bi
oloring theorem that extends all the aboveresults (Theorem 4.3).Cameron and Edmonds [10℄ showed that the following simple algorithm�nds a bi
oloring of a balan
ed matrix.Algorithm (Cameron and Edmonds [10℄)Input: A 0;�1 matrix A.Output: A bi
oloring of A or a proof that the matrix A is not balan
ed.Stop if all 
olumns are 
olored or if some row is in
orre
tly 
olored. Oth-erwise, 
olor a new 
olumn red or blue as follows.If some row of A for
es the 
olor of a 
olumn, 
olor this 
olumn a

ord-ingly.If no row of A for
es the 
olor of a 
olumn, arbitrarily 
olor one of theun
olored 
olumns.In the above algorithm, a row ai for
es the 
olor of a 
olumn when all the
olumns 
orresponding to the nonzero entries of ai have been 
olored ex
eptone, say 
olumn k, and row ai, restri
ted to the 
olored 
olumns, violatesthe bi
oloring 
ondition. In this 
ase, the bi
oloring rule di
tates the 
olorof 
olumn k.When the algorithm fails to �nd a bi
oloring, the sequen
e of for
ingsthat resulted in an in
orre
tly 
olored row identi�es an odd hole submatrixof A.Note that a matrix A may be bi
olorable even if A is not balan
ed. Infa
t, the algorithm may �nd a bi
oloring of A even if A is not balan
ed.For example, if A = 0B� 1 1 1 01 1 0 11 0 1 1 1CA, the algorithm may 
olor the �rst two11




olumns blue and the last two red, whi
h is a bi
oloring of A. For this reason,the algorithm 
annot be used as a re
ognition of balan
edness.3.2 k-ColoringsA 0; 1 matrix A is k-
olorable if there exists a k-
oloring of its 
olumns su
hthat for every row i that has at least two 1s in 
olors J [L there are entriesaij = ail = 1 where j 2 J and l 2 L. This is equivalent to saying that everypair of 
olors J; L 
onstitutes a bi
oloring (as de�ned in the previous se
tion)of the submatrix AJL of A, indu
ed by 
olumns J [ L.Theorem 3.4 (Berge [4℄) A 0; 1 matrix A is balan
ed if and only if everysubmatrix of A is k-
olorable for every k.Proof: The \if" part follows from Theorem 3.1. We now show that if every
olumn submatrix of A is bi
olorable, then A is k-
olorable for every k. ByTheorem 3.1 this proves the result. For a given k-
oloring of A, let r(i) bethe number of 
olors that are represented in row i, i.e. the number of 
olorsJ for whi
h aij = 1 for some j 2 J . Consider a k-
oloring of A su
h that thesum of r(i) over all rows i of A is maximized. Suppose that this k-
oloringof A does not satisfy the above de�nition. Then there are 
olors J; L thatdo not give a bi
oloring of the matrix AJL. Let J 0; L0 be a bi
oloring of AJL,and 
onsider a new k-
oloring of A where J and L are repla
ed by J 0 andL0 and all the other 
olors stay the same. In this new 
oloring the sum ofr(i) over all rows i of A has in
reased, in 
omparison to the original one, a
ontradi
tion. 2The above proof shows that if A is a balan
ed matrix one 
an eÆ
iently
onstru
t a k-
oloring of A, that satis�es the above 
ondition, using thealgorithm of Cameron and Edmonds.Similarly the notion of equitable bi
oloring is extended to the notion ofequitable k-
oloring. A k-
oloring of a 0;�1 matrix A is equitable if every pairof 
olors J; L 
onstitutes an equitable bi
oloring of AJL. A similar argumentas in the proof above, gives the following result.Theorem 3.5 (de Werra [36℄) A 0;�1 matrix A is totally unimodular if andonly if every submatrix of A has an equitable k-
oloring for every k.12



A 0;�1 matrix A is k-
olorable if there exists a k-
oloring of its 
olumnsso that every pair of 
olors J; L 
onstitutes a bi
oloring of AJL.Conje
ture 3.6 (Conforti and Zambelli) A 0;�1 matrix A is balan
ed ifand only if every submatrix of A is k-
olorable for every k.For k = 2 the 
onje
ture is equivalent to Theorem 3.3. This 
onje
ture isopen for k = 3. Note that the 
onje
ture holds for every totally unimodularmatrix A sin
e every equitable k-
oloring of A is a k-
oloring that satis�esthe above 
ondition. De Werra [37℄ gives a weaker notion of k-
olorability ofa 0;�1 matrix and proves that balan
ed matri
es satisfy it.3.3 Balan
ed HypergraphsA 0; 1 matrix A 
an be represented by a hypergraph. Then the de�nition ofbalan
edness for 0; 1 matri
es is a natural extension of the property of not
ontaining odd 
y
les for graphs. In fa
t, this is the motivation that led Berge[2℄ to introdu
e the notion of balan
edness: A hypergraph H = (V; E), whereV represents the 
olumn set and E represents the row set of A, is balan
edif every odd 
y
le C of H has an edge 
ontaining at least three nodes of C.Equivalently, H is balan
ed if the asso
iated 0; 1 matrix A is balan
ed. Werefer to Berge [6℄ for an introdu
tion to the theory of hypergraphs. Several re-sults on bipartite graphs generalize to balan
ed hypergraphs, su
h as K�onig'sbipartite mat
hing theorem, as stated in the next theorem. In a hypergraph,a mat
hing is a set of pairwise noninterse
ting edges and a transversal is anode set interse
ting all the edges.Theorem 3.7 (Berge, Las Vergnas [7℄) In a balan
ed hypergraph, the maxi-mum 
ardinality of a mat
hing equals the minimum 
ardinality of a transver-sal.Proof: Follows from Theorem 2.6 applied with A1 = A3 = ; and the primalobje
tive fun
tion maxPj xj. 2The next result generalizes a theorem of Gupta [47℄ on bipartite multi-graphs. 13



Theorem 3.8 (Berge [5℄) In a balan
ed hypergraph H = (V; E), the mini-mum number of nodes in an edge equals the maximum 
ardinality of a familyof disjoint transversals.Proof: Let �min be the minimum 
ardinality of an edge in H, and let A bethe in
iden
e matrix of H. Sin
e A is balan
ed, by Theorem 3.4, A is �min-
olorable and this 
oloring indu
es a partition of V in �min 
olors. Let J bea 
olor. We show that J is a transversal of H. Assume not; then there isan edge e that does not 
ontain any node 
olored J . Sin
e jej � �min, thereexists a 
olor, say L, that 
ontains at least two nodes of e. This shows thatthe submatrix AJL is not bi
olored, a 
ontradi
tion. 2The 
hromati
 number of a hypergraph is the minimum number of 
olorsneeded to 
olor its nodes so that no edge 
ontains two nodes of the same
olor.Theorem 3.9 (Berge [5℄) In a balan
ed hypergraph H = (V; E), the maxi-mum number of nodes in an edge equals the 
hromati
 number of H.Proof: Let �max be the maximum number of nodes in an edge of H, and letA be the in
iden
e matrix of H. Sin
e A is balan
ed, it is �max-
olorable byTheorem 3.4. By the same argument as before, su
h a 
oloring provides a
oloring of H. 2One of the �rst results on mat
hings in graphs is the following 
elebratedtheorem of Hall.Theorem 3.10 (Hall [49℄) A bipartite graph has no perfe
t mat
hing if andonly if there exist disjoint node sets R and B su
h that jBj > jRj and everyedge having one endnode in B has the other in R.The following result generalizes Hall's theorem to balan
ed hypergraphs.Theorem 3.11 (Conforti, Cornu�ejols, Kapoor, Vu�skovi�
 [20℄) A balan
edhypergraph H = (V; E) has no perfe
t mat
hing if and only if there existdisjoint node sets R and B su
h that jBj > jRj and every edge 
ontains atleast as many nodes in R as in B. 14



We give a short polyhedral proof of Theorem 3.11, due to S
hrijver [65℄.Hu
k and Triesh [55℄ give a 
ombinatorial proof.Proof: Assume H admits a perfe
t mat
hing M . Then for every disjointsubsets R, B of V su
h that jB \ ej � jR \ ej for every e 2 E , we have:jBj = Xe2M jB \ ej � Xe2M jR \ ej = jRj:So the 
ondition is ne
essary.We prove suÆ
ien
y: Assume H admits no perfe
t mat
hing and let Abe the node-edge in
iden
e matrix of H. Then by Theorem 2.1, the systemAy = 1; y � 0 de�nes an integral polytope. Therefore, sin
eH has no perfe
tmat
hing, this system has no solution. Hen
e, by Farkas' lemma, there is ave
tor x su
h that ATx � 0 and 1Tx < 0. We 
an assume �1 � x � 1. Letz = 1 � x. Then 0 � z � 2, AT z � AT1 and 1T z > 1T1 = jV j. Considerthe linear program: min (AT1)Tu+ 2TvAu+ Iv � 1u; v � 0:By Theorem 2.6 its 
onstraints form a TDI system. Sin
e the systemsatis�ed by z 
orresponds to the dual of the above linear program, it followsthat it has an integral solution z. So there is an integral ve
tor x su
h thatATx � 0; 1Tx < 0; �1 � x � 1. Now set B = fv 2 V jxv = �1g andR = fv 2 V jxv = 1g. Then B, R satisfy the 
onditions of the theorem. 2It is well known that a bipartite graph with maximum degree � 
ontains� edge-disjoint mat
hings. The same property holds for balan
ed hyper-graphs. The following result is equivalent to Theorem 3.9. We provide aproof based on Theorem 3.11.Corollary 3.12 The edges of a balan
ed hypergraph H with maximum degree� 
an be partitioned into � mat
hings.Proof: By adding edges 
ontaining a unique node, we 
an assume that H is�-regular. (This operation does not destroy the property of being balan
ed).We now show thatH has a perfe
t mat
hing. Assume not. By Theorem 3.11,15



there exist disjoint node sets R and B su
h that jBj > jRj and jR \ ej �jB \ ej for every edge e of H. Adding these inequalities over all edges, weget jRj � jBj sin
e H is �-regular, a 
ontradi
tion. So H 
ontains a perfe
tmat
hingM . Removing the edges ofM , the result now follows by indu
tion.23.4 2-Se
tion Graphs and Clique-HypergraphsThe main result of this se
tion was found by Prisner [63℄.The 2-se
tion graph of a hypergraph H = (V; E) is the simple undire
tedgraph G = (V;E) having the same node set as H; two of its nodes areadja
ent if and only if they belong to the same edge of H.A hypergraph H = (V; E) is a 
lique-hypergraph if E is the family of allthe maximal 
liques of its 2-se
tion graph G. Obviously, if H is a 
lique-hypergraph, H does not 
ontain any repeated or dominated edges. In [48℄an algorithm is given, to list the set K of all maximal 
liques of a graphG = (V;E). Its running time is O(jV j� jEj� jKj). So the 
lique-hypergraphof a graph G 
an be eÆ
iently 
onstru
ted.Lemma 3.13 A hypergraph H = (V; E) is a 
lique-hypergraph if and only ifH 
ontains no dominated or repeated edge, and for every triple of edges, saye1; e2; e3, the set of nodes V123 = (e1 \ e2) [ (e2 \ e3) [ (e1 \ e3) is 
ontainedin some edge of H.Proof: Let G be the 2-se
tion graph of H. Sin
e V123 is 
ontained in a 
liqueof G, the 
ondition is obviously ne
essary. We now prove suÆ
ien
y. If H isnot a 
lique-hypergraph, then some set of nodes pairwise adja
ent in G is not
ontained in and edge of H; let V 0 be a minimal su
h set. Clearly jV 0j � 3.By the minimality of V 0, for every v 2 V 0, the set V 0nv is 
ontained in an edgeev ofH. Assume fv1; v2; v3g � V 0. Now V 0 � (ev1\ev2)[(ev1\ev3)[(ev2\ev3)and ev1 ; ev2 ; ev3 satisfy the above 
onditions. 2Let us de�ne a hypergraph to be semi-balan
ed if its in
iden
e matrix
ontains no 3 � 3 hole matrix. Balan
ed hypergraphs are obviously semi-balan
ed.Given hypergraph H = (V; E), let Emax be the subset of E 
onsisting ofone 
opy of every maximal edge of H, and let Hmax = (V; Emax).16



Lemma 3.14 Let H = (V; E) be a semi-balan
ed hypergraph. Then Hmax =(V; Emax) is a 
lique-hypergraph.Proof: By 
onstru
tion, Hmax 
ontains no dominated or repeated edge. Soassume Hmax is not a 
lique-hypergraph. By Lemma 3.13, Hmax 
ontainsedges e1; e2; e3 su
h that the set V123 is not 
ontained in any other edge ofHmax. In parti
ular, there exist nodes v12 2 (e1\e2)ne3 and v13; v23 similarlyde�ned. Let A be the in
iden
e matrix of H. Now the rows and 
olumns ofA 
orresponding to v12; v13; v23 and e1; e2; e3 indu
e a 3� 3 hole matrix. 2Lemma 3.15 Let H = (V; E) be a semi-balan
ed hypergraph not 
ontainingany repeated edges. Then every edge of Hmax 
ontains two verti
es that donot belong to any other edge of H.Proof: Obviously H and Hmax have the same 2-se
tion graph G. Further-more, sin
e H is semi-balan
ed, so is Hmax. So by Lemma 3.14, Hmax is the
lique-hypergraph of G. Assume the lemma is false, and let e 2 Emax bean edge violating the above 
ondition. Obviously, e 
ontains at least threenodes. Sin
e every pair of nodes in e belong to some other edge of Emax,G is also the 2-se
tion graph of the hypergraph Hmax n e. However, sin
ee is missing, Hmax n e is not the 
lique-hypergraph of G. By Lemma 3.14,Hmaxne is not semi-balan
ed and hen
e bothHmax,H, are not semi-balan
ed,a 
ontradi
tion. 2Corollary 3.16 (Prisner [63℄) Let H be a balan
ed hypergraph that is the
lique-hypergraph of G. Then the number of edges of H is bounded by thenumber of edges of G.Proof: By Lemma 3.15, every edge of H 
ontains an edge of G that belongsto no other edge of H. 24 Related Integer Polytopes4.1 k-Balan
ed Matri
esWe introdu
e a hierar
hy of balan
ed 0;�1 matri
es that 
ontains as its twoextreme 
ases the balan
ed and totally unimodular matri
es. The followingwell known result of Camion will be used.17



A 0;�1 matrix whi
h is not totally unimodular but whose proper sub-matri
es are all totally unimodular is said to be almost totally unimodular.Camion [12℄ proved the following:Theorem 4.1 (Camion [12℄ and Gomory [
ited in [12℄℄) Let A be an almosttotally unimodular 0;�1 matrix. Then A is square, detA = �2 and A�1 hasonly �12 entries. Furthermore, ea
h row and ea
h 
olumn of A has an evennumber of nonzero entries and the sum of all entries in A equals 2 mod 4.Proof: Clearly A is square, say n � n. If n = 2, then indeed, det A = �2.Now assume n � 3. Sin
e A is nonsingular, it 
ontains an (n� 2)� (n� 2)nonsingular submatrix B. Let A =  B CD E ! and U =  B�1 0�DB�1 I ! :Then det U = �1 and UA =  I B�1C0 E �DB�1C ! : We 
laim that the 2� 2matrix E �DB�1C has all entries equal to 0;�1. Suppose to the 
ontrarythat E � DB�1C has an entry di�erent from 0;�1 in row i and 
olumn j.Denoting the 
orresponding entry of E by eij, the 
orresponding 
olumn ofC by 
j and row of D by di, B�1 0�diB�1 1 ! B 
jdi eij ! =  I B�1
j0 eij � diB�1
j !and 
onsequently A has an (n� 1)� (n� 1) submatrix with a determinantdi�erent from 0;�1, a 
ontradi
tion.Consequently, det A = �det UA = �det(E �DB�1C) = �2.So, every entry of A�1 is equal to 0;�12 . Suppose A�1 has an entry equalto 0, say in row i and 
olumn j. Let �A be the matrix obtained from A byremoving 
olumn i and let hj be the jth 
olumn of A�1 with row i removed.Then �Ahj = uj, where uj denotes the jth unit ve
tor. Sin
e �A has rank n�1,this linear system of equations has a unique solution hj. Sin
e �A is totallyunimodular and uj is integral, this solution hj is integral. Sin
e hj 6= 0, this
ontradi
ts the fa
t that every entry of hj is equal to 0;�12 . So A�1 has only�12 entries.This property and the fa
t that AA�1 and A�1A are integral, imply thatA has an even number of nonzero entries in ea
h row and 
olumn.Finally, let � denote a 
olumn of A�1 and S = fi : �i = +12g and�S = fi : �i = �12g. Let k denote the sum of all entries in the 
olumns of A18



indexed by �S. Sin
e A� is a unit ve
tor, the sum of all entries in the 
olumnsof A indexed by S equals k+2. Sin
e every 
olumn of A has an even numberof nonzero entries, k is even, say k = 2p for some integer p. Therefore, thesum of all entries in A equals 4p+ 2. 2For any positive integer k, we say that a 0;�1 matrix A is k-balan
ed ifA does not 
ontain any almost totally unimodular submatrix with at most2k nonzero entries in ea
h row. Truemper [70℄ gives a 
onstru
tion of all theminimal matri
es that are not k-balan
ed.Note that every almost totally unimodular matrix 
ontains at least 2nonzero entries per row and per 
olumn. So the odd hole matri
es are thealmost totally unimodular matri
es with at most 2 nonzero entries per row.Therefore the balan
ed matri
es are the 1-balan
ed matri
es and the to-tally unimodular matri
es with n 
olumns are the k-balan
ed matri
es fork � bn=2
. The 
lass of k-balan
ed matri
es was introdu
ed by Truemperand Chandrasekaran [72℄ for 0,1 matri
es and by Conforti, Cornu�ejols andTruemper [24℄ for 0;�1 matri
es. Let k denote a 
olumn ve
tor whose entriesare all equal to k.Theorem 4.2 (Conforti, Cornu�ejols and Truemper [24℄) Let A be an m� nk-balan
ed 0;�1 matrix with rows ai, i 2 [m℄, b be a ve
tor with entries bi,i 2 [m℄, and let S1; S2; S3 be a partition of [m℄. ThenP (A; b) = fx 2 Rn : aix � bi for i 2 S1aix = bi for i 2 S2aix � bi for i 2 S30 � x � 1gis an integral polytope for all integral ve
tors b su
h that �n(A) � b �k� n(A).Proof: Assume the 
ontrary and let A be a k-balan
ed matrix of smallestorder su
h that P (A; b) has a fra
tional vertex �x for some ve
tor b su
h that�n(A) � b � k � n(A) and some partition S1; S2; S3 of [m℄. Then by theminimality of A, �x satis�es all the 
onstraints in S1[S2[S3 at equality. So wemay assume S1 = S3 = ;. Furthermore all the 
omponents of x are fra
tional,19



otherwise let Af be the 
olumn submatrix of A 
orresponding to the fra
tional
omponents of �x and Ap be the 
olumn submatrix of A 
orresponding to the
omponents of �x that are equal to 1. Let bf = b � p(Ap) + n(Ap). Then�n(Af ) � bf � k� n(Af ) sin
e bf = b� p(Ap) + n(Ap) = Af �x � n(Af) andbe
ause bf = b�p(Ap)+n(Ap) � b+n(Ap) � k�n(A)+n(Ap) � k�n(Af ).Sin
e the restri
tion of �x to is fra
tional 
omponents is a vertex of P (Af ; bf )with S1 = S3 = ;, the minimality of A is 
ontradi
ted. So A is a square non-singular matrix whi
h is not totally unimodular. Let G be an almost totallyunimodular submatrix of A. Sin
e A is not k-balan
ed, G 
ontains a rowi su
h that pi(G) + ni(G) > 2k. Let Ai be the submatrix of A obtainedby removing row i and let bi be the 
orresponding subve
tor of b. By theminimality of A, P (Ai; bi) with S1 = S3 = ; is an integral polytope and sin
eA is nonsingular, P (Ai; bi) has exa
tly two verti
es, say z1 and z2. Sin
e�x is a ve
tor whose 
omponents are all fra
tional and �x 
an be written asthe 
onvex 
ombination of the 0; 1 ve
tors z1 and z2, then z1 + z2 = 1. For` = 1; 2, de�neL(`) = fj; either gij = 1 and zì = 1 or gij = �1 and zì = 0g:Sin
e z1 + z2 = 1, it follows that jL(1)j + jL(2)j = pi(G) + ni(G) > 2k.Assume w.l.o.g. that jL(1)j > k. Now this 
ontradi
tsjL(1)j =Xj gijz1j + ni(G) � bi + ni(A) � kwhere the �rst inequality follows from Aiz1 = bi. 2This theorem generalizes previous results by Ho�man and Kruskal [51℄for totally unimodular matri
es, Berge [3℄ for 0; 1 balan
ed matri
es, Con-forti and Cornu�ejols [17℄ for 0;�1 balan
ed matri
es, and Truemper andChandrasekaran [72℄ for k-balan
ed 0,1 matri
es.A 0;�1 matrix A has a k-equitable bi
oloring if its 
olumns 
an be parti-tioned into blue 
olumns and red 
olumns so that:� the bi
oloring is equitable for the row submatrix A0 determined by therows of A with at most 2k nonzero entries,� every row with more than 2k nonzero entries 
ontains k pairwise disjointpairs of nonzero entries su
h that ea
h pair 
ontains either entries of20



opposite sign in 
olumns of the same 
olor or entries of the same signin 
olumns of di�erent 
olors.Obviously, an m� n 0;�1 matrix A is bi
olorable if and only if A has a1-equitable bi
oloring, while A has an equitable bi
oloring if and only if Ahas a k-equitable bi
oloring for k � bn=2
. The following theorem providesa new 
hara
terization of the 
lass of k-balan
ed matri
es, whi
h generalizesthe bi
oloring results of Se
tion 3.1 for balan
ed and totally unimodularmatri
es.Theorem 4.3 (Conforti, Cornu�ejols and Zambelli [26℄) A 0;�1 matrix A isk-balan
ed if and only if every submatrix of A has a k-equitable bi
oloring.Proof: Assume �rst that A is k-balan
ed and let B be any submatrix of A.Assume, up to row permutation, thatB =  B0B00 !where B0 is the row submatrix of B determined by the rows of B with 2k orfewer nonzero entries. Consider the systemB0x � $B012 %�B0x � � &B012 'B00x � k� n(B00) (11)�B00x � k� n(�B00)0 � x � 1Sin
e B is k-balan
ed, also  B�B ! is k-balan
ed. Therefore the 
on-straint matrix of system (11) above is k-balan
ed. One 
an readily verifythat �n(B0) � jB012 k � k � n(B0) and �n(�B0) � � lB012 m � k � n(�B0).Therefore, by Theorem 4.2 applied with S1 = S2 = ;, system (11) de�nesan integral polytope. Sin
e the ve
tor (12 ; :::; 12) is a solution for (11), thepolytope is nonempty and 
ontains a 0; 1 point �x. Color a 
olumn i of B21



blue if �xi = 1, red otherwise. It 
an be easily veri�ed that su
h a bi
oloringis, in fa
t, k-equitable.Conversely, assume that A is not k-balan
ed. Then A 
ontains an almosttotally unimodular matrix B with at most 2k nonzero elements per row.Suppose that B has a k-equitable bi
oloring, then su
h a bi
oloring must beequitable sin
e ea
h row has, at most, 2k nonzero elements. By Theorem 4.1,B has an even number of nonzero elements in ea
h row. Therefore the sum ofthe 
olumns 
olored blue equals the sum of the 
olumns 
olored red, thereforeB is a singular matrix, a 
ontradi
tion. 2Given a 0;�1 matrix A and positive integer k, one 
an �nd in polynomialtime a k-equitable bi
oloring of A or a 
erti�
ate that A is not k-balan
edas follows:Find a basi
 feasible solution of (11). If the solution is not integral, Ais not k-balan
ed by Theorem 4.2. If the solution is a 0,1 ve
tor, it yields ak-equitable bi
oloring as in the proof of Theorem 4.3.Note that, as with the algorithm of Cameron and Edmonds [10℄ dis
ussedin Se
tion 3.1, a 0,1 ve
tor may be found even when the matrix A is not k-balan
ed.Using the fa
t that the ve
tor (12 ; :::; 12) is a feasible solution of (11), abasi
 feasible solution of (11) 
an a
tually be derived in strongly polynomialtime using an algorithm of Megiddo [59℄.4.2 Perfe
t and Ideal 0;�1 Matri
esA 0; 1 matrix A is said to be perfe
t if the set pa
king polytope P (A) isintegral. A 0; 1 matrix A is ideal if the set 
overing polytope Q(A) is integral.The study of perfe
t and ideal 0; 1 matri
es is a 
entral topi
 in polyhedral
ombinatori
s. Theorem 2.1 shows that every balan
ed 0; 1 matrix is bothperfe
t and ideal.The integrality of the set pa
king polytope asso
iated with a (0; 1) matrixA is related to the notion of perfe
t graph. A graph G is perfe
t if, forevery indu
ed subgraph H of G, the 
hromati
 number of H equals the sizeof its largest 
lique. The fundamental 
onne
tion between the theory ofperfe
t graphs and integer programming was established by Fulkerson [40℄,Lov�asz [57℄ and Chv�atal [14℄. The 
lique-node matrix of a graph G is a 0; 122



matrix whose 
olumns are indexed by the nodes of G and whose rows are thein
iden
e ve
tors of the maximal 
liques of G.Theorem 4.4 (Lov�asz [57℄, Fulkerson [40℄, Chv�atal [14℄) Let A be a 0,1matrix. The set pa
king polytope P (A) is integral if and only if the rows ofA of maximal support form the 
lique-node matrix of a perfe
t graph.Now we extend the de�nition of perfe
t and ideal 0; 1 matri
es to 0;�1matri
es. A 0;�1 matrix A is ideal if the generalized set 
overing polytopeQ(A) = fx : Ax � 1 � n(A); 0 � x � 1g is integral. A 0;�1 matrixA is perfe
t if the generalized set pa
king polytope P (A) = fx : Ax �1� n(A); 0 � x � 1g is integral. By Theorem 2.2, balan
ed 0;�1 matri
esare both perfe
t and ideal.Hooker [54℄ was the �rst to relate idealness of a 0;�1 matrix to that ofa family of 0,1 matri
es. A similar result for perfe
tion was obtained in [19℄.These results were strengthened by Guenin [46℄ and by Boros, �Cepek [8℄ forperfe
tion, and by Nobili, Sassano [61℄ for idealness. The key tool for theseresults is the following:Given a 0;�1 matrix A, let P and R be 0; 1 matri
es of the same dimen-sion as A, with entries pij = 1 if and only if aij = 1, and rij = 1 if and only ifaij = �1. The matrix DA =  P RI I ! is the 0; 1 extension of A. Note thatthe transformation x+ = x and x� = 1�x maps every ve
tor x in P (A) intoa ve
tor in f(x+; x�) � 0 : Px++Rx� � 1; x+ + x� = 1g and every ve
torx in Q(A) into a ve
tor in f(x+; x�) � 0 : Px+ + Rx� � 1; x+ + x� = 1g.So P (A) and Q(A) are respe
tively the fa
es of P (DA) and Q(DA), obtainedby setting the inequalites x+ + x� � 1 and x+ + x� � 1 at equality. Thus,if P (DA) is an integral polytope, then so is P (A). Similarly Q(DA) integralimplies Q(A) integral. To get a 
onverse, we introdu
e the following notion.Consider a 0;�1 matrix A with two rows a1 and a2 su
h that there isone index k su
h that a1ka2k = �1 and, for all j 6= k, a1ja2j = 0. A disjointimpli
ation of A is the 0;�1 ve
tor a1+a2. For a 0;�1 matrix A, the matrixA+ obtained by re
ursively adding all disjoint impli
ations and removing alldominated rows (those whose support is not maximal in the pa
king 
ase;those whose support is not minimal in the 
overing 
ase) is 
alled the disjoint
ompletion of A. Note that P (A) = P (A+) and Q(A) = Q(A+).23



Theorem 4.5 (Nobili, Sassano [61℄) Let A be a 0;�1 matrix. Then A isideal if and only if the 0; 1 matrix DA+ is ideal.Furthermore A is ideal if and only if minf
x : x 2 Q(A)g has an integraloptimum x for every ve
tor 
 2 f0;�1;�1gn.Theorem 4.6 (Guenin [46℄) Let A be a 0;�1 matrix su
h that P (A) is not
ontained in any of the hyperplanes fx : xj = 0g or fx : xj = 1g. Then A isperfe
t if and only if the 0; 1 matrix DA+ is perfe
t.Note that this result does not hold when the assumption on the hyper-planes fx : xj = 0g and fx : xj = 1g is dropped. For example, 
on-sider A = 0B� 1 1 �1�1 1 11 �1 1 1CA. Then P (A) is an integral polytope sin
e itonly 
ontains the point 0, whereas P (DA+) is not an integral polytope sin
eA+ = A and P (DA) has the fra
tional vertex (x+; x�) where x+ = (12 ; 12 ; 12)and x� = 0.Theorem 4.7 (Guenin [46℄) Let A be a 0;�1 matrix su
h that P (A) is not
ontained in any of the hyperplanes fx : xj = 0g or fx : xj = 1g. ThenA is perfe
t if and only if maxf
x : x 2 P (A)g admits an integral optimalsolution for every 
 2 f0;�1gn. Moreover, if A is perfe
t, the linear systemAx � 1� n(A), 0 � x � 1 is TDI.This is the natural extension of the Lov�asz's theorem for perfe
t 0; 1matri
es. The next theorem 
hara
terizes perfe
t 0;�1 matri
es in termsof ex
luded submatri
es. A row of a 0;�1 matrix A is trivial if it 
ontainsat most one nonzero entry. Note that trivial rows 
an be removed without
hanging P (A).Theorem 4.8 (Guenin [46℄) Let A be a 0;�1 matrix su
h that P (A) is not
ontained in any of the hyperplanes fx : xj = 0g or fx : xj = 1g. Then A isperfe
t if and only if A+ does not 
ontain1)  1 1�1 1 ! or  1 �1�1 �1 ! as a submatrix, or24



2) a 
olumn submatrix whi
h, without its trivial rows, is obtained from aminimally imperfe
t 0,1 matrix B by swit
hing signs of all entries in asubset of the 
olumns of B.For ideal 0;�1 matri
es, a similar 
hara
terization was obtained in termsof ex
luded \weak minors" by Nobili and Sassano [61℄.4.3 Propositional Logi
In propositional logi
, atomi
 propositions x1; : : : ; xj; : : : ; xn 
an be eithertrue or false. A truth assignment is an assignment of "true" or "false" to everyatomi
 proposition. A literal is an atomi
 proposition xj or its negation :xj .A 
lause is a disjun
tion of literals and is satis�ed by a given truth assignmentif at least one of its literals is true.A survey of the 
onne
tions between propositional logi
 and integer pro-gramming 
an be found in [53℄.A truth assignment satis�es a set of m 
lauses_j2Pi xj _ ( _j2Ni :xj) for i = 1 : : : ; mif and only if the 
orresponding 0; 1 ve
tor satis�es the system of inequalitiesXj2Pi xj � Xj2Ni xj � 1� jNij for i = 1 : : : ; m:The above system of inequalities is of the formAx � 1� n(A); (12)where A is an m� n 0;�1 matrix.We 
onsider three 
lassi
al problems in logi
. The satis�ability problem(SAT) asso
iated to a set S of 
lauses, 
onsists of �nding a truth assignmentthat satis�es all the 
lauses in S or showing that none exists. Equivalently,SAT 
onsists of �nding a 0; 1 solution x to (12) or showing that none exists.The weighted maximum satis�ability problem (MAXSAT) aso
iated to aset S of 
lauses and a weight ve
tor w whose 
omponents are indexed by the25




lauses in S 
onsists of �nding a truth assignment that maximizes the totalweight of the satis�ed 
lauses. MAXSAT 
an be formulated as the integerprogram: min Pmi=1wisiAx + s � 1� n(A)x 2 f0; 1gn; s 2 f0; 1gm:Logi
al inferen
e in propositional logi
 is asso
iated to a set S of 
lauses(the premises) and a 
lause C (the 
on
lusion), and 
onsists of de
idingwhether every truth assignment that satis�es all the premises in S also sat-is�es the 
on
lusion C.Let Ax � 1� n(A) be the system of inequalities asso
iated with the setS of premises. The 
on
lusion C = (Wj2P (C) xj) _ (Wj2N(C) :xj) 
annot bededu
ed from S if and only if there exists a 0; 1 ve
tor satisfying the followingsystem: Ax � 1� n(A);xj = 0 for all j 2 P (C);xj = 1 for all j 2 N(C):Equivalently, the 
on
lusion C 
an be represented by the inequalityXj2P (C)xj � Xj2N(C) xj � 1� jN(C)j;or, more 
ompa
tly, 
x � 1 � jN(C)j where 
 denotes the n-ve
tor with
omponents 
j = 1 for j 2 P (C), 
j = �1 for j 2 N(C) and 
j = 0 otherwise.Then C 
annot be dedu
ed from S if and only if the integer programmin f
x : Ax � 1� n(A); x 2 f0; 1gng (13)has a solution with value �jN(C)j.These three problems are NP-hard in general but SAT and logi
al in-feren
e 
an be solved eÆ
iently for Horn 
lauses, 
lauses with at most twoliterals and several related 
lasses [9℄, [13℄, [71℄. MAXSAT remains NP-hardfor Horn 
lauses with at most two literals [42℄. A set S of 
lauses is balan
edif the 
orresponding 0;�1 matrix A de�ned in (12) is balan
ed. Similarly, aset of 
lauses is ideal if A is ideal. By Theorem 2.2, every balan
ed set of
lauses is ideal. The verti
es of (12) are integral for an ideal set of 
lauses,26



whi
h implies that the underlying integer program 
an be solved as a linearprogram in that 
ase:Theorem 4.9 Let S be an ideal set of 
lauses. Then SAT, MAXSAT andlogi
al inferen
e 
an be solved in polynomial time by linear programming.This has 
onsequen
es for probabilisti
 logi
 as de�ned by Nilsson [60℄.Being able to solve MAXSAT in polynomial time provides a polynomialtime separation algorithm for probabilisti
 logi
 via the ellipsoid method,as observed by Georgakopoulos, Kavvadias and Papadimitriou [42℄. Hen
eprobabilisti
 logi
 is solvable in polynomial time for ideal sets of 
lauses.Lemma 4.10 Let S be an ideal set of 
lauses. If every 
lause of S 
ontainsmore than one literal then, for every atomi
 proposition xj, there exist atleast two truth assignments satisfying S, one in whi
h xj is true and one inwhi
h xj is false.Proof: Sin
e the point xj = 1=2; j = 1; : : : ; n belongs to the polytopeQ(A) = fx : Ax � 1� n(A); 0 � x � 1g and Q(A) is an integral polytope,then the above point 
an be expressed as a 
onvex 
ombination of 0; 1 ve
torsin Q(A). Clearly, for every index j, there exists in the 
onvex 
ombination a0; 1 ve
tor with xj = 0 and another with xj = 1. 2A 
onsequen
e of Lemma 4.10 is that, for an ideal set of 
lauses, SAT 
anbe solved more eÆ
iently than by general linear programming.Theorem 4.11 (Conforti, Cornu�ejols [16℄) Let S be an ideal set of 
lauses.Then S is satis�able if and only if a re
ursive appli
ation of the followingpro
edure stops with an empty set of 
lauses.Re
ursive StepIf S = ; then S is satis�able.If S 
ontains a 
lause C with a single literal (unit 
lause), set the 
orre-sponding atomi
 proposition xj so that C is satis�ed. Eliminate from S all
lauses that be
ome satis�ed and remove xj from all the other 
lauses. If a
lause be
omes empty, then S is not satis�able (unit resolution).If every 
lause in S 
ontains at least two literals, 
hoose any atomi
 propo-sition xj appearing in a 
lause of S and add to S one of the 
lauses xj and:xj. 27



The above algorithm for SAT 
an also be used to solve the logi
al inferen
eproblem when S is an ideal set of 
lauses, see [16℄. For balan
ed (or ideal)sets of 
lauses, it is an open problem to solve MAXSAT in polynomial timeby a dire
t method, without appealing to polynomial time algorithms forgeneral linear programming.4.4 Nonlinear 0; 1 OptimizationConsider the nonlinear 0; 1 maximization problemmax Xk ak Yj2Tk xj Yj2Rk(1� xj)x 2 f0; 1gnwhere, w.l.o.g., all ordered pairs (Tk; Rk) are distin
t and Tk\Rk = ;. This isan NP-hard problem. A standard linearization of this problem was proposedby Fortet [39℄:max X akykyk � xj � 0 for all k s:t: ak > 0; for all j 2 Tkyk + xj � 1 for all k s:t: ak > 0; for all j 2 Rkyk � Xj2Tk xj + Xj2Rk xj � 1� jTkj for all k s:t: ak < 0yk; xj 2 f0; 1g for all k and j:When the 
onstraint matrix is balan
ed, this integer program 
an besolved as a linear program, as a 
onsequen
e of Theorem 2.7. Therefore, inthis 
ase, the nonlinear 0; 1 maximization problem 
an be solved in polyno-mial time. The relevan
e of balan
edness in this 
ontext was pointed out byCrama [33℄.5 The Stru
ture of Balan
ed Matri
es5.1 Bipartite Representation of a 0;�1 MatrixIn an undire
ted graph, a hole is a 
hordless 
y
le of length greater than 3.A 
y
le is balan
ed if its length is a multiple of 4. A graph is balan
ed if28



all its 
hordless 
y
les are balan
ed. Clearly, a balan
ed graph is simple andbipartite.The bipartite representation of a 0; 1 matrix A is the bipartite graphG(A) = (V r [ V 
; E) having a node in V r for every row of A, a node in V 
for every 
olumn of A and an edge ij joining nodes i 2 V r and j 2 V 
 if andonly if the entry aij of A equals 1.Note that a 0; 1 matrix is balan
ed if and only if its bipartite representa-tion is a balan
ed graph.The bipartite representation of a 0;�1 matrix A is the signed bipartitegraph G(A) = (V r[V 
; E) having a node in V r for every row of A, a node inV 
 for every 
olumn of A and an edge ij joining nodes i 2 V r and j 2 V 
 ifand only if the entry aij is nonzero. Furthermore aij is the sign of the edge ij.This 
on
ept extends the one introdu
ed above. Conversely, for a bipartitegraph G = (V r [V 
; E), with signs �1 on its edges, there is a unique matrixA for whi
h G = G(A) (up to transposition of the matrix, permutation ofrows and permutation of 
olumns).5.2 Signing 0,1 Matri
es: Camion's Algorithm andTruemper's TheoremA 0; 1 matrix is balan
eable if its nonzero entries 
an be signed +1 or -1 so thatthe resulting 0;�1 matrix is balan
ed. A bipartite graph G is balan
eable ifG = G(A) and A is a balan
eable matrix.Camion [12℄ observed that the signing of a balan
eable matrix into abalan
ed matrix is unique up to multiplying rows or 
olumns by �1, and hegave a simple algorithm to obtain this signing. We present Camion's resultnext.Let A be a 0;�1 matrix and let A0 be obtained from A by multiplying aset S of rows and 
olumns by �1. A is balan
ed if and only if A0 is. Notethat, in the bipartite representation of A, this 
orresponds to swit
hing signson all edges of the 
ut Æ(S). Now let R be a 0,1 matrix and G(R) its bipartiterepresentation. Sin
e every edge of a maximal forest F of G(R) is 
ontainedin a 
ut that does not 
ontain any other edge of F , it follows that if R isbalan
eable, there exists a balan
ed signing of R in whi
h the edges of Fhave any spe
i�ed (arbitrary) signing.This implies that, if a 0,1 matrix A is balan
eable, one 
an �nd a balan
ed29



signing of A as follows.CAMION'S SIGNING ALGORITHMInput: A 0,1 matrix A and its bipartite representation G, a maximalforest F of G and an arbitrary signing of the edges of F .Output: A signing of G in whi
h the edges of F are signed as spe
i�edin the input, and if A is balan
eable then the signing is balan
ed.Index the edges of G e1; : : : ; en, so that the edges of F 
ome �rst, andevery edge ej, j � jF j+ 1, together with edges having smaller indi
es, 
losesa hole Hj of G. For j = jF j+1; : : : ; n, sign ej so that the sum of the weightsof Hj is 
ongruent to 0 mod 4.Note that the rows and 
olumns 
orresponding to the nodes of Hj de�nea hole submatrix of A.The fa
t that there exists an indexing of the edges of G as required in thesigning algorithm follows from the following observation. For j � jF j+1, we
an sele
t ej so that the path 
onne
ting the endnodes of ej in the subgraph(V (G); fe1; : : : ; ej�1g) is shortest possible. The hole Hj identi�ed this way isalso a hole in G. This for
es the signing of ej, sin
e all the other edges of Hjare signed already. So, on
e the (arbitrary) signing of F has been 
hosen,the signing of G is unique. Therefore we have the following result.Theorem 5.1 If the input matrix A is a balan
eable 0,1 matrix, Camion'ssigning algorithm produ
es a balan
ed 0;�1 matrix B. Furthermore everybalan
ed 0;�1 matrix that arises from A by signing its nonzero entries either+1 or �1, 
an be obtained by swit
hing signs on rows and 
olumns of B.If one applies Camion's algorithm to the bipartite representation of thefollowing matrix, the signing produ
ed would leave one of the four holesunbalan
ed, proving that the matrix is not balan
eable.0B� 1 1 0 11 0 1 10 1 1 1 1CAAssume that we have an algorithm to 
he
k if a bipartite graph is bal-an
eable. Then, we 
an 
he
k whether a signed bipartite graph G is balan
ed30



as follows. Let G0 be a 
opy of G that is not signed. Test whether G0 is bal-an
eable. If it is not, then G is not balan
ed. Otherwise, let F be a maximalforest of G0. Run the signing algorithm on G0 with the edges of F signed asthey are in G. Then G is balan
ed if and only if the signing of G0 
oin
ideswith the signing of G.We now give a 
hara
terization due to Truemper [71℄ of the bipartitegraphs that are balan
eable.In a bipartite graph, a wheel (H; v) 
onsists of a hole H and a node vhaving at least three neighbors in H. The wheel (H; v) is odd if v has an oddnumber of neighbors in H. A 3-path 
on�guration is an indu
ed subgraph
onsisting of three internally node-disjoint paths 
onne
ting two nonadja
entnodes u and v and 
ontaining no edge other than those of the paths. If u andv are in opposite sides of the bipartition, i.e. the three paths have an oddnumber of edges, the 3-path 
on�guration is 
alled a 3-odd-path 
on�guration.In Figure 1, solid lines represent edges and dotted lines represent paths withat least one edge. uH
v

vFigure 1: An odd wheel and a 3-odd-path 
on�gurationBoth a 3-odd-path 
on�guration and an odd wheel have the followingproperties: ea
h edge belongs to exa
tly two holes and the total number ofedges is odd. Therefore in any signing, the sum of the labels of all holesis equal to 2 mod 4. This implies that at least one of the holes is not bal-31



an
ed, showing that neither 3-odd-path 
on�gurations nor odd wheels arebalan
eable. These are in fa
t the only minimal bipartite graphs that arenot balan
eable, as shown by the following theorem.Theorem 5.2 (Truemper [71℄) A bipartite graph is balan
eable if and only ifit does not 
ontain an odd wheel or a 3-odd-path 
on�guration as an indu
edsubgraph.We prove Theorem 5.2 following Conforti, Gerards and Kapoor [27℄.For a 
onne
ted bipartite graph G that 
ontains a 
lique 
utset Kt witht nodes, let G01; : : : ; G0n be the 
onne
ted 
omponents of G nKt. The blo
ksof G are the subgraphs Gi indu
ed by V (G0i) [Kt for i = 1; : : : ; n.Lemma 5.3 If a 
onne
ted bipartite graph G 
ontains a K1 or K2 
utset,then G is balan
eable if and only if ea
h blo
k is balan
eable.Proof: If G is balan
eable, then so are the blo
ks. Therefore we only have toprove the 
onverse. Assume that all the blo
ks are balan
eable. Give ea
hblo
k a balan
ed signing. If the 
utset is a K1 
utset, this yields a balan
edsigning of G. If the 
utset is a K2 
utset, re-sign ea
h blo
k so that the edgeof that K2 has the sign +1. Now take the union of these signings. This yieldsa balan
ed signing of G again. 2Thus, in the remainder of the proof, we 
an assume that G is a 
onne
tedbipartite graph with no K1 or K2 
utset.Lemma 5.4 Let H be a hole of G. If G 6= H, then H is 
ontained in a3-path 
on�guration or a wheel of G.Proof: Choose two nonadja
ent nodes u and w in H and a uw-path P =u; x; : : : ; z; w whose intermediate nodes are in G nH su
h that P is as shortas possible. Su
h a pair of nodes u; w exists sin
e G 6= H and G has no K1or K2 
utset. If x = z, then H is 
ontained in a 3-path 
on�guration or awheel. So assume x 6= z. By our 
hoi
e of P , u is the only neighbor of x inH and w is the only neighbor of z in H.Let Y be the set of nodes in V (H) � fu; wg that have a neighbor in P .If Y is empty, H is 
ontained in a 3-path 
on�guration. So assume Y isnonempty. By the minimality of P , the nodes of Y are pairwise adja
ent and32



they are adja
ent to u and w. This implies that Y 
ontains a single node yand that y is adja
ent to u and w. But then V (H) [ V (P ) indu
es a wheelwith 
enter y. 2For e 2 E(G), let Ge denote the graph with a node vH for ea
h hole Hof G 
ontaining e and an edge vHivHj if and only if there exists a wheel or a3-path 
on�guration 
ontaining both holes Hi and Hj.Lemma 5.5 Ge is a 
onne
ted graph.Proof: Suppose not. Let e = uw. Choose two holes H1 and H2 of G with vH1and vH2 in di�erent 
onne
ted 
omponents of Ge, with the minimum distan
ed(H1; H2) in G n fu; vg between V (H1) � fu; wg and V (H2) � fu; wg and,subje
t to this, with the smallest jV (H1) [ V (H2)j.Let T be a shortest path from V (H1)� fu; vg to V (H2) � fu; vg in G nfu; vg. Note that T is just a node of V (H1)\V (H2) n fu; vg when this set isnonempty. The graph G0 indu
ed by the nodes in H1, H2 and T has no K1or K2 
utset. By Lemma 5.4, H1 is 
ontained in a 3-path 
on�guration ora wheel of G0. Sin
e ea
h edge of a 3-path 
on�guration or a wheel belongsto two holes, there exists a hole H3 6= H1 
ontaining edge e in G0. Sin
evH1 and vH3 are adja
ent in Ge, it follows that vH2 and vH3 are in di�erent
omponents of Ge. Sin
e H1 and H3 are distin
t holes, H3 
ontains a nodein V (H2)[V (T ) nV (H1). If H3 
ontains a node in V (T ) n (V (H1)[V (H2)),then V (H1) \ V (H2) = fu; vg and d(H3; H2) < d(H1; H2) a 
ontradi
tion tothe 
hoi
e of H1, H2.Therefore H3 
ontains a node x in V (H2) n V (H1). By our 
hoi
e of H1,H2, we have that V (H1) \ V (H2) n fu; vg is nonempty. Let P1 = H1 n eand P2 = H2 n e and let s, t be the nodes in V (H1) \ V (H2) su
h that thest-subpath P st2 of P2 
ontains x and is shortest. Let P st1 be the st-subpath ofP1. Sin
e H2 is a hole, P st1 
ontains an intermediate node z 2 V (H1)nV (H2).Now V (H3) [ V (H2) is 
ontained in V (H1) [ V (H2) n z, a 
ontradi
tion toour 
hoi
e of H1, H2. 2Proof of Theorem 5.2: We showed already that odd wheels and 3-odd-path 
on�gurations are not balan
eable. It remains to show that, 
onversely,if G 
ontains no odd wheel or 3-odd-path 
on�guration, then G is balan
e-able. Suppose G is a 
ounterexample with the smallest number of nodes. By33



Lemma 5.3, G is 
onne
ted and has no K1 or K2 
utset. Let e = uv be anedge of G. Sin
e G n fu; vg is 
onne
ted, there exists a spanning tree F ofG where u and v are leaves. Arbitrarily sign F and use Camion's signingalgorithm in G n fug and G n fvg. By the minimality of G, these two graphsare balan
eable and therefore Camion's algorithm yields a unique signingof all the edges ex
ept e. Furthermore, all holes not going through edge eare balan
ed. Sin
e G is not balan
eable, any signing of e yields some holesgoing through e that are balan
ed and some that are not. By Lemma 5.5,there exists a wheel or a 3-path 
on�guration C 
ontaining an unbalan
edhole H1 and a balan
ed hole H2 both going through edge e. Now we usethe fa
t that ea
h edge of C belongs to exa
tly two holes of C. Sin
e theholes of C distin
t from H1 and H2 do not go through e, they are balan
ed.Furthermore, applying the above fa
t to all edges of C, the sum of all labelsin C is 1 mod 2, whi
h implies that C has an odd number of edges. Thus Cis an odd wheel or a 3-odd-path 
on�guration, a 
ontradi
tion. 25.3 De
omposition TheoremsIn this se
tion, we present de
omposition theorems for balan
ed 0; 1 matri
esdue to Conforti, Cornu�ejols and Rao [23℄ and balan
eable 0; 1 matri
es due toConforti, Cornu�ejols, Kapoor and Vu�skovi�
 [21℄. We state the de
ompositiontheorems in terms of the bipartite representation of su
h matri
es, as de�nedin Se
tion 5.1.5.3.1 CutsetsA set S of nodes (edges) of a 
onne
ted graph G is a node (edge) 
utset if thesubgraph of G obtained by removing the nodes (edges) in S, is dis
onne
ted.For a node x, let N(x) denote the set of all neighbors of x. In a bipartitegraph, an extended star is de�ned by disjoint subsets T , A, N of V (G) anda node x 2 T su
h that(i) N � N(x),(ii) every node of A is adja
ent to every node of T ,(iii) A 6= ; and if jT j � 2, then jAj � 2.34
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Figure 2: Extended star

Figure 3: A 1-join, a 2-join and a 6-joinThis 
on
ept was introdu
ed by Conforti, Cornu�ejols and Rao [23℄ and isillustrated in Figure 2. An extended star 
utset is one where T [ A [N is anode 
utset. An extended star 
utset with N = ; is 
alled a bi
lique 
utset.An extended star 
utset having T = fxg is 
alled a star 
utset. Note that astar 
utset is a spe
ial 
ase of a bi
lique 
utset.A graph G has a 1-join if its nodes 
an be partitioned into sets H1 andH2, with jH1j � 2 and jH2j � 2, so that A1 � H1, A2 � H2 are nonempty,all nodes of A1 are adja
ent to all nodes of A2 and these are the only adja-
en
ies between H1 and H2. This 
on
ept was introdu
ed by Cunninghamand Edmonds [35℄.A graph G has a 2-join if its nodes 
an be partitioned into sets H1 andH2 so that A1; B1 � H1, A2; B2 � H2 where A1, B1, A2, B2 are nonemptyand disjoint, all nodes of A1 are adja
ent to all nodes of A2, all nodes of B135



Figure 4: R10are adja
ent to all nodes of B2 and these are the only adja
en
ies betweenH1 and H2. Also, for i = 1; 2, Hi has at least one path from Ai to Bi andif Ai and Bi are both of 
ardinality 1, then the graph indu
ed by Hi is nota 
hordless path. We also say that E(KA1A2) [ E(KB1B2) is a 2-join of G.This 
on
ept was introdu
ed by Cornu�ejols and Cunningham [32℄.In a 
onne
ted bipartite graph G, let Ai, i = 1; : : : ; 6, be disjoint non-empty node sets su
h that, for ea
h i, every node in Ai is adja
ent to everynode in Ai�1 [ Ai+1 (indi
es are taken modulo 6), and these are the onlyedges in the subgraph A indu
ed by the node set [6i=1Ai. Assume that E(A)is an edge 
utset but that no subset of its edges forms a 1-join or a 2-join.Furthermore assume that no 
onne
ted 
omponent of G n E(A) 
ontains anode in A1 [ A3 [ A5 and a node in A2 [ A4 [ A6. Let G135 be the unionof the 
omponents of G n E(A) 
ontaining a node in A1 [ A3 [ A5 and G246be the union of 
omponents 
ontaining a node in A2 [ A4 [ A6. The setE(A) 
onstitutes a 6-join if the graphs G135 and G246 
ontain at least fournodes ea
h. This 
on
ept was introdu
ed by Conforti, Cornu�ejols, Kapoorand Vu�skovi�
 [21℄.
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5.3.2 Main TheoremA graph is strongly balan
eable if it is balan
eable and 
ontains no 
y
lewith exa
tly one 
hord. This 
lass of bipartite graphs is well studied in theliterature, see [28℄. We dis
uss it in Se
tion 5.5.2. The following graph, whi
his not strongly balan
eable, plays an important role: R10 is the bipartitegraph on ten nodes de�ned by the 
y
le C = x1; : : : ; x10; x1 of length tenwith 
hords xixi+5, 1 � i � 5, see Figure 4. Equivalently, R10 is the bipartiterepresentation of the matrix 0BBBBBB� 1 1 0 1 00 1 1 0 11 0 1 1 00 1 0 1 11 0 1 0 1
1CCCCCCA, whi
h appears in Seymour'sde
omposition of totally unimodular matri
es [66℄. Note that the signing ofR10 that assigns +1 to the edges of C and �1 to all the other edges is abalan
ed signing of R10. The 
orresponding 0;�1 matrix is a
tually totallyunimodular.Theorem 5.6 (Conforti, Cornu�ejols, Kapoor and Vu�skovi�
 [21℄ ) A balan
e-able bipartite graph that is not strongly balan
eable is either R10 or 
ontainsa 2-join, a 6-join or an extended star 
utset.Figure 5 exhibits examples showing that none of the three kinds of 
utsets
an be dropped from Theorem 5.6.

Figure 5: Examples showing that no 
utset 
an be dropped in the theorem
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Conne
ted 6-HolesA triad 
onsists of three internally node-disjoint paths t; : : : ; u; t; : : : ; v andt; : : : ; w, where t, u, v, w are distin
t nodes and u, v, w belong to the sameside of the bipartition. Furthermore, the graph indu
ed by the nodes of thetriad 
ontains no other edges than those of the three paths. Nodes u, v andw are 
alled the atta
hments of the triad.A fan 
onsists of a 
hordless path x; : : : ; y together with a node z adja
entto at least one node of the path, where x, y and z are distin
t nodes allbelonging to the same side of the bipartition. Nodes x, y and z are 
alledthe atta
hments of the fan.A 
onne
ted 6-hole � is a graph indu
ed by two disjoint node sets T (�)and B(�) su
h that ea
h indu
es either a triad or a fan, the atta
hments ofT (�) and B(�) indu
e a 6-hole and there are no other adja
en
ies betweenthe nodes of T (�) and B(�). Figure 6 depi
ts the four types of 
onne
ted6-holes.The following theorem 
on
erns the 
lass of balan
eable bipartite graphsthat do not 
ontain a 
onne
ted 6-hole or R10 as indu
ed subgraph.Theorem 5.7 (Conforti, Cornu�ejols and Rao [23℄) A balan
eable bipartitegraph not 
ontaining R10 or a 
onne
ted 6-hole as indu
ed subgraph either isstrongly balan
eable or 
ontains a 2-join or an extended star 
utset.So it remains to �nd a de
omposition of balan
eable bipartite graphs that
ontain R10 or 
onne
ted 6-holes as indu
ed subgraph. This is a

omplishedas follows.Theorem 5.8 (Conforti, Cornu�ejols, Kapoor and Vu�skovi�
 [21℄) A balan
e-able bipartite graph 
ontaining R10 as a proper indu
ed subgraph has a bi
lique
utset.Theorem 5.9 ([21℄) A balan
eable bipartite graph that 
ontains a 
onne
ted6-hole as indu
ed subgraph, has an extended star 
utset or a 6-join.Now Theorem 5.6 follows from Theorems 5.7, 5.8 and 5.9.
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Figure 6: The four types of 
onne
ted 6-holes
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5.4 Re
ognition AlgorithmConforti, Cornu�ejols, Kapoor and Vu�skovi�
 [21℄ give a polynomial time algo-rithm to 
he
k whether a 0;�1 matrix A is balan
ed. The algorithm workson the bipartite representation G(A) introdu
ed. Sin
e ea
h edge of G(A) issigned +1 or �1 a

ording to the 
orresponding entry in the matrix A, we
all G a signed bipartite graph.Let G be a 
onne
ted signed bipartite graph. The removal of a node
utset or edge 
utset dis
onne
ts G into two or more 
onne
ted 
omponents.From these 
omponents we 
onstru
t blo
ks of de
omposition by adding somenew nodes and signed edges. We say that a de
omposition is balan
ednesspreserving when it has the following property: all the blo
ks are balan
ed ifand only if G itself is balan
ed. The 
entral idea in the algorithm is to de-
ompose G using balan
edness preserving de
ompositions into a polynomialnumber of basi
 blo
ks that 
an be 
he
ked for balan
edness in polynomialtime.For the 2-join and 6-join, the blo
ks 
an be de�ned so that the de
om-positions are balan
edness preserving. For the extended star 
utset it isnot known how to 
onstru
t blo
ks of de
omposition that are balan
ednesspreserving and generate a polynomial de
omposition tree. To over
ome thisproblem, the algorithm uses the idea of 
leaning, �rst introdu
ed by Confortiand Rao [29℄, [30℄. An input graph G is �rst transformed into a 
lean graphG0 (to be de�ned later), and then G0 is de
omposed, the de
ompositions inG0 being balan
edness preserving.Re
ently Zambelli [74℄, based on an idea introdu
ed by Chudnovsky andSeymour for re
ognizing Berge graphs [15℄, has given a polynomial algorithmto test balan
edness in a signed bipartite graph that does not use the de-
omposition theorem: it uses 
leaning and shortest paths te
hniques. Wesummarize here the ideas behind his algorithm.The algorithm �rst dete
ts whether the input graph has a 3-odd-path
on�guration (as de�ned in Se
tion 5.2), based on the following result:In a bipartite graph G, 
onsider a 3-odd-path 
on�guration with the small-est number of nodes, indu
ed by paths P1; P2; P3 
onne
ting nodes u and v.Let mi be a middle node of path Pi. In a subgraph obtained from G by re-moving some neighbors of u and v, any shortest path from mi to u and v 
anbe substituted for Pi yielding another smallest 3-odd-path 
on�guration.40



This result yields a polynomial time algorithm to dete
t whether a bipar-tite graph 
ontains a 3-odd-path 
on�guartion.A dete
table 3-wheel is a wheel (H; v) where v has three neighbors in Hand two of the neighbors of v in H have distan
e two in H. By an analogousmethod Zambelli shows the following:There exists a polynomial time algorithm that 
he
ks whether a bipartitegraph that does not 
ontain a 3-odd-path 
on�guration, 
ontains a dete
table3-wheel.By Theorem 5.2, if a bipartite graph 
ontains a 3-odd-path 
on�gurationor a dete
table 3-wheel, it is not balan
eable.A node v is major for a hole H if v has at least three neighbors in H.The following result is proved by Conforti, Cornu�ejols, Kapoor and Vu�skovi�
[21℄.Theorem 5.10 Let H be a smallest unbalan
ed hole in a signed bipartitegraph. Then H 
ontains two edges su
h that every major node for H isadja
ent to at least one of the endnodes of these two edges.A signed bipartite graph is 
lean if it is either balan
ed or 
ontains asmallest unbalan
ed hole H with no major verti
es for H.Based on the above theorem a polynomial time algorithm is 
onstru
tedin [21℄, that takes as input a signed bipartite graph G and outputs a 
leangraph G0, su
h that G is balan
ed if and only if G0 is balan
ed.Let G be a signed bipartite graph that does not 
ontain a 3-odd path
on�guration nor a dete
table 3-wheel. The last step of Zambelli's algorithmis based on the following:Let G be a 
lean signed bipartite graph that does not 
ontain a 3-odd-path 
on�guration or a dete
table 3-wheel. There exists a polynomial timealgorithm, based on shortest path methods, that 
he
ks whether G is balan
ed.The algorithms outlined in this se
tion re
ognize in polynomial timewhether a signed bipartite graph 
ontains an unbalan
ed hole. InterestinglyKapoor [56℄ has shown that it is NP-
omplete to re
ognize whether a signedbipartite graph 
ontains an unbalan
ed hole going through a prespe
i�ednode. 41



5.5 More De
omposition TheoremsSeveral sub
lasses of balan
ed matri
es have beautiful de
omposition prop-erties of their own. Totally unimodular matri
es for example 
an be de
om-posed using a deep theorem of Seymour [66℄. This result is surveyed in [64℄,[62℄ or [31℄ and we do not review it here. We review instead the stru
tureand properties of several other 
lasses of balan
ed matri
es.5.5.1 Totally Balan
ed 0; 1 Matri
esA 0; 1 matrix A is totally balan
ed if every hole submatrix of A is the 2� 2submatrix of all 1s. Equivalently, a bipartite graph G is totally balan
ed ifevery hole of G has length 4. Totally balan
ed matri
es arise in lo
ationtheory. Several authors (Golumbi
 and Goss [45℄, Anstee and Farber [1℄,Ho�man, Kolen and Sakarovit
h [52℄ and Lubiw [58℄ among others) havegiven properties of these matri
es.A bi
lique is a 
omplete bipartite graph with at least one node from ea
hside of the bipartition. For a node u, let N(u) denote the set of all neighborsof u. An edge uv is bisimpli
ial if the node set N(u) [ N(v) indu
es abi
lique. The following theorem of Golumbi
 and Goss [45℄ 
hara
terizestotally balan
ed bipartite graphs.Theorem 5.11 (Golumbi
, Goss, [45℄) A totally balan
ed bipartite graph hasa bisimpli
ial edge.This theorem yields a polynomial time algorithm to test whether a bipar-tite graph G is totally balan
ed: for if e is a bisimpli
ial edge of G, then Gis totally balan
ed if and only if G n e is totally balan
ed.A 0; 1 matrix A is in standard greedy form if it 
ontains no 2� 2 subma-trix of the form  1 11 0 !, where the order of the rows and 
olumns in thesubmatrix is the same as in the matrix A. This name 
omes from the fa
tthat the linear program max X yiyA � 
 (14)0 � y � p42




an be solved by a greedy algorithm. Namely, given y1; : : : ; yk�1 su
h thatPk�1i=1 aijyi � 
j; j = 1; : : : ; n and 0 � yi � pi; i = 1; : : : ; k � 1, set yk tothe largest value su
h that Pki=1 aijyi � 
j; j = 1; : : : ; n and 0 � yk � pk:The resulting greedy solution is an optimum solution to this linear program.What does this have to do with totally balan
ed matri
es? The answer is inthe next theorem.Theorem 5.12 (Anstee, Farber [1℄, Ho�man, Kolen, Sakarovit
h [52℄, Lu-biw [58℄) A 0; 1 matrix is totally balan
ed if and only if its rows and 
olumns
an be permuted into standard greedy form.This transformation 
an be performed in time O(nm2) [52℄.Totally balan
ed 0; 1 matri
es 
ome up in various ways in the 
ontext offa
ility lo
ation problems on trees. For example, the 
overing problemmin nX1 
jxj + mX1 piziXj aijxj + zi � 1; i = 1; : : : ; m (15)xj; zi 2 f0; 1g
an be interpreted as follows: 
j is the set up 
ost of establishing a fa
ilityat site j, pi is the penalty if 
lient i is not served by any fa
ility, and aij = 1if a fa
ility at site j 
an serve 
lient i, 0 otherwise.When the underlying network is a tree and the fa
ilities and 
lients arelo
ated at nodes of the tree, it is 
ustomary to assume that a fa
ility at site j
an serve all the 
lients in a neighborhood subtree of j, namely, all the 
lientswithin distan
e rj from node j.An interse
tion matrix of the set fS1; : : : ; Smg versus fR1; : : : ; Rng, whereSi, i = 1; : : : ; m, and Rj, j = 1; : : : ; n, are subsets of a given set, is de�ned tobe the m� n 0; 1 matrix A = (aij) where aij = 1 if and only if Si \Rj 6= ;.Theorem 5.13 (Giles [44℄) The interse
tion matrix of neighborhood subtreesversus nodes of a tree is totally balan
ed.It follows that the above lo
ation problem on trees (15) 
an be solvedas a linear program (by Theorem 2.1 and the fa
t that totally balan
edmatri
es are balan
ed). In fa
t, by using the standard greedy form of the43



neighborhood subtrees versus nodes matrix, and by noting that (15) is thedual of (14), the greedy solution des
ribed earlier for (14) 
an be used, in
onjun
tion with 
omplementary sla
kness, to obtain an elegant solution ofthe 
overing problem. The above theorem of Giles has been generalized asfollows.Theorem 5.14 (Tamir [67℄) The interse
tion matrix of neighborhood sub-trees versus neighborhood subtrees of a tree is totally balan
ed.Other 
lasses of totally balan
ed 0; 1 matri
es arising from lo
ation prob-lems on trees 
an be found in [68℄.5.5.2 Restri
ted and Strongly Balan
ed Matri
esA signed bipartite graph G is restri
ted balan
ed if the weight of every 
y
leof G is 
ongruent to 0 mod 4. A signed bipartite graph is strongly balan
ed ifevery 
y
le of weight 2 mod 4 has at least two 
hords. Restri
ted (strongly,resp.) balan
ed 0;�1 matri
es are de�ned to be the matri
es whose bipar-tite representation is a restri
ted (strongly, resp.) balan
ed bipartite graph.It follows from the de�nition that restri
ted balan
ed 0;�1 matri
es arestrongly balan
ed, and it 
an be shown that strongly balan
ed 0;�1 matri-
es are totally unimodular, see [28℄. Restri
ted (strongly, resp.) balan
eable0,1 matri
es are those where the nonzero entries 
an be signed +1 or �1 sothat the resulting 0;�1 matrix is restri
ted (strongly, resp.) balan
ed.Theorem 5.15 (Conforti, Rao [28℄) A strongly balan
eable bipartite grapheither is restri
ted balan
eable or 
ontains a 1-join.Crama, Hammer and Ibaraki [34℄ de�ne a 0;�1 matrix A to be stronglyunimodular if every basis of (A; I) 
an be put in triangular form by permu-tation of rows and 
olumns.Theorem 5.16 (Crama, Hammer, Ibaraki [34℄) A 0;�1 matrix is stronglyunimodular if and only if it is strongly balan
ed.Yannakakis [73℄ has shown that a restri
ted balan
eable 0; 1 matrix hav-ing both a row and a 
olumn with more than two nonzero entries has a veryspe
ial 3-separation: the bipartite graph representation has a 2-join 
onsist-ing of two single edges. A bipartite graph is 2-bipartite if all the nodes in oneside of the bipartition have degree at most 2.44



Theorem 5.17 (Yannakakis [73℄) A restri
ted balan
eable bipartite grapheither is 2-bipartite or 
ontains a 
utnode or 
ontains a 2-join 
onsisting oftwo edges.Based on this theorem, Yannakakis designed a linear time algorithm for
he
king whether a 0;�1 matrix is restri
ted balan
ed. A di�erent algorithmfor this re
ognition problem was given by Conforti and Rao [28℄:Constru
t a spanning forest in the bipartite graph and 
he
k if there existsa 
y
le of weight 2 mod 4 whi
h is either fundamental or is the symmetri
di�eren
e of fundamental 
y
les. If no su
h 
y
le exists, the signed bipartitegraph is restri
ted balan
ed.A bipartite graph is linear if it does not 
ontain a 
y
le of length 4. Notethat an extended star 
utset in a linear bipartite graph is always a star 
utset,due to Condition (ii) in the de�nition of extended star 
utsets. Conforti andRao [29℄ proved the following theorem for linear balan
ed bipartite graphs:Theorem 5.18 (Conforti, Rao [29℄) A linear balan
ed bipartite graph eitheris restri
ted balan
ed or 
ontains a star 
utset.A 
y
le C in a signed bipartite graph G is unbalan
ed if the sum of theweights of the edges in C is 
ongruent to 2 mod 4. It is easy to see that asigned bipartite graph has a balan
ed 
y
le if and only if it has a balan
edhole. It follows that the following two 
lasses of graphs are equivalent: signedbipartite graphs in whi
h all 
y
les are unbalan
ed, and signed bipartitegraphs in whi
h all holes are unbalan
ed. These graphs are 
hara
terizedby Conforti, Cornu�ejols and Vu�skovi�
 in [25℄, where a linear algorithm fortesting membership in this 
lass is given.5.6 Some Conje
tures and Open Questions5.6.1 Eliminating EdgesConje
ture 5.19 (Conforti, Cornu�ejols, Kapoor, Vu�skovi�
 [21℄) In a bal-an
ed signed bipartite graph G, either every edge belongs to some R10, orsome edge 
an be removed from G so that the resulting signed bipartite graphis still balan
ed. 45



The 
ondition on R10 is ne
essary sin
e removing any edge from R10yields a wheel with three spokes or a 3-odd-path 
on�guration as indu
edsubgraph. This 
onje
ture implies that given a 0;�1 balan
ed matrix we 
ansequentially turn the nonzero entries to zero until every nonzero belongs tosome R10 matrix, while maintaining balan
ed 0;�1 matri
es at ea
h steps.For 0; 1 matri
es, the above 
onje
ture redu
es to the following:Conje
ture 5.20 (Conforti, Rao [29℄) Every balan
ed bipartite graph 
on-tains an edge whi
h is not the unique 
hord of a 
y
le.It follows from the de�nition that restri
ted balan
ed signed bipartitegraphs are exa
tly the ones su
h that the removal of any subset of edgesleaves a restri
ted balan
ed signed bipartite graph.Conje
ture 5.19 holds for signed bipartite graphs that are strongly bal-an
ed sin
e, by de�nition, the removal of any edge leaves a 
hord in everyunbalan
ed 
y
le.Theorem 5.11 shows that the graph obtained by eliminating a bisimpli-
ial edge in a totally balan
ed bipartite graph is totally balan
ed. Hen
eConje
ture 5.20 holds for totally balan
ed bipartite graphs.5.6.2 Strengthening the De
omposition TheoremsThe extended star de
omposition is not balan
edness preserving. This heav-ily a�e
ts the running time of the re
ognition algorithm for balan
edness.Therefore it would be desirable to �nd strengthenings of Theorem 5.6 thatonly use operations that preserve balan
edness. We have been unable toobtain these results even for linear balan
ed bipartite graphs [30℄.Another dire
tion in whi
h the main theorem might be strengthened isas follows.Conje
ture 5.21 ([21℄) Every balan
eable bipartite graph G whi
h is notsignable to be totally unimodular has an extended star 
utset.This 
onje
ture was shown to hold when G is the bipartite representationof a balan
ed 0; 1 matrix [23℄.A
knowledgments: We would like to thank an anonymous referee andVasek Chv�atal for their helpful suggestions.46
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