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Optimal Design of GaN–AlGaN Bragg-Confined
Structures for Intersubband Absorption in the

Near-Infrared Spectral Range
Jelena Radovanovic´, Vitomir Milanović, Zoran Ikonić, Dragan Indjin, Vladimir Jovanovic´, and

Paul Harrison, Senior Member, IEEE

Abstract—A method is proposed for the design and optimiza-
tion of structural parameters of GaN–AlGaN Bragg-confined
structures with respect to peak intersubband absorption from
the ground to the first excited state,1 2 electronic transition,
in the near infrared spectral range. An above-the-barrier bound
state was used to extend the range of transition energies above
the values available in conventional quantum wells. Intrinsic
polarization fields and nonparabolicity effects were taken into
account. The selection of optimal parameters, maximizing the
absorption at wavelengths of 1.55 and 1.3m, was performed by
using a simulated annealing algorithm, and optimal structures
with infinite superlattices as confinement regions were thus de-
signed. These optimal parameters were then used to set realistic,
finite structures with a small number of layers, the performance
of which was re-evaluated by solving the Schrödinger-Poisson
equation self-consistently for a few different levels and profiles of
doping.

Index Terms—Bragg-confined structures, GaN quantum wells,
intersubband absorption.

I. INTRODUCTION

A GREAT DEAL of fundamental and applied research has
recently been done on wide bandgap group-III nitride

semiconductors [1]–[16] because the electronic and optical
properties of GaN and related materials make them convenient
for a variety of applications such as laser and light emitting
diodes in the blue-green and ultraviolet spectral range [1], or
high-power and high-frequency electronic devices [2]. The
large values of the conduction band discontinuity (
for AlN–GaN interface) make nitride-based quantum wells
very interesting for achieving intersubband transitions in the
near infrared spectral range, which is important for optical
communications. In particular, the characteristic wavelengths
of 1.55 and 1.3 are accessible in nitride quantum structures,
and the very short intersubband relaxation times offer a possible
route for achieving ultrafast optical switching for terabits per
second optical time-division multiplexing [6], [9], [10].

With this class of applications in mind, we consider in this
work the design and optimization of GaN–AlGaN Bragg con-
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fined (BC) structures for the purpose of achieving maximal in-
tersubband absorption between the ground and the first excited
state, at a particular wavelength. The electronic structure is cal-
culated within the envelope function model, and including non-
parabolicity as derived from the model [17]. The
effects of the internal (built-in) electric field, due to the spon-
taneous and piezoelectric polarization in (0001)—grown struc-
tures, are taken into account. Both the magnitude and direc-
tion of this field may change from layer to layer, depending on
layer widths and compositions. It may have a significant influ-
ence on electronic and optical properties of these structures, e.g.
blue-shifting and decreasing the absorption, as compared to the
flat band model [9]. In structures relying on Bragg confinement
in order to extend the absorption wavelength range, one has to
account for the built-in field in the Bragg part of the structure,
as well. In order to design and optimize the BC structure pa-
rameters which will deliver maximal absorption at a specified
wavelength one may choose to employ some conventional opti-
mization procedures, with a suitably defined target function or
“goal.” For an idealized structure with infinite superlattices as
Bragg reflectors, amenable to quasianalytic considerations, we
use the simulated annealing algorithm, which varies the layer
widths and compositions in a search for the combination which
best meets the preset criteria. The derived set of optimal param-
eters is then used to set a realistic structure, with just a few layers
in Bragg reflectors, and this is then subject to the full self-consis-
tent Schrödinger–Poisson solution for different doping profiles.
The self-consistent solution is too demanding computationally
to be incorporated in the optimization procedure itself, so the
aim of this second phase is to check whether the realistic system
remains sufficiently close to the optimal idealized one.

II. THEORETICAL CONSIDERATIONS

A Bragg-confined structure is, in fact, a perturbed semicon-
ductor superlattice, whose ideal periodicity is disturbed by one
or more thin layers embedded in it. Along with the miniband
spectrum, characteristic for the superlattice, this structure also
has bound states at energies inside the minigaps, their wave-
functions being spatially localized in these embedded layer(s),
which will be called the central region. These bound states can
even be found high above the barrier top, implying an effec-
tively increased band offset, and enabling bound-bound transi-
tions at higher energies than would be possible in conventional
quantum wells. Since we analyze BC structures based on the

0018-9197/03$17.00 © 2003 IEEE
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Fig. 1. Band diagram of a GaN–AlGaN BC structure. Shaded regions denote
the superlattice minibands.

alloy, it is necessary to include the internal elec-
tric field present in every well and barrier region [9], [11]–[13].
Piezoelectric polarization is induced by strain due to lattice
mismatch between the layers, and can be calculated from [11],
[13]: , where and
are the elastic and piezoelectric coefficients, respectively, while

and denote the lattice constants of the substrate (in our
case GaN) and of the structure layers . On the
other hand, spontaneous polarization is symmetry related and
originates from the wurtzite structure of group-III nitrides. It is
evaluated as [16]: ,
where is the bowing parameter. The total polarizationin a
layer is the sum of the two contributions, and the corresponding
electric field is found by using the interface boundary condi-
tions for polarization, e.g. , where
is the dielectric permittivity of layer. The values of are not
very different for the materials in consideration, and may for
simplicity be taken to be the same in all layers, i.e.,
. Furthermore, the electric field is calculated using periodic

boundary conditions, i.e., taking the total potential drop across
the whole structure to be zero. At this point we should note
that there is an essential difference between an infinite structure
(with two semi-infinite superlattices as Bragg reflectors), and
a short finite structure. The infinite structure will clearly have
zero potential drop across any single period of the superlattice,
because any finite potential difference accumulated in the cen-
tral, aperiodic part of the structure, will be distributed over infin-
itely many periods of the superlattice, so to achieve zero global
voltage drop. Consequently, all the superlattice periods are here
identical, not only structurally but also in terms of the potential,
which facilitates analytical considerations. In contrast, in Bragg
reflectors with relatively few periods (which may still be quite
sufficient for good confinement of wavefunctions) any single
period will take a sizeable fraction of the voltage drop in the
central part. Therefore, the total potential in a finite structure is
not periodic, even though individual periods may be structurally
equivalent, which clearly complicates (or simply slows down)
considerations of such a system.

The resulting potential profile in a GaN–AlGaN BC structure
is shown in Fig. 1. The superlattice part is a stack of barriers of
width and wells of width , with a potential offset of at
the interface, and this periodicity is perturbed in the center of

the superlattice, in the range ( , ), by changing the width
of one of the wells.

Bound states in BC structures are usually found within
the conventional single-band envelope-function Hamiltonian,
which is good enough for states close to the conduction band
edge. In nitride-based BC structure however, we are interested
in energies high above the conduction band edge, and compa-
rable to the band gap, which requires a more detailed approach,
e.g., via the multiband Kane model. In the case of conduction
band states, the four-band Kane model may be simplified to
an “effectively” two-band model, and further to a single-band
model in which the effective mass becomes energy-dependent
[18]. The resulting 2 2 Hamiltonian, with light-hole lh and
split-off so bands represented by an effective valence band

, reads [18]

(1)

In this expression, lh so , and
, is the momentum matrix element between

bulk Bloch states, which can be written as
( is the free electron mass) and is the Kane energy
( 14 eV in GaN [17]). From (1), one obtains the following
differential equation [18]:

(2)

where represents the conduction band component of the en-
velope wave function vector, and the energy-dependent effective
mass is given by

(3)

The envelope wavefunctions are found here by
solving the Schrödinger equation of the form (2), i.e., more pre-
cisely

(4)

where the position—and energy—dependent effective mass is
calculated as: , with

, , and denoting the parabolic effective mass,
band gap, and conduction band edge, respectively. This model
predicts rather accurately the bound-state energies, even well
above the barrier top. Within this model, the standard expres-
sion for the dipole matrix element between statesand of the
conduction band becomes incorrect, because
the wave functions computed from (4) are not orthogonal (due
to the energy dependence of the mass). Therefore, it is necessary
to include the valence band contribution into the matrix element,
which then reads [18]

(5)
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Furthermore, the wavefunctions and must be normalized
according to [18]

(6)

Within the asymmetric central layer of the structure shown in
Fig. 1, the solution of (4) may be written as

(7)

where the functions and satisfy the following
boundary conditions at : , ,

, and . To the left and to the right of this
central region, the envelope functions are taken as a linear
combination

(8)
where is the -component of the wavevector and are
the periodic parts of the superlattice envelope Bloch functions,
which may be found by considering a single period, of width

. These are also taken as a linear combination of
particular solutions

(9)

where and are the solutions of (4) in the period
under consideration, , which sat-
isfy the fundamental boundary conditions at . For any
other period, these two are found by simple translation. The con-
stant follows by applying Bloch conditions

, and amounts to

(10)

where the notation ,
, and is introduced, and where the

product is found from the dispersion relation

(11)

where and , while
and denote the electron effective masses

in the well and barrier (Fig. 1), with the nonparabolicity effects
included. Bound states in the minigaps of this structure corre-
spond to complex values of the wavevector, which may be
written as

(12)

where is the minigap index. From the dispersion relation (11),
one then finds

(13)

because even corresponds to and odd to
. If the wavefunction defined by (8) is to remain finite in the

limit , the constant has to be zero for , and
similarly for . The bound-state wavefunctions
in th period of the superlattice, i.e.,

and , then reduce to

(14)
where the subscripts denote the region to the left (right)
of the central layer. The constant, from (10) and (12), reads

(15)

The continuity of and at and
at then, according to (7) and (14), delivers the linear ho-
mogeneous system in constants and . Equating its de-
terminant to zero results in transcedental equation which should
be solved for bound-state energies [19], [20]

(16)

where , , ,
and . Having found the solutions of the above
equation, the coefficients , and are found from the
normalization condition of bound-state wavefunctions (6).

The quantity of interest in this work is the fractional absorp-
tion on the transition between two bound states, which is
calculated from

(17)
where is the refractive index, the velocity of light, is the
vacuum dielectric permittivity, is photon energy, is the
in-plane wavevector, and denotes the difference of Fermi-
Dirac functions for statesand . is the momentum matrix
element which may be written as . In re-
ality, the absorption profile given by (17) is smeared by Lorentz
broadening, and the fractional absorption may then be written
as

(18)

where the dipole transition matrix element is taken to be inde-
pendent of , and is the normalized Lorentzian given by

(19)
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where is the transition energy at , is the ho-
mogeneous part of the transition linewidth, and

is the difference of reciprocal in-plane (transversal) elec-
tron effective masses in the initial and final state.

At this point, we note that the energy-dependent effective
mass (Kane’s) model of nonparabolicity, used in calculating the
envelope wavefunctions, does not distinguish between the per-
pendicular (along the quantization axis) and the transverse ef-
fects of nonparabolicity. In order to consider this, we followed
the alternative approach [21], which uses the nonparabolicity
parameters and . To determine these parameters for GaN and
AlN, we started with the Hamiltonian for wurtzite
semiconductors [17], diagonalized it at a number of
points, and fitted the results to an expression analogous to that
given by Ekenberg [21], but which accounts for the anisotropy
that exists in wurtzite materials

(20)

Assuming that in AlGaN, as is frequently done, (20)
may be written in the form (after collecting the terms with dif-
ferent powers of separately)

(21)

Following the Ekenberg procedure [21], the transverse effective
mass of a quantized state is found as

(22)

where and . It is
clear from (20) that the analysis of BC structures would be quite
involved if using the Ekenberg approach, so the simpler, en-
ergy-dependent effective mass formulation was used instead.
However, only the former is able to distinguish between the
in-plane and perpendicular effects of nonparabolicity, and was
used when this difference is important.

Numerical calculation of the nonparabolicity parameters
gives [14]: , ,

, and . With these
values, to a very good approximation, we have

(23)

and

(24)

which implies that the in-plane mass is enhanced over the band
edge mass about twice as much as the perpendicular mass. As
noted previously [21], though derived for a quantum well in
infinitely high barriers, (24) also holds approximately for wells
with finite barriers, and the values and

should be used in (24). The rigorous treatment for the case of
finite barriers [21] is too involved and is not used in this work.

To find the self-consistent solution all the above expressions
are to be used in an iterative procedure of finding the eigenstates
of the Schrödinger equation, using those in the Poisson equation

(25)

to get the electrostatic potential, adding to it the exchange-corre-
lation potential, inserting those back into the Schrödinger equa-
tion, etc., until the self consistency is reached. To evaluate
in (25), one has to find the Fermi level from the global
neutrality condition. Here comes another essential difference
between an idealized infinite structure and the one with short
Bragg reflectors. Infinite structure has allowed minibands, char-
acterized by a finite density of states, and therefore has an infi-
nite total number of states (simply because of its infinite extent).
This in turn implies that the presence of a very limited number
of bound states, confined to the central part, will have no influ-
ence on . Consequently, the global neutrality condition may
be imposed on any single period of the superlattice, in the form:

, where is the doping per unit well surface per
period (i.e. the average volume doping) andis the electron
density in the th miniband, which reads

(26)
where is the Boltzmann constant, the temperature, and

are the boundaries of the miniband under consider-
ation. In contrast, a finite structure with short Bragg reflectors
has only discrete states: those confined to the central layer, and
those to the Bragg reflectors (the latter would merge into mini-
bands only in the limit of very wide Bragg reflectors). In this
case, the total electron sheet density is obtained by summing
over all discrete states

(27)
where is the in-plane effective mass of state, and this
is equated to the total sheet doping density(across the struc-
ture).

III. N UMERICAL RESULTS

We first consider the idealized (infinite) BC structure. It is
clear from Fig. 1 that the bound state and miniband positions,
and hence the fractional absorption for the se-
lected transition , depend on four structural param-
eters: the layer widths within the superlattice unit cell (and
), the Al mole fraction (which determines the barrier height

) and the central well width . The optimization procedure
relies on varying their values within physically or technologi-
cally feasible limits in order to find the structure with maximal

, while keeping the transition energy to the required value
. The most convenient and reliable way of per-

forming this task is to use one of the well established methods
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Fig. 2. Band diagram of the central segment of idealized infinite BC structure
optimized for intersubband absorption at� � 1:55 �m.

of global optimization, such as simulated annealing [22]. This
algorithm enables one to find the optimum of a target func-
tion within the specified range of a free parameter space, and
has shown good results in optimization of intersubband devices
[23]. For the problem considered here, the target function is
chosen as

(28)

The role of the denominator is to favor structures which meet
the resonance condition , where is a constant
guarding against the singular behavior of the target function
close to resonance. It should also be noted that all the electrons
are assumed to populate the lowest state, and then the precise
value of does not influence the behavior of (28). This as-
sumption has to be checked afterwards.

The material parameters used in the numerical calculations
were [24]: ( is the free electron mass),

, , ,
, , ,

, ,
, , , and

,
[16]. The AlN/GaN conduction band offset was taken to be

, as obtained from photoemission spectroscopy
measurements [25] and calculations [26]. Vegard’s law (linear
interpolation) was used for the alloy layers, which is valid in this
system [27].

The procedure described above was first performed for a
photon energy . The optimal
idealized structure deduced in this case had the following
parameters: , , and

, as shown in Fig. 2. The relevant bound states
are at and , while the miniband
boundaries were found from (11). In the structure given in
Fig. 2 the first two minibands (which exist in infinite structure)
cover the range (0.634–0.941) eV and (1.542–2.445) eV. The
dependence of the transition dipole matrix elements on some
of structural parameters, obtained in course of the optimization
procedure, is given in Fig. 3 for a few cases (those providing
large values of ). Generally, we find that large values of

occur in structures where both discrete states reside near
the middle of the minigaps. This is consistent with Bragg

Fig. 3. Dependence of the dipole matrix element on the central well
width, plotted for a few different values of the AlGaN barrier height
(�E = 800 meV in all cases).

reflection conditions, interpreted in terms of layer-averaged
wavevectors

(29)

where , ,
.

It is interesting to note a nonsmooth variation of parameters
in Fig. 3 as varies. This is caused by the fact that any change
in requires redetermination ofand in order to bring the
localized state 2 back to the middle of mini-band-gap, keep the
transition energy constant, and retain a large matrix element,
which sometimes results in substantial changes of, , and
(i.e. in an essentially new structure). Taking an example from
Fig. 3, for , , , and
the miniband energies are (0.244–0.264) eV, (0.866–0.972) eV,
and (1.400–1.746) eV, and localized state energies are

and , which give the transition matrix
element of . Almost the same value of

, and the same transition energy is also obtained with a
considerably wider well, , and other parameters are
then , , and ; minibands are
then positioned at (0.492–0.984) eV and (1.462–2.665) eV, and
localized states at and .

The optimization procedure was also performed for another
wavelength of interest ( , i.e., ).
In this case, the optimal structural parameters were: ,

, , and . The two
relevant bound states are now at and

, and the two lowest minibands are at (0.728–0.955)
eV and (1.653–2.416) eV, as shown in Fig. 4. The dependence
of dipole matrix element on some parameters is shown in Fig. 5.
Similarly to the previous case, changes of may result in
substantial changes of other parameters. Structures with similar
values of (for ) and (for

) have quite dissimilar values of all the other parame-
ters and the corresponding band structures: , ,

, minibands at (0.362–0.402) eV, (1.148–1.346)
eV, and (1.769–2.283) eV, localized states at
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Fig. 4. Same as Fig. 2 but for� � 1:3 �m.

Fig. 5. Same as Fig. 3 but for structures with�E = 950 meV.

and in the former case, and in the latter case
, , , minibands at (0.465–1.261)

eV and (1.770–2.788) eV, bound states at and
. It is worth noting that a conventional quantum

well with barrier-confined states, optimized at this short wave-
length, would be on the verge of realizability, having a very high
Al content in the barrier and a rather narrow well
layer [14]. On the other hand, the BC structure shown in Fig. 4,
which supports the above-the-barrier confinement, requires a
smaller Al content in the barriers , which are thus
less strained, with less-pronounced critical thickness issues.

Next, we consider realistic Bragg structures, which normally
comprise a relatively small number (10) of superlattice pe-
riods for confinement. The structural parameters are taken as
found for optimal idealized structures, but at this point we in-
clude the effects of doping, i.e., self-consistency. Two types
of doping profiles are usually employed [5], either that of the
central well only, or that of the two periods of the superlat-
tice on either side of the central well (modulation doping). The
sheet electron densities were taken as either or

. The number of superlattice periods was chosen
so to provide good confinement of localized states and preserve
the designed energy spacing. Larger energies generally demand
a larger number of periods. The structure, Fig. 2,
really needs just four periods on each side to achieve good con-
finement. As an example, the self-consistently calculated po-
tential profile in such a structure, with the modulation doping of

, is shown in Fig. 6. There are a couple of inter-
esting points to note: 1) the effects of self-consistency, even at

Fig. 6. Self-consistently calculated potential profile in a short BC structure
(with four superlattice periods for confinement), having the same structural
parameters as the optimal idealized structure (for� � 1:55 �m), but
modulationally doped to1� 10 cm . The wavefunctions of states present
in this structure are also displayed.

Fig. 7. Same as in Fig. 6, but for� � 1:3 �m, with eight superlattice periods
for confinement.

this high doping, are here rather mild, in contrast to the expecta-
tion that large electron density would introduce strong screening
of the built-in field; this is because the built-in field is very large,
and the wells are deep (wider wells, designed for longer wave-
lengths, would be much more affected); 2) the potential in the
superlattice regions is not strictly periodic and, aside from the
band bending due to self-consistency, there is a relatively small
global slope present therein, which counterbalances the large
potential drop across the central well, so to achieve periodic
boundary conditions (this is due to finiteness of the structure,
not to the self-consistency); 3) instead of lowest true miniband
the finite structure has, on either side, a cluster of four states,
localized in the four periods of the superlattice, and the same is
true for higher minibands (a part of the next one is also shown in
Fig. 6); the “minibands” on the two sides are mutually displaced
in energy (have almost no overlap), but in spite of this and all the
previous “imperfections” the two bound states remain strongly
localized, with good overlap and hence the transition matrix el-
ement. One may therefore expect that the realistic structure is
(close to) optimal, as was its idealized precursor. It is also impor-
tant to note that this finite structure has all the electrons residing
in the ground (localized) state, even at , as is calcu-
lated from (27); this would not be the case for idealized infinite
structure, where miniband population has to be considerable,
as discussed in Section II. Similar conclusions apply to another
example, the structure designed for absorption at ,
Fig. 7, again with modulation doping, which has 8 superlattice
periods on each side to be able to confine the states with in-
creased energies. If the doping of the central well only is em-
ployed, the positive charge of donor ions largely compensates
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TABLE I
SUMMARY RESULTS OFSELF-CONSISTENTLY CALCULATED ABSORPTION

PARAMETERS (ACTUAL PEAK ABSORPTIONWAVELENGTH � AND

THE VALUE OF FRACTIONAL ABSORPTIONA ) FOR REALISTIC

FINITE BC STRUCTURES. THE DATA IN THE FIRST COLUMN

DENOTE THE INITIALLY TARGETED � AND THE DOPING TYPE

(M—MODULATIONAL , W—CENTRAL WELL DOPING)

that of electrons, and the band bending shown in Figs. 6 and 7
becomes even less prominent.

Finally, in Table I, the summary results of the self-consis-
tently calculated characteristics of realistic, finite structures are
given. The peak absorption wavelengths of finite BC structures
are clearly quite close to the values initially targeted for the ide-
alized infinite structure. The homogeneous linewidth was taken
to be [8]. It is interesting to note that about half of
the full linewidth originates from nonparabolicity effects, and
the other half from homogeneous broadening.

IV. CONCLUSION

We have performed the design optimization of GaN–AlGaN
Bragg-confined structures in order to maximize the intersub-
band absorption in the communications spectral range. An
advantage offered by BC structures is the existence of bound
states above the barrier top which is very important at shorter
wavelengths. In particular, at the required content
of Al in the barriers of the optimal structure is much lower than
would be necessary for a simple quantum well. The effects of
the built-in electrostatic field and band nonparabolicity were
included in the first part (finding the optimal set of idealized,
infinite BC structure parameters, using the simulated annealing
algorithm), and the fully self-consistent calculation was per-
formed subsequently for realistic, short-period structures, to
check the quality of the design under heavy doping conditions.
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