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Fast Algorithm for the 3-D DCT-II
Said Boussakta, Member, IEEE, and Hamoud O. Alshibami, Student Member, IEEE

Abstract—Recently, many applications for three-dimensional
(3-D) image and video compression have been proposed using 3-D
discrete cosine transforms (3-D DCTs). Among different types of
DCTs, the type-II DCT (DCT-II) is the most used. In order to
use the 3-D DCTs in practical applications, fast 3-D algorithms
are essential. Therefore, in this paper, the 3-D vector-radix
decimation-in-frequency (3-D VR DIF) algorithm that calculates
the 3-D DCT-II directly is introduced. The mathematical analysis
and the implementation of the developed algorithm are presented,
showing that this algorithm possesses a regular structure, can
be implemented in-place for efficient use of memory, and is
faster than the conventional row-column-frame (RCF) approach.
Furthermore, an application of 3-D video compression-based 3-D
DCT-II is implemented using the 3-D new algorithm. This has
led to a substantial speed improvement for 3-D DCT-II-based
compression systems and proved the validity of the developed
algorithm.

Index Terms—Fast multidimensional algorithms, fast 3-D trans-
forms, 3-D DCT, 3-D vector-radix algorithm.

I. INTRODUCTION

S
INCE the introduction of one-dimensional discrete cosine

transforms (1-D DCTs) in 1974 [1], it has been applied in

a wide range of applications, because the DCT performs very

close to the statistically optimum Karhunen–Loeve transform

[2] in terms of compression performance. These applications

are mainly in data, image/video, and multimedia applications

[3]–[9]. Additionally, it has been adopted as part of several com-

pression standards [10]–[12].

This has led to the development of a large number of fast

algorithms to calculate the 1-D and two-dimensional (2-D)

DCTs. These algorithms can be classified into direct and indi-

rect algorithms. The direct algorithms generally have a regular

computational structure, which reduces the implementation

complexity [13]–[16]. On the other hand, indirect algorithms

exploit the relationship between the DCTs and other transforms.

These algorithms include the calculation of the DCT through

the fast Fourier [17], Hartley [18], and polynomial transforms

[19]. These algorithms generally have irregular structures and

complex indexing schemes.

Although many algorithms have been developed for fast cal-

culation of the 1-D and 2-D DCTs [13]–[24], algorithm develop-

ment for the multidimensional discrete cosine transform (m-D

DCT) in three and more dimensions is more challenging and has
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not been given similar attention. Hence, the three-dimensional

(3-D) DCT is usually calculated using the row-column-frame

(RCF) approach or through mapping it to 1-D and using other

transforms [25]–[29]. However, proper and direct m-D algo-

rithms have a better computational structure, can be more ef-

ficient than the RCF approach, and need to be developed.

Owing to the rapid growth in the 3-D applications based on

the 3-D DCT [30]–[36], there is a greater need now to develop

fast algorithms for the 3-D DCT for such applications. Conse-

quently, this paper concentrates on developing a direct, fast, and

efficient algorithm for fast calculation of the type-II 3-D DCT

(3-D DCT-II). The 3-D DCT-II was first suggested for 3-D com-

pression applications in 1977 [30], [31], but it did not gain much

attention because of the high computation time involved. This is

reflected by the huge amount of data associated with its calcula-

tion and the lack of fast algorithms in 3-D. Due to the enhance-

ment in software, hardware, and the introduction of fast algo-

rithms, many new applications have been proposed based on the

3-D DCTs [32]–[36]. These applications include hyper-spectral

coding systems [32], variable temporal length 3-D DCT coding

[33], video coding algorithms [34], adaptive video coding [35],

and 3-D compression [36], etc.

Since the 3-D DCT is separable, it is usually calculated by

successively applying 1-D fast algorithms over the rows, the

columns, and then the frames in what is known as an RCF ap-

proach. Other fast algorithms have been developed to reduce the

computational cost of the 3-D DCT [24]–[29]. Common to all

these algorithms is that they exploit the relationship between the

DCT and other transforms such as Fourier, Hartley, and polyno-

mial transforms to calculate the 3-D DCT involving complex

indexing and overheads. Direct and true multidimensional al-

gorithms that have regular structure and indexing schemes are

preferred [37]–[43].

In this paper, new 3-D vector-radix decimation-in-frequency

(VR DIF) algorithm is developed for fast calculation of the 3-D

DCT-II. The development shows all the stages of calculation,

the arithmetic complexity, and the computer run-times. From

the number of arithmetic operations, the 3-D DCT-II VR DIF

algorithm is found to require substantially fewer multiplications

as compared with the familiar RCF approach. Moreover, based

on the computer run-times, it is found to be faster (around 70%

for 8 8 8 3-D DCT) than the RCF approach. In addition, it

has a regular butterfly structure, making it suitable for software

and hardware implementations.

The organization of this paper starts with the definition of

the 3-D DCT-II in Section II. Section III presents the mathe-

matical derivation and development, as welll as the arithmetic

complexity of the 3-D DCT-II VR DIF algorithm. Comparisons

between the 3-D vector-radix algorithm and other related algo-

rithms are carried out in Section IV. Finally, in Section V, the

1053-587X/04$20.00 © 2004 IEEE
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developed 3-D DCT-II VR algorithm is used for the implemen-

tation of a 3-D video compression algorithm. The “C” code for

the butterfly stage of the computation of the 3-D DCT-II VR

DIF algorithm is included in the Appendix. The full “C” code

for the 3-DCT-II and 3-D IDCT-II is available from the authors.

II. DEFINITION OF THE FORWARD AND INVERSE 3-D DCT-II

The 3-D discrete cosine transform type-II , of

size , is defined as

(1)

The inverse 3-D DCT-II (also called 3-D DCT-III)) is defined

as

(2)

where

for

otherwise

III. DEVELOPMENT OF THE 3-D DCT-II VR DIF ALGORITHM

The vector-radix algorithms have been applied for fast cal-

culation of numerous multidimensional transforms such as dis-

crete Fourier [42] and Hartley transforms [43]. They have been

also used for fast calculation of the 2-D DCTs [41], [44] and the

3-D DCT-III [45]. These algorithms deal with the data as a mul-

tidimensional array and calculate the DCT directly, whereas the

familiar RCF approach uses algorithms developed for the cal-

culation of 1-D transforms to calculate multidimensional trans-

forms. Direct m-D algorithms are found to be more efficient and

faster than the RCF approach [38], [40]–[45].

In this section, for the purpose of fast 3-D video compression

applications, the 3-D VR DIF algorithm is developed and ana-

lyzed for the 3-D DCT-II.

A. Algorithm Development of the 3-D VR DIF Algorithm for

the 3-D DCT-II

For simplicity, the multiplication by the normalization factor

and the factor can be neglected or delayed

to the last stage. The transform size is assumed to

be power of in order to apply the vector-radix algo-

rithm. First, the input data needs to be rearranged

according to the index mapping as follows [13], [45]:

(3)

Replacing in (1) by in (3),

can be written as

(4)

where , and

If the even and the odd parts of , and are considered,

the general formula for the calculation of the 3-D DCT-II can

be expressed as

(5)

where

or (6)
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For , and -even, (5) can be written as

(7)

For and -even and -odd, (5) can be written as

(8)

Using the trigonometric identity

(9)

can be decomposed into

-points 3-D DCTs plus some multiplications by twiddle

factors and additions. Therefore, can be

decomposed as

(10)

Following the same procedure, can be

decomposed as

(11)

and can be calculated as

(12)

For -even and and -odd, can

be written as

(13)

Using the trigonometric identity

(14)

can be converted to

-point 3-D DCT-II as

(15)

Similarly, and

can be decomposed as follows:

(16)

(17)

For , and -odd, can be

written as

(18)
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Using the trigonometric identity

(19)

can be converted to

-point 3-D DCT-II as

(20)

B. Arithmetic Complexity of the 3-D DCT-II VR DIF Algorithm

The calculation of the 3-D DCT-II using the 3-D VR DIF

algorithm consists of four stages, as shown in Fig. 1. The

first stage is the 3-D reordering using the index mapping

illustrated by (3). The second stage is the butterfly calculation.

Each butterfly calculates eight points together, as illustrated

by (7), (10)–(12), (15), (16), and (20), and shown in Fig. 2.

In these equations, the parts that are between the parentheses

are calculated at the butterfly stage, whereas the other

parameters are calculated later in the post-additions stage. The

whole 3-D DCT calculation needs stages, and each

stage involves butterflies. The whole 3-D DCT requires

butterflies to be completed. Each butterfly

requires seven real multiplications (including trivial multi-

plications) and 24 real additions (including trivial additions).

Therefore, the total number of real multiplications needed for

this stage is , and the total number of real

additions is . The post-additions (recursive

additions) can be calculated directly after the butterfly stage

or after the bit-reverse stage, as shown in Fig. 1. This stage

Fig. 1. Stages of the 3-D DCT-II VR DIF algorithm.

involves real additions only. The total number of real additions

required for this stage is .

Consequently, the total numbers of real multiplications (in-

cluding trivial multiplications) and additions (including trivial

additions) required to calculate the 3-D DCT-II using the 3-D

VR DIF algorithm are

Multiplications (21)

Additions

(22)

The total number of arithmetic operations (including trivial

operations) for the 3-D DCT-II VR DIF algorithm is listed in

Table I for different transform sizes.

IV. COMPARISONS OF THE 3-D DCT-II VR ALGORITHM WITH

OTHER RELATED ALGORITHMS

In this section, the calculations of the 3-D DCT-II using the

3-D VR algorithm and the RCF approach are compared based

on arithmetic operations and computer run times. The developed

algorithm is also indirectly compared with existing fast 3-D al-

gorithms for the 3-D DCTs.

A. Comparison of the 3-D DCT-II VR Algorithm With the RCF

Approach Based on the Arithmetic Complexity

The arithmetic complexity of the 3-D VR algorithm for the

3-D DCT-II was obtained in Section III-B. On the other hand,

the 3-D DCT-II can be calculated using the RCF approach based

on 1-D algorithms. Since the 3-D VR algorithm is based on the

idea of the radix-2 in 1-D, the 3-D VR is compared with the 3-D

RCF approach based on the 1-D radix-2 algorithm [13], [14],

[22]. This algorithm has been used as the basis for comparison

purposes [40], [41], and it involves

Multiplications and

Additions



996 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 4, APRIL 2004

Fig. 2. Single butterfly of the 3-D DCT-II VR DIF algorithm.

The 1-D algorithm needs to be applied, successively, over the

rows, columns, and frames, involving

Multiplications

(23)

Additions

(24)

The arithmetic operations are detailed in Table I for different

transform sizes.

From Table I and Fig. 3, it can be seen that the total number

of multiplications associated with the 3-D DCT VR algorithm

is less than that associated with the RCF approach by more than

40%. In addition, the RCF approach involves matrix transpose

and more indexing and data swapping than the new algorithm.

This makes the 3-D DCT VR algorithm more efficient and better

suited for 3-D applications that involve the 3-D DCT-II such as

video compression and other 3-D image processing applications

[30]–[36].

B. Comparison of the 3-D DCT-II VR Algorithm With the RCF

Approach Based on Computer Run-Times

The developed vector-radix algorithm and the RCF approach

have been implemented for the 3-D DCT-II using “C” pro-

TABLE I
OPERATIONS COUNT FOR THE CALCULATION OF THE 3-D DCT-II

USING THE 3-D VR AND THE RCF ALGORITHMS

Fig. 3. Comparison between the 3-D vector-radix algorithm and the
row-column-frame approach for the 3-D DCT-II (number of multiplications
as shown in Table I).
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TABLE II
COMPUTER RUN TIMES FOR THE 3-D VR ALGORITHM AND THE

RCF APPROACH FOR THE CALCULATION OF THE 3-D DCT-II
ON A P-4 COMPUTER USING THE VC++ COMPILER

gramming language. The code for the butterfly stage of the 3-D

VR DIF algorithm is shown in the Appendix. The computer

run-time comparison between the developed algorithm and

the RCF approach is carried out on two different systems.

The first system has a Pentium 4 (P-4) processor with speed

of 2000 MHz and 1024 MB RAM, and the second system

has a Pentium-III (P-III) processor with speed of 1000 MHz

and 256 MB RAM. The run time in the first system has been

calculated using Visual C++ (VC++) Version (6), whereas

in the second system, VC++ Version (6) and Cygwin have

been used. Therefore, Table II shows the run times on the first

system using VC++ compiler. Using the second system, the run

times for the 3-D VR and the 3-D RCF algorithms are shown in

Table III using VC++ and Cygwin compilers, respectively. The

times in Tables II and III represent the average values obtained

by repeated execution of the algorithm.

The results of the computer run times confirm the results of

the comparison of the arithmetic operations. The 3-D VR al-

gorithm is even better in the comparison of the computer run

times. This is due to the fact that the 3-D DCT VR algorithm

has a better structure than the RCF approach, and in addition,

unlike the RCF approach, it does not involve matrix transpose.

C. Comparison of the 3-D VR Algorithm With Other Existing

3-D DCT Algorithms

A limited number of fast algorithms has been developed to

reduce the computational cost of the 3-D and higher dimensions

[25]–[29]. In this section, these algorithms are discussed and

compared with the 3-D DCT-II VR algorithm presented in this

paper.

In [27], the authors have introduced a fast algorithm for the

calculation of the n-dimensional DCT by mapping the n-dimen-

sional DCT of size

into sets of -D DCTs. This algorithm is

based on the conversion of the n-dimensional DCT into 1-D

DCTs with a reduction in the arithmetic operations. Unlike the

developed algorithm in this paper, this algorithm cannot be per-

formed in-place, which leads to large memory requirements and

program sizes. In addition, as stated in [26], the indexing and the

post-addition stage become very complicated when .

In [26], the authors have introduced a polynomial transform

(PT)-based algorithm for the calculation of the multidimen-

sional DCT. The main idea of this algorithm is to use the PT to

convert the multidimensional DCT into a series of 1-D DCTs

directly. Other similar algorithms were introduced in [28] and

[29]. Although, these algorithms require fewer multiplications

than the 3-D VR algorithm, they are difficult to implement [40]

and rarely used in video codecs [24].

In general, these algorithms are based on mapping the multi-

dimensional transform into 1-D cosine and polynomial trans-

forms. They involve fewer multiplications but have irregular

computational structure involving more complex indexing and

overhead [24], [40]. They do not have the butterfly structure

and cannot be calculated in place; therefore, their overall com-

plexity is higher than our algorithm. The main consideration

in choosing a fast algorithm is computational and structural

complexities. As the technology of computers and DSPs ad-

vances, the execution time of arithmetic operations (multipli-

cations and additions) has become very fast, and regular com-

putational structure becomes the most important factor [40].

Therefore, although the proposed 3-D VR algorithm does

not achieve the theoretical lower bound on the number of

multiplications [46], it has the simplest computational structure

among all 3-D DCT algorithms. It can be implemented in

place using a single butterfly and posses the properties of the

Couley–Tukey FFT in 3-D. Hence, the 3-D VR presents the

best choice for reducing arithmetic operations in the calculation

of the 3-D DCT-II while keeping the simple structure that

characterize butterfly style Couley–Tukey-based algorithms.

V. IMPLEMENTATION OF VIDEO COMPRESSION

USING THE 3-D DCT-II

In recent years, a considerable amount of research has

focused on image and video compression. Compression plays

a significant role in signal/image processing and communi-

cations. Recently, the 3-D DCT has been proposed for the

implementation of a new 3-D compression algorithm called

the XYZ-video compression algorithm [9]. This algorithm

takes advantage of the statistical behavior of video data both

in spatial and temporal domains. This eliminates the need for

motion estimation, which is required for the implementation

of the MPEG standard. As the authors stated, the heart of

this algorithm is the 3-D DCT, and the development of fast

and efficient algorithms for the 3-D DCT is essential for the

practical use of this technique.

The idea of this algorithm is that it takes a full motion dig-

ital video stream and divides it into groups of eight frames.

Each group is considered to be a 3-D image, where X and Y

are the spatial component, and Z is the temporal component.

Each frame in the image is divided into 8 8 blocks, forming

8 8 8 cubes. Each cube is then independently encoded. The

XYZ-video encoder consists of three stages: the 3-D DCT-II,

the quantizer, and the entropy encoder. In XYZ decoding, the

steps from the encoding process are inverted and implemented

in the reverse order, as shown in Fig. 4.
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TABLE III
COMPUTER RUN TIMES FOR THE 3-D VR AND THE RCF ALGORITHMS FOR THE CALCULATION

OF THE 3-D DCT-II ON P-III COMPUTER USING CYGWIN AND VC++ COMPILERS

Fig. 4. Encoding and decoding process of the XYZ codec.

The XYZ-video compression algorithm shown in Fig. 4 has

been implemented, and the new 3-D DCT VR DIF algorithm has

been used to calculate the 3-D DCT-II. The 3-D DCT-II coeffi-

cients have been scaled using the quantizer introduced in [36].

After quantization, a 3-D zigzag traversal is performed. The last

part of the encoding process is the encoder. In this example, the

Huffman coding technique described in [4] has been used.

In the XYZ-decoding, the same steps used for encoding is in-

verted and then reversed, where first, the Huffman decoder is

implemented on the compressed video data, and then, the de-

quantization is applied. Finally, the inverse 3-D DCT-II or the

3-D DCT-III developed in [45] is used to obtain the decom-

pressed frames, where the 3-D DCT-III VR DIT algorithm has

been used to calculate the inverse 3-D DCT-II. Fig. 5(a) shows

eight frames, each with size (128 128), from a video stream,

whereas Fig. 5(b) shows the same video sequences after com-

pression and decompression using the XYZ algorithm. The re-

lated errors between the original frames and the decompressed

frames, multiplied by 16 in order to be visible, are shown in

Fig. 5(c).

For this example, the compression ratio is 27:1, the normal-

ized root mean square (NRMS) is 0.063, and the peak signal-to-

noise ratio (PSNR) is 30.9531 dB. This example has been car-

ried out using VC++ Version (6) running on a P-III computer

with speed of 1000 MHz and 256 MB RAM. The timing for

the encoding and decoding process of the XYZ-video compres-

sion algorithm was 6.76 s. The XYZ-video compression algo-

rithm has also been implemented using the RCF approach for

the calculation of the forward and inverse 3-D DCTs-II, where

the timing was 11.31 s.
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Fig. 5. Coding of video sequence using the XYZ-compression algorithm.

VI. CONCLUSION

In this paper, the 3-D vector-radix DIF algorithm has been

introduced for fast calculation of the 3-D DCT-II. The math-

ematical derivation for this algorithm has been developed, and

the total number of multiplications and additions has been calcu-

lated, showing that the 3-D DCT-II VR algorithm achieves a sig-

nificant saving—more than 40%—in the total number of multi-

plications, as compared with the RCF approach while keeping

the number of additions the same. Based on the computer run

times, it is also shown that the new 3-D DCT VR algorithm is

faster and can save up to 70% in the run time of the 8 8 8

3-D DCT-II (a typical size for 3-D image and video compres-

sion algorithms). Furthermore, the developed algorithm has a

regular structure and can be implemented in-place. Hence, it is

suitable for applications where fast computation of the 3-D DCT

is required, as in 3-D image and video compression.

For the evaluation of the developed algorithm, the XYZ-video

compression algorithm, which uses the 3-D DCT-II, has been

implemented, and an example for eight video frames has been

presented. The timing results of this application have demon-

strated that a significant saving in computer run time can be

achieved if the new developed algorithm is used, as compared

with the familiar RCF approach.

APPENDIX

************************************************************************

Authors: O. Alshibami and S. Boussakta

3-D Vector—radix decimation-in-frequency algorithm

for the 3-D DCT-II.

in[n][n][n] Input array to be transformed

n size of the input array.

m (number of stages)

The 3-D DCT is calculated in-place and stored in in[n][n][n]

************************************************************************

DCT3D(float in[n][n][n], int n, int m)

;

;

;

;

/* 3-D Reordering Stage */

/* Butterfly calculation Stage */

for( )

;

;

;

for ( )

for ( )

for ( )

for ( )

;

;

;

for ( )

;

;

;

for ( )

;

;

;

;

;

;

;
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;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

/* 3-D Bit-reverse Stage */

/* Post-additions Stage */

/* Multiplications by transform factor */

;
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