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Bézout Factors and -Optimal Controllers
for Delay Systems Using a Two-Parameter

Compensator Scheme
Catherine Bonnet and Jonathan R. Partington

Abstract—The authors consider in this paper the simultaneous
problem of optimal robust stabilization and optimal tracking for
single-input/single-output (SISO) systems in anL1-setting using
a two-parameter compensator scheme. Optimal robustness is
linked to the work done by Georgiou and Smith in theL2-setting.
Optimal tracking involves the resolution ofL1-optimization prob-
lems. The authors consider in particular the robust control of
delay systems. They determine explicit expressions of the Bézout
factors for general delay systems which are in the Callier–Desoer
class B̂(0). Finally, they solve several generalL1-optimization
problems and give an algorithm to solve the optimal robust
control problem for a large class of delay systems.

Index Terms— Bézout factors, delay system, optimal robust
stabilization, L1-optimization, tracking, two-parameter compen-
sator scheme.

I. PRELIMINARIES

W E HAVE

denotes the complex-valued measurable functions on the
nonnegative real axis such that

denotes the complex-valued measurable functions on the
nonnegative real axis such that

denotes the subspace consisting of continuous functions
of compact support. is defined for as

a.e. on A linear continuous-
time system is defined as a linear integral convolution
operator from to

The system is -stable if

denotes the space of distributions of the form
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where is a
delayed Dirac function, C and

is equipped with the norm

is simply denoted
The Laplace transform of is denoted

Often we shall be considering transforms of functions defined
only on in which case we shall regard them as being
defined to be zero on :

for some

The Callier–Desoer class is defined as [4]

where and

Let denote the space of all linear time-invariant causal
continuous-time -stable systems equipped with the operator
norm.

Distributions in generate a subspace of is
isometrically isomorphic to Let then we have

(see [16]).
By a convenient abuse of notation we identify and and

use the same notation for the operator and the transfer
function

A causal system in the quotient field of is said
to have a coprime factorization over if

and there exists such
that

A coprime factorization over is said to be
normalized if

for any (as and are in and are
continuous and bounded on ). We can deduce from [16]
that each having a coprime factorization over has a
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normalized coprime factorization over which is unique to
within multiplication by 1, as the proof of [16, Th. 4.2] is
still valid in the complex case.

It proceeds as follows [16], [20]. Let be any
coprime factorization over define

and write , then
defined by is such that
is a normalized coprime factorization.

The graph topology on is defined by Vidyasagar [24] by
introducing a basic neighborhood of a system
corresponding to the coprime factorization of over

and to the number [which must be smaller than a
certain positive number depending only on ] as

which admit a coprime factorization

where for

for example.
Partington and Mäkilä [16] extended the result of

Vidyasagar concerning convergence in the graph topology in
the finite energy setting [24, Lemma 7.2.20] to the -setting.
We state this result [16, Lemma 3.2].

The graph topology is also known as the gap topology [24].
Lemma 0.1 [16]: Let (respectively, ) be a (respec-

tively a sequence of) causal transfer function admitting a
coprime factorization in Then, the following statements
are equivalent.

1) converges to in the bounded-input/bounded-
output (BIBO) gap topology.

2) For every coprime factorization of over
there exist coprime factorizations over such
that in

3) There exist a coprime factorization of over
and a sequence of coprime factorizations of

over such that in

II. I NTRODUCTION

In this paper, we consider the robust control of infinite-
dimensional single-input/single-output (SISO) systems with a
special emphasis on delay systems and particularly on the
delay integrator as it is the system which motivated our study.
In fact, through an industrial problem of car depollution we
were faced with the problem of optimally robustly stabilizing a
delay integrator as well as making it optimally track a constant
signal output over time of unit amplitude. This is a simply
stated problem, but there is no existing method for it in the
literature.

Optimal robust stabilization for the standard feedback prob-
lem in the -setting has been considered by Georgiou and
Smith [11] when uncertainty is based on perturbations on
the coprime factors of the system (or on perturbations in

the gap metric). In the case of delay systems of the form
where is a strictly proper rational

function and an explicit formula for the optimal
robust controller is given as well as the value of the optimal
robustness margin. However, this formula is not obtained using
the Youla parameterization of the stabilizing controllers and
the resolution of an optimization problem in as set in
the generic case but is a closed form expression. Thus it is
impossible to modify this expression to be able to act on the
tracking quality of this controller.

At this point, the idea is to consider a two-parameter scheme
instead of the standard feedback configuration. In this scheme
too, the controllers are parameterized in terms of the Bézout
factors of the system. Kamenet al. [15] and more recently
Brethe and Loiseau [3] and Glüsing-Luerßen [13] considered
the existence of coprime factorizations of time-delay systems
with commensurate time delays. They proved that the set of
entire functions over is a B́ezout domain. In [3] we
can find an algorithm to compute the coprime factorizations
for such delay systems. The stabilizing controllers (of the
standard feedback scheme) obtained through the standard
Youla parameterization produce control laws which contain
commensurate and distributed delays.

Now, the practical problem leads us to consider an-
setting firstly because we consider persistent signals and
secondly because we intend to measure the-quality of
the tracking. It was Vidyasagar [25] and Dahleh and Pearson
[5]–[8] who first mentioned the interest of developing an
equivalent theory to the well-known -theory arising in
the -setting: in practical situations, very often signals are
naturally not of bounded energy but of bounded magnitude.
Moreover, one might want to control the magnitude of an
error signal rather than its integral square. As -optimal
control gives rise to optimization problems in the algebra

they solved several -optimization
problems for continuous (discrete-time) finite-dimensional sys-
tems. Staffans [23] studied equivalent problems for discrete-
time infinite-dimensional systems but as far as we know the
case of continuous-time infinite-dimensional systems has not
been studied. The problem of optimal robust stabilization of
infinite-dimensional systems in an -setting has been studied
in [20], [16], and [2]. In [2], we established a link between
optimal controllers in this setting and those determined by
Glover–McFarlane [17] and Georgiou–Smith [11] in the-
setting as well as convergence results of optimal controllers
and robustness margins of finite-dimensional systems to those
of infinite-dimensional systems. Those results will be helpful
in the study of the present paper.

The paper is organized as follows. In Section III, we for-
mulate the double problem of optimal robust stabilization
and optimal tracking through a two-parameter compensator
scheme for general infinite-dimensional systems. In Section IV
we propose a family of (eventually normalized) coprime
factorizations and B́ezout factors for a class of delay systems.
In Section V, we solve for different classes of systems the-
optimization problem that was posed in Section III. Finally, we
give in Section VI a general algorithm to solve the proposed
robust control problem and illustrate it on a simple example.
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Fig. 1. Standard feedback configuration.

III. ROBUST STABILIZATION AND TRACKING

FOR INFINITE-DIMENSIONAL SYSTEMS

We consider in this section, the simultaneous problem of
robust stabilization and tracking.

Given a linear continuous-time infinite-dimensional system
defined as

we know from [20] that is BIBO-stabilizable by a feedback
controller admitting a coprime factorization if and only if
admits a coprime factorization over

Now, let us suppose is a normalized coprime
factorization of over and are corresponding
Bézout factors

and

for any

It is well-known (see [24, p. 141]) that, giventhe plant input,
the plant output, and the external input, the greatest general

feedback linear compensator scheme is given by

where and are linear operators on
Here, we denote the external inputs(reference signal) and
(disturbance).
If we take (denoted ), we obtain the standard

feedback configuration of Fig. 1.
In this case, the set of all stabilizing compensators is

parameterized as where
The general feedback law can be implemented as in Fig. 2.
As explained in [24], this implementation makes no sense

unless is stable. Let be a coprime factoriza-
tion of so that and A
feasible implementation of the general feedback law is given
in Fig. 3.

By [24] (where Theorem 15 is still valid in infinite dimen-
sions), we know that the set of all two-parameter compensators
that stabilize is given by

with

Fig. 2. Infeasible implementation of a two-parameter compensator.

Fig. 3. Feasible implementation of a two-parameter compensator.

The input–output relation corresponding to Fig. 3 is de-
scribed as follows:

and it is easy to see that the stabilization is governed by
only.

We suppose is stable and consider
In this case the input–output matrix

is given by

The stability of depends on the invertibility
of in

Clearly, [2, Propositions 6.1–6.3] giving results on the
robust stabilization through a standard feedback scheme as
well as Proposition 6.4 giving convergence results are still
valid here. We recall these propositions in our context of the
two-parameter compensator scheme.

Proposition 2.1:

1) If

then is stable.
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2) If for some on
then is unstable.

Proposition 2.2: Let
with Then the following are equivalent.

1) is stable for all transfer functions
where and

2)

In the case of systems with kernel in C we have
the following.

Proposition 2.3: Let be defined by

Then C and
C Moreover

Let be a sequence of transfers such that

in the BIBO gap topology and (respectively, ) be
the optimal robust controller of (respectively, ) relative
to coprime factor perturbations.

Proposition 2.4: If the greatest singular value of
is of multiplicity one then:

1)

2) in the BIBO gap topology.

So, the optimal robust stabilization problem in this context
does not need further investigation beyond the work done in
the standard feedback scheme case.

Let us now state the tracking problem we want to solve.
Consider here that we want to optimally track in

the output reference defined by for In
applications, it is difficult to be sure that we will be able to
produce the precise reference output; we might as well produce
a signal which is only “near” the reference signal. So, it is more
realistic to try to track a family of reference signals. Here we
choose to track the family

We have
So the optimal tracking problem can be stated as

but we have

and the optimal tracking problem mathematically reduces to
an (or an )-optimization problem

It will turn out that a more realistic problem is the general
one

where is a weight function.

IV. COPRIME FACTORIZATIONS AND BÉZOUT

FACTORS FOR ACLASS OF DELAY SYSTEMS

A. Generalities on Delay Systems

We consider in this paper linear systems with a finite number
of delays in the state, the input, and output. Such systems are
described by the following equations:

where are
and matrices and

The transfer function of is given by

We denote the system without delay

with the transfer function and the nonatomic part of the
impulse response of the system

Suppose that is BIBO-stable, that is
C

Let us recall, for simplicity in the case (
are then denoted ), how the different delays act on the
BIBO-stability of

Suppose there is no delay in the state
The impulse response of is of the form

with
Obviously C the delays and

do not change the BIBO stability of
To see the effect of the delays on the impulse response,

we suppose that
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Let

We have and this means that there is no

impulse term in the impulse response. So the delaysdo not
contribute impulse terms to the impulse response. However,
they modify the -part of the impulse response and can make
it fail to be in

We are looking here at robustness of stability relatively to
coprime factor perturbations; we recall that for strictly proper
systems a change in the delay (in the input, output, or state)
corresponds to a variation in the BIBO gap topology.

Proposition 3.1: Let be the transfer function of
the following system:

and (respectively, ) be the transfer function of the
delayed system

or

respectively

then and in the BIBO gap

topology.
Proof: Note that the transfer functions in question are

and

Let and be coprime factorizations over
of and respectively. Note that and are rational,
is strictly proper, and is proper but not strictly proper.

Writing for the impulse response of we have

Using the fact that C is dense in C it is easy to
prove that

The transfer function of the second class of system is

say

It is easily verified that and as

More complicated results can be proven similarly, taking a
collection of different delays, all tending to zero.

B. Coprime Factorizations and Bézout Factors
for a Class of Delay Systems

We consider the class of retarded delay systems with scalar
transfer function given by where

and

with the
being polynomials of degree and for and the

being polynomials of degree for each
This class of systems was first analyzed by Bellman and

Cooke [1]. They proved that these systems possess only finitely
many poles in any right half-plane.

Normally one assumes that and have no common
zeroes, but this is not necessary.

Proposition 3.2: Let where and
are defined as above. There exists a rational function

such that is a coprime factoriza-
tion of over If and have no more than common
unstable zeroes, thencan be taken to be a polynomial.

Proof: The idea beyond the proof is to take
suitably modified in order to deal with common

unstable zeroes.
We have

with , so clearly Now

with and for so

As has a finite number of unstable zeroes we can
test if there are common zeroes with
multiplicity between and If so, then consider

with

where

If the number of common unstable zeroes is less than, then
is a polynomial. Clearly, we have

and
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Now, as and have no common zero
in , we deduce that
is a coprime factorization of over We recall that
if and were not coprime over
they would necessarily have a common sequence of zeroes in

and as the only possibility
would be a finite common zero in

Remark 3.1: Instead of in the above proof, we
could begin with any polynomial of degree without unstable
zeroes. In fact, it might be possible to chose such that

is a normalized coprime factoriza-
tion over For example, in the case when there is just
one delay in the input or output, that is is of the form

where and are polynomials, we
can deduce from the finite-dimensional case [17] that there
exists a polynomial such that
is a normalized coprime factorization of over

We now give a formula for the B́ezout factors in a coprime
factorization of a retarded delay system. Recall that less
explicit formulas have been given by Brethe and Loiseau [3]
in the case of delay systems with commensurate time delays.

Theorem 3.1:Let be the number of unstable zeroes
of (which are not zeroes of ) counted with their
multiplicity.

Let

and

where is a polynomial of degree chosen such that

at for if is a zero of multiplicity
and is a polynomial chosen such that its inverse is

in and is proper
Then and are B́ezout factors corresponding to the

coprime factorizations of over
To prove this result we need a lemma of [18] which we

recall here.
Lemma 3.1 [18]: Let be a holomorphic function on

C such that is bounded onC Then for any
there exists an such that on C and

Proof: Clearly, Let
be the unstable zeroes of of multiplicity

and is an interpolation polynomial of
degree defined by the following equations.

For

for at

Note that as is not a zero of for each the equations
are solvable and have a unique solution.

Finally, each unstable zero of of given multiplicity is a
zero of the function with the same

multiplicity. So, there exists such that is analytic
in Now, clearly where

and is bounded on So we can
deduce from Lemma 3.1 that Obviously, and

satisfy the B́ezout equation
Example 3.1:Let with and

we know that is a
normalized coprime factorization of over Corresponding
Bézout factors are given by

Those factors depend on the delay but is this dependence
continuous in the BIBO gap topology as it is the case for
the normalized coprime factorizations? This continuity would
be useful to establish convergence in the BIBO gap topology
for controllers of the system with delays to controllers of the
delay free system.

The next result proves more generally that Theorem 3.1
produces B́ezout factors which are continuous respectively to
variations of the coprime factors in the BIBO gap topology.

Proposition 3.3: Suppose has no zero on the imaginary
axis and let

such that

in the BIBO gap topology. Then the Bézout factors and
given by Theorem 3.1 depend continuously on in the

BIBO gap topology.
Proof: Let C C be the linear mapping defined

by

where denotes the unstable
zeroes of taken with multiplicity, and is the
th term of the finite sequence

where is the total number of distinct zeroes.
The mapping is continuous, linear, and one–one and
depends continuously on Thus, it has a continuous inverse.
The polynomial which performs the interpolation is given
by

and this also depends continuously on
It is now easy to see that the corresponding Bézout factors

and depend
continuously on
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Remark 3.2: If has zeroes on the imaginary axis, they
may become stable zeroes of for arbitrarily small. To
obtain B́ezout factors converging in this case, it is necessary
to modify the construction of Theorem 3.1, interpolating at
the corresponding stable zeroes of as well as the unstable
ones.

Example 3.2:Consider with
and where and

are polynomials as in Remark 3.1 such that is strictly
proper. As a variation in the delay is a variation in the BIBO
gap topology, we can deduce from the above proposition that
the B́ezout factors and of depend in a continuous
fashion on the delay

V. SOME -OPTIMIZATION PROBLEMS

The problem of optimal tracking is set as an optimization
problem of the type

where (1)

We have

where denotes the principal ideal
Moreover, for all if and only if

since otherwise is contained in a proper maximal ideal,
which is necessarily closed. (We refer to [22] for general
background on Banach algebras.) Now, clearly if
and only if is invertible in

Hille and Phillips [14] give the following invertibility con-
dition for elements in

Let Then is invertible in

In the particular case of commensurate time delays, that is,
is of the form with (and

we write ), we can give a more explicit condition
of invertibility.

Theorem 4.1:Let with

Then is invertible in

on

and

on

Proof: We have that

is invertible in

where is the set of all characters on
Recall that a character is a complex homomorphism

C with

It is well known (cf. [22]) that any character on that
does not vanish there takes the form for some

Then

so that and so
for all

If vanishes on then it acts as a character on and
thus takes the form for some with

So finally, where

for

for if

for

So we have

is invertible in

on

and

on

Remark 4.1: In the case of the simpler algebra C
we have is invertible in C if and only if

on and that is
on the extended right half plane.

Remark 4.2: In the case where is not invertible in
the necessary and sufficient condition of Theorem 4.1 being
not satisfied, we can be able to give a lower bound for

If there is a character such that
then also and so

Hence , i.e.,

We consider now the resolution of equations of the type
(1) firstly in the case which motivated our study, the delay
integrator, and so consider in the next paragraph delay systems
of the type We will consider more
general systems in Section IV-B.

A. The Case When

Let
A normalized coprime factorization of is given by

where
The optimal tracking problem is

By a convenient abuse of notation, we will write
instead of This

can be easily solved using the finite-dimensional results of
Vidyasagar. We recall here two useful lemmas of [26].

Lemma 4.1 [26]: Suppose is an integer, and let

Then
Lemma 4.2 [26]: Suppose that is rational, and

construct a rational function as follows: is a multiple
of every zero of in the open right half-plane is also a zero
of with the same multiplicity, and every zero ofon the
extended axis is a simple zero of Then
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Proposition 4.1: Let Then we have
and the infimum

being attained for
Proof: By Lemmas 4.1 and 4.2, we have
and obviously Now,

and gives
Those results on the infimum and optimal function are not

surprising as tracking in is very demanding. So the idea is
to consider here a weighted optimization problem of the form

where is a weight which will help
minimize the tracking error particularly at low frequencies
rather than high frequencies. We can consider for example

with
or

Theorem 4.2:For weights and the optimal
tracking error of the weighted problem is given by

Proof: For we have
Applying Lemma 4.2 we get

and

Now

Remark 4.3:As the infinimum is not attained, we cannot
define , however it is possible to construct a sequence

such that

For example, the sequence

will achieve that.

B. A More General Case

In this section, we determine the ideal in generated by
functions whose transforms are not necessarily rationals.

The case of functions whose Laplace transform does not
vanish on has been considered by Nymen [19] (a
simpler and more accessible proof of this result can be found
in [9]).

Theorem 4.3 [9]: Let Then if and only
if and in

Now, we want to consider the more general case where
has a finite number of zeroes in to be able

to cover for example the case of delay systems of the type
where is a rational function having

zeroes in The next theorem shows that the
result of Nymen extends naturally to the case of zeroes in

Theorem 4.4:Suppose and has a finite
number of zeroes in and no zero
on the imaginary axis. Then

Proof: We prove this result in the case where
and there is only one zero in the extension to
the case of several zeroes is straightforward by induction. The
case is immediately deduced.

Let and for in ;
otherwise on

Now, let , and we show first that

For we can write where

on
on

Clearly, as

Now, we have

For

so is in
Now, let us prove that

(the other inclusion is obvious).
Let with and

We have

So and has no zero in
From Theorem 4.3 we know there exists a

sequence in such that

that is and
The case of functions which have zeroes on the imag-

inary axis is difficult unless those functions are of the type
with rational in which case we can determine

using the finite-dimensional results of Vidyasagar.
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Fig. 4. Simplified two-parameter compensator scheme.

VI. A LGORITHM AND EXAMPLE

For delay systems which have a coprime factorization
over with and has only a finite number

of zeroes in , the robust control problem set in
Section III can be solved using the following algorithm.

Step 1: Find such that

Step 2: Find a sequence of finite-dimensional
transfer function such that in the BIBO gap

topology.
Step 3: Find such that

Choose small, define and construct
the controllers

and

is a finite-dimensional controller, and can be an
infinite-dimensional controller.

Proposition 5.1: If the greatest singular value of
is of multiplicity one, then:

1)

2) in the BIBO gap topology;

3) in the BIBO gap topology.

For systems of the type we might have a
more direct implementation. If for IN big, is such
that is invertible in , then is stable and
we can use the two-parameter compensator scheme of Fig. 4
where for we can take the closed form formula of the
optimal robust controller determined by Dymet al. [10] so
that we get in this scheme an optimal robust controller and
suboptimal tracking controller.

We illustrate this by continuing our analysis of Example 3.1.
Example 5.1:Let with

and
As pointed out before, a normalized coprime factorization

of is given by

and

• Step 1:Find such that

This is done in Remark 4.3 which gives

• Step 2:Find a sequence of finite-dimensional
transfer functions such that in

the BIBO gap topology.

Note that such a system as is badly approxi-
mated by rational functions (in many other examples one can
achieve faster convergence) and the best rate for approximation
in -norm known so far is (see [12]).

From [12] and the recent work of Partington and Mäkilä
[21] on approximation of such systems in we get that

and

are approximations of and in with error of order
These approximations are suboptimal, but easy to

calculate.

• Step 3:With

the B́ezout factors and satisfying
can be determined using standard algorithms

(available in Matlab or Scilab).

The finite-dimensional -optimization which follows is
also standard (see [27], available in Matlab or Scilab).
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