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Bézout Factors and.'-Optimal Controllers
for Delay Systems Using a Two-Parameter
Compensator Scheme

Catherine Bonnet and Jonathan R. Partington

Abstract—The authors consider in this paper the simultaneous wheret; € [0,00), 0 < t9 < t1 < -+, 6(t — t;) Is a
problem of optimal robust stabilization and optimal tracking for  delayed Dirac functiong; € C, e_'ﬁ'g,,,(-) € L'0,00), and
single-input/single-output (SISO) systems in arl*°-setting using 3100 |g4|6_,at7- < 00
a two-parameter compensator scheme. Optimal robustness is ~*=9 7" . T
linked to the work done by Georgiou and Smith in the L?-setting. A(f) is equipped with the norm
Optimal tracking involves the resolution of L' -optimization prob- oo 00
lems. The authors consider in particular the robust control of = e Ptlg (+ e Bt
delay systems. They determine explicit expressions of the Bézout HgHA(’@) /0 19a(8)] + 72_% l9:
factors for general delay systems which are in the Callier—Desoer
class B(0). Finally, they solve several generalL'-optimization .A(0) is simply denotedA.
problems and give an algorithm to solve the optimal robust The Laplace transfornf. of ¢ is denotedg
control problem for a large class of delay systems.

Index Terms— Bézout factors, delay system, optimal robust g(s) :/ e Stg(t) dt.
stabilization, L*-optimization, tracking, two-parameter compen- —oo
sator scheme. Often we shall be considering transforms of functions defined
only on [0, o), in which case we shall regard them as being
|. PRELIMINARIES defined to be zero of—oc,0):

(8)={a/d € A(pr) for some p; < B}.

W E HAVE RHP:{x + jy,z > 0,y € IR}. A
AP ={ge A (B)/I pst.

LP denotes the complex-valued measurable functions on the

i i . inf g(s)| > 0}.
nonnegative real axis such that (sC[R(s 2152} 19(s)| +
g 1/p A
</ IF@)P dt) < 0. The Callier—Desoer clas8(3) is defined as [4]
0

B(B3) = {§ =nd ! wheren € A_(3) andd € A.(B)}.
L denotes the complex-valued measurable functions on the (B =14 ) W

nonnegative real axis such thats sup,cg, |f(t)| < oc. Let 7 denote the space of all linear time-invariant causal
C. denotes the subspace consisting of continuous functiczentinuous-timel.! -stable systems equipped with the operator
of compact supportx(f) is defined forf € L? asa(f) = norm.

sup{t € Ry, f(z) = 0 a.e. on(0,t)}. A linear continuous-  Distributions in.A generate a subspad of T". T7 is
time system( is defined as a linear integral convolutiorisometrically isomorphic to4. Let G € T%, then we have

operatorG from L? to LP. Gy = 1Gllieey = llglla = 1l9ll 4 (see [16]). )
The system( is LP-stable if By a convenient abuse of notation we identif§ and.4 and
; |Gz|| L use the same notatio@ for the operatorG and the transfer
Gl = T2l : function §. A
pELY, w70 L A causal systemG in the quotient field ofA is said
A(B) denotes the space of distributions of the form to have a coprime factorizatioqV, D) over A if G =
- (N/D),D # 0,N,D € A and there exists(,Y € A such
that —-NX + DY = 1.
t) = go(t) + 0t — ¢ - ) . . )
9() = 9a(¢) ; :8( ) A coprime factorization(N, D) over A is said to be

normalized if
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by Associate Editor, M. A. Dahleh. N(s)N(s)+ D(s)D(s) =1
C. Bonnet is with INRIA Rocquencourt, Domaine de Voluceau-BP 105,
78153 Le Chesnay cedex, France. for anys = jw (asN andD are in A, N(jw) and D(jw) are

J. R. Partington is with the University of Leeds, School of Mathematics .
Leeds LS2 9J9r UK. Y continuous and bounded dR). We can deduce from [16]

Publisher Item Identifier S 0018-9286(99)06474-0. that eachG having a coprime factorization oved has a

0018-9286/99$10.001 1999 IEEE



BONNET AND PARTINGTON: BEZOUT FACTORS ANDL'-OPTIMAL CONTROLLERS 1513

normalized coprime factorization ovet which is unigue to the gap metric). In the case of delay systems of the form
within multiplication by +1, as the proof of [16, Th. 4.2] is G(s) = e¢~*T R(s) where R(s) is a strictly proper rational
still valid in the complex case. function and7”” > 0, an explicit formula for the optimal
It proceeds as follows [16], [20]. LetN,D) be any robust controller is given as well as the value of the optimal
coprime factorization over, defineF(jw) = 1/(|N(jw)|>+ robustness margin. However, this formula is not obtained using
|D(5w)|?), and writeln F(jw) = V(jw) + V(jw), thenl/  the Youla parameterization of the stabilizing controllers and
defined byl/(jw) = exp V (jw) is such that7 = (NU/DU) the resolution of an optimization problem iH., as set in
is a normalized coprime factorization. the generic case but is a closed form expression. Thus it is
The graph topology oud is defined by Vidyasagar [24] by impossible to modify this expression to be able to act on the
introducing a basic neighborhod8(V, D;~) of a systemG tracking quality of this controller.
corresponding to the coprime factorizatioW, D) of G over At this point, the idea is to consider a two-parameter scheme
A and to the numbery > 0 [which must be smaller than ainstead of the standard feedback configuration. In this scheme
certain positive number depending only OGN, D)] as too, the controllers are parameterized in terms of the Bézout
factors of the system. Kameet al. [15] and more recently
B(N,D;~) = {Gl which admit a coprime factorization ~ Brethe and Loiseau [3] and @ing-Luer3en [13] considered
the existence of coprime factorizations of time-delay systems

G - Ny ||Mi—-N < with commensurate time delays. They proved that the set of
' D,|\D, =D A K entire functions ovelR(s)[¢~*] is a Bezout domain. In [3] we
. can find an algorithm to compute the coprime factorizations
where for X, Y € A for such delay systems. The stabilizing controllers (of the
. standard feedback scheme) obtained through the standard
“; = JIXIE + Y13 Youla parameterization produce control laws which contain
A commensurate and distributed delays.
for example. Now, the practical problem leads us to consider an-

Partington and Makila [16] extended the result ofetting firstly because we consider persistent signals and
Vidyasagar concerning convergence in the graph topology §gcondly because we intend to measure He-quality of
the finite energy setting [24, Lemma 7.2.20] to the -setting. the tracking. It was Vidyasagar [25] and Dahleh and Pearson
We state this result [16, Lemma 3.2]. [5]-[8] who first mentioned the interest of developing an

The graph topology is also known as the gap topology [24duivalent theory to the well-knowtd.-theory arising in

Lemma 0.1 [16]: Let G (respectively {G;}) be a (respec- the L2-setting: in practical situations, very often signals are
tively a sequence of) causal transfer function admitting naturally not of bounded energy but of bounded magnitude.
coprime factorization inAd. Then, the following statementsMoreover, one might want to control the magnitude of an
are equivalent. error signal rather than its integral square. A% -optimal

. . control gives rise to optimization problems in the algebra

1) {G; toG in the bounded-input/bounded-

) ;{)utgutc?glvgcrge;ap topl)glog)e/ ounded-inptibotince L4522, ¢;6(t—t;), they solved severdl® (¢')-optimization

2) For every coprime factoriza'tiohN D) of G over A problems for continuous (discrete-time) finite-dimensional sys-

there exist coprime factorizatior{®v;, D;) over.A such tems. S_ta?ﬁa”_s [23] .StUd'ed equivalent problems for discrete-
S time infinite-dimensional systems but as far as we know the
that N; — N, D; — D in A.

case of continuous-time infinite-dimensional systems has not

3) There exist a coprime faCtO”Zat'(.QW’ D) of G oyerA been studied. The problem of optimal robust stabilization of
and a sequencf(\V;, D;)} of coprime factorizations of .

ST infinite-dimensional systems in dr°-setting has been studied
G over A such thath; — N, Di — D'in A. in [20], [16], and [2]. In [2], we established a link between
optimal controllers in this setting and those determined by
Il. INTRODUCTION Glover-McFarlane [17] and Georgiou—Smith [11] in thé-

In this paper, we consider the robust control of infiniteSetting as well as convergence results of optimal controllers
dimensional single-input/single-output (SISO) systems with@)d robustness margins of finite-dimensional systems to those
special emphasis on delay systems and particularly on ®feinfinite-dimensional systems. Those results will be helpful
delay integrator as it is the system which motivated our stud{. the study of the present paper.

In fact, through an industrial problem of car depollution we The paper is organized as follows. In Section Ill, we for-
were faced with the problem of optimally robustly stabilizing &ulate the double problem of optimal robust stabilization
delay integrator as well as making it optimally track a constagfd optimal tracking through a two-parameter compensator
signal output over time of unit amplitude. This is a simplypcheme for general infinite-dimensional systems. In Section IV
stated problem, but there is no existing method for it in th#e propose a family of (eventually normalized) coprime
literature. factorizations and Bzout factors for a class of delay systems.

Optimal robust stabilization for the standard feedback prolt Section V, we solve for different classes of systemsiihe
lem in the L?-setting has been considered by Georgiou arfptimization problem that was posed in Section Ill. Finally, we
Smith [11] when uncertainty is based on perturbations d@hve in Section VI a general algorithm to solve the proposed
the coprime factors of the system (or on perturbations fRbust control problem and illustrate it on a simple example.
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Fig. 1. Standard feedback configuration. Fig. 2. Infeasible implementation of a two-parameter compensator.
I1l. ROBUST STABILIZATION AND TRACKING , e
FOR INFINITE-DIMENSIONAL SYSTEMS ——t i -t D1

We consider in this section, the simultaneous problem of
robust stabilization and tracking.

. . . . P . . €2 d
Given a linear continuous-time infinite-dimensional system U, N I
G defined as
G L™ [ Fig. 3. Feasible implementation of a two-parameter compensator.

U= g*Uu . . . . .
The input—output relation corresponding to Fig. 3 is de-

. . scribed as follows:
we know from [20] that is BIBO-stabilizable by a feedback < )
1

controller admitting a coprime factorization if and onlyGf
admits a coprime factorization ovet.

Now, let us supposgN,D) is a normalized coprime — _ <(VD—U2N)_iU1D (VD—U2N)_11U2D><7’>
factorization of G over A and (X,Y) are corresponding (VD —=UN)"*UN (VD -U;N)"*VD j\d
Bézout factors and it is easy to see that the stabilization is governed’py

only.
~NX+DY =1 We suppose[G, (C1,Cs)] is stable and conside€d; =

(N 4+ AN)/(D + AD). In this case the input—output matrix

mi1 Mmi2
m21 122

and

N(s)N(—s)+ D(s)D(—s) =1, forany s= jw.

is given by
It is well-known (see [24, p. 141]) that, giverthe plant input, myy =((VD = UaN) + (VAD + UAN)) ™1
y the plant output, and the external input, the greatest general -UL(D + AD)
feedback linear compensator scheme is given by mis =((VD — UsN) + (VAD + UyAN))~!
o o -Us(D 4+ AD)
¢=Gur ma1 = ((VD — UyN) + (VAD + Uy AN)) ™!
whereC; and C, are linear operators oh~°. N+ AN) .
Here, we denote the external inputgreference signal) and mae =((VD — UaN) + (VAD + U;AN))™
d (disturbance). -V(D+ AD).

fetla]:j\tl)v:clt(aléﬁr?lzl :rafén(‘i)?”g.‘edf)' we obtain the standard -, gianility of[G, (C1, )] depends on the invertibility
'gurat 9. < of (VD — UsN) + (VAD + UsAN)) in A.

In this case, the set of all stabilizing{ compensators IS Clearly, [2, Propositions 6.1-6.3] giving results on the
parameterized a§' = (X + DN)(Y + N@)™* where@ € A rgbust stabilization through a standard feedback scheme as

The general feedback law can be implemented as in Fig. o L .

. . . ) well as Proposition 6.4 giving convergence results are still

As explained in [24], this implementation makes no sense .. . .

. : .~~~ valid here. We recall these propositions in our context of the
unlessC; is stable. LetV, (U1, Us)) be a coprime factoriza- WO-parameter compensator scheme
tion of (C1,C>) so thatCy = (U7 /V) andCsy = (U5 /V). A param _ P '

SN . .. Proposition 2.1:
feasible implementation of the general feedback law is given

in Fig. 3. 1) If

By [24] (where Theorem 15 is still valid in infinite dimen- (AN + HADHQA)I/Q < 1
sions), we know that the set of all two-parameter compensators A A X +DQ
that stabilizeG is given by(U(Y + NQ)~%, (X + DN)(Y + ‘ Y+ NQ HOO

NQ)™) with U,Q € A. then [G1, (C1, ()] is stable.
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2) If Y+ NQ)AD — (X + DQ)AN =1 for somesp on and the optimal tracking problem mathematically reduces to
JIR then[Gy, (C1,C5)] is unstable. an A (or an.A)-optimization problem
Proposition 2.2: Let C = (U(Y+NQ)™', (X +DN)(Y +
NQ)™Y), with U,Q € A. Then the following are equivalent.
1) [G1,(C1,Cs)] is stable for all transfer function§; =
(N + AN)(D + AD)™! where AN, AD € A and

inf ||I = NU|| 4.
inf 1= NU|L

It will turn out that a more realistic problem is the general

one
(AN, AD)|| 4 < b.
2) inf ||[W(I—-NU)|4
UeA
X+ D@ 1 . ) _
Y+nNO| =¥ where W is a weight function.
In the case of systems with kernel it + C§, we have IV. COPRIME FACTORIZATIONS AND BEZOUT
the following. FACTORS FOR ACLASS OF DELAY SYSTEMS

Proposition 2.3: Let Q°P* be defined by
X N D oo A. Generalities on Delay Systems
Y N We consider in this paper linear systems with a finite number

oo

_ X D of delays in the state, the input, and output. Such systems are
= Qlt}}}f ‘(Y) + <N) QH . described by the following equations:

k m

Then X + DQ°P € L(L}(0,00) + C&) andY + NQ°P* € @(t) = Z Ajz(t —t) + Z Buu(t — 1)
L(L'(0,00) + C8). Moreover (5) prd —~
4 p

bODt(G) — X ]b y(t) = Z CZ.’IZ'(t — Ji) —+ Z dzu(t — Vi)
opt =0 1=0

IG) () e
o wherez(t) € R™, u(t), y(t) € R, A;, B;, C; arenxn, nx1

Let (G),. be a sequence of transfers such #igt— G and1 x n matrices andl; € IR.

in the BIBO gap topology and’s™* (respectively,OS"t) be  'Nhe transfer functiot of (S) is given by

the optimal robust controller off,, (respectively,) relative -1

m k
to coprime factor perturbations. G(s) = <Z Bie—s‘m> <sI _ Z Aie—sti>
Proposition 2.4: If the greatest singular value db*X + =0 =0
N*Y is of multiplicity one then: l »
1) DP(G) — BPUE); ~ (Z Cie—'*'“> +Y 0 i
i i=0 i=0

2) C5P* — (5P in the BIBO gap topology.

So, the optimal robust stabilization problem in this contete denote(So) the system without delay

does not need further investigation beyond the work done in i(t) = Agx(t) + Bou(t)
the standard feedback scheme case. (50) {y(t) = Cox(t) + dou(t)

Let us now state the tracking problem we want to solve.

Consider here that we want to optimally track @ir° with Gy the transfer function anéy the nonatomic part of the
the output reference defined byr(t) = 1 for + > 0. In impulse response of the syste(fi).
applications, it is difficult to be sure that we will be able to Suppose that(So) is BIBO-stable, that ishg + dod €
produce the precise reference output; we might as well produge + C8.
a signal which is only “near” the reference signal. So, it is more Let us recall, for simplicity in the case = 1 (4;, B;, C;
realistic to try to track a family of reference signals. Here ware then denoted;, b;, ¢;), how the different delays act on the

choose to track the familyr € L>, ||7||pe~=1}. BIBO-stability of ().
We havees —r = (I — NU) r» + (Y + QN)Dd. Suppose there is no delay in the state=0,i =1, -, k).
So the optimal tracking problem can be stated as The impulse responsg of @ is of the form
inf max I —NU)7||pee mtl P
UeA lIrllp~=1 I Irile g= Z a;bg. * ho + Z d;6,,
1=0 =1

but we have
max_|[(I = NU) rlp =[] = NUJ

llrllee =

with o, 3; € R.

Obviously g € L' + %52, C&;_,,: the delaysr;, o; andv;
do not change the BIBO stability dfS,).

To see the effect of the delays on the impulse response,
=16 —null4 we suppose thai; = 0,i =1,---,p.

=1 = NUli4
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Lety € R More complicated results can be proven similarly, taking a
m l collection of different delays, all tending to zero.
(3w} (32 1) .
G(iy)| < i=0 i=0 B. Coprime Factorizations and Bézout Factors

for a Class of Delay Systems

k
[yl = Z @i We consider the class of retarded delay systems with scalar

=0 . .
transfer function given b =h h where
We have|G(iy)| — 0 and this means that there is no 9 ¥#(s) = ha(s)/hi(s)
Y—xoo

impulse term in the impulse response. So the detayl® not hi(s) = Z pi(s)e™® and ho(s) = Z gi(s)e5e

ni no

contribute impulse terms to the impulse response. However, i=0 i=0
they modify theL!-part of the impulse response and can mak#ith 0 =0 <1+ <9, 0 < Bo < B1--+ < fBp,, thep;
it fail to be in L. being polynomials of degreg& andé; < &y for ¢ # 0 and the

We are looking here at robustness of stability relatively & P€ing polynomials of degreé; < &, for each.
coprime factor perturbations; we recall that for strictly prope(r: 1:;(': [(iI]a‘f’l_Shgf Sryos\fgdmtsh;\t/?rs\efslfg i?:xzedosgegsegma?in?tg?
systems a change in the delay (in the input, output, or state ) yp y P y y

o many poles in any right half-plane.
corresponds to a variation in the BIBO gap topology. Normally one assumes that and h, have no common

Proposition 3.1: Let Gy = G° be the transfer function of zeroes, but this is not necessary.

the following system: Proposition 3.2: Let G(s) = hy(s)/h1(s) whereh,(s) and
(t) = Ax(t) + Bu(t) ha(s) are defined as above. There exists a rational function
y(t) = Cz(t) 7(s) such thathz(s)/r(s), hi(s)/r(s)) is a coprime factoriza-

and G (respectively,G) be the transfer function of the tion of G overA.If 2, andh, have no more tha, common
delayed system unstable zeroes, thencan be taken to be a polynomial.
Proof: The idea beyond the proof is to takds) =

w(z) = éw(i) +Bu(t = T) (s + 1)® suitably modified in order to deal with common
y(t) = Cu(t) unstable zeroes.
or We have

ha(s) _ L qi(s)e e
(0= axt) Bty G~ 2 (st

y(t) = Ca(t = 1) with deg ¢ < 6o, SO clearlyha(s)/(s + 1) € A_(0). Now

ha(s) S~ pils)e
(s+ 1) — (s+ 1)
with deg po = 6o anddeg p; < & for ¢ = 1,---,7n1, s0O
ha(s)/(s + 1) € A(0).
As h; has a finite number of unstable zeroes we can
Gr(s) =C(sI — A)7'Be™*" test if there are common zeroes (i = 1,---,1 with
multiplicity m;) betweenh, and k. If so, then consider
h g h g with
G (s) = Cl(o — Ae~")-1B. (hafs)r())/(ha(s)r(s))

i
_Let (N, D) and(¢=*T N, D) be coprime factorizations over r(s) = [H (s = &)™
A of Gy andGr, respectively. Note tha¥V and D are rational, 1
N is strictly proper, andD is proper but not strictly proper. Where
Writing A for the impulse response @f, we have

<respective|y{ 58 N éig)— ™)+ Bu(t)>

thenGy — Go— 0 and G™ — GO——6 0 in the BIBO gap

T—0
topology.
Proof: Note that the transfer functions in question are

and

(s + 1)

i
)\+Z m; = 0.
=1

_ ) ) o If the number of common unstable zeroes is less thathen
Using the fact thatC..(C) is dense inL*(C) it is easy t0 , is a polynomial. Clearly, we have

prove that ha(s)

IN — e N| ;= / |hy () — hn(t — T)|dt.
0

—s e A_(0
I = e~ N 4 — 0. l R
. . [TGe-am |6+
The transfer function of the second class of system is |
G™(s) =G (se°T) and

ST 8T ST h ~

=e*"N(se®)/D(se’) . 1(s) € A(0).

=NT"(s)/D"(s), say. lH (s — &)™ | (s+1)A

It is easily verified thatv™ — N and D™ — D, as7 — 0.0 1




BONNET AND PARTINGTON: BEZOUT FACTORS ANDL'-OPTIMAL CONTROLLERS 1517

Now, ashz(s)/r(s) andhy(s)/r(s) have no common zero multiplicity. So, there existg > 0 such thatY'(s) is analytic
in {R(s) > 0}, we deduce thatha(s)/r(s),(hi(s)/r(s)) in {R(s) > — e}. Now, clearlyY(s) = C + Yo(s) where

is a coprime factorization ofs over .A_(0). We recall that C € R andsYy(s) is bounded on{}(s) > — ¢}. So we can
if ha(s)/r(s) and hi(s)/r(s) were not coprime overd_(0) deduce from Lemma 3.1 that € A_(0). Obviously, X and

they would necessarily have a common sequence of zeroed'isatisfy the Bzout equation-XN +Y D = 1. O
{R(s) > 0} and ash;(s)/r(s) € A(0) the only possibility =~ Example 3.1:Let G(s) = ¢ /(s — o) with & € R and
would be a finite common zero ifiR(s) > 0}. O v =+v1+c2weknowthatle=*T/(s+7), (s—o)/(s+7))isa

Remark 3.1:Instead of(s + 1)% in the above proof, we normalized coprime factorization &f over.A. Corresponding
could begin with any polynomial of degrég without unstable Bézout factors are given by
zeroes. In fact, it might be possible to choge) such that

(ha(s)/7(s),h1(s)/7(s)) is a normalized coprime factoriza- X(s)=e""(0 +7)
tion over A. For example, in the case when there is just 1= T(s—0a)
one delay in the input or output, that & is of the form Y(s)=1+(o+7)—r-

G(s) = e7*T A(s)/B(s) where A and B are polynomials, we

can deduce from the finite-dimensional case [17] that thereThose factors depend on the delay but is this dependence

exists a polynomiat such that(e=>7 A(s)/r(s), B(s)/r(s)) continuous in the BIBO gap topology as it is the case for

is a normalized coprime factorization 6f over A. the normalized coprime factorizations? This continuity would
We now give a formula for the &out factors in a coprime be useful to establish convergence in the BIBO gap topology

factorization of a retarded delay system. Recall that lefy controllers of the system with delays to controllers of the

explicit formulas have been given by Brethe and Loiseau [8Elay free system.

in the case of delay systems with commensurate time delaysThe next result proves more generally that Theorem 3.1
Theorem 3.1:Let m be the number of unstable zerces Pproduces Bzout factors which are continuous respectively to

of hi(s) (which are not zeroes of,) counted with their variations of the coprime factors in the BIBO gap topology.

multiplicity. Proposition 3.3: Supposée:; has no zero on the imaginary
Let axis and let
r(s) — 1Uh2(5) o (1BE 1)
X(s) = —(s) and Y(s) = u(s) AT r(s) * r(s)
u(s) hi(s)
_ . such that
wherey, is a polynomial of degreen — 1 chosen such that
4 h5(s) hA(s)> <h2(s) hl(s)>
(k) 2 I
(vt - M) T (o o) = (6
uLs

in the BIBO gap topology. Then the&out factorsX . and
A given by Theorem 3.1 depend continuously &nin the
IBO gap topology.

Proof: LetWA:C™" — C™ be the linear mapping defined

ats=oc for k=0,---,m; — 1 if o is a zero of multiplicity
m; > 1, andw is a polynomial chosen such that its inverse i
in A_(0) and X is proper(deg u > deg ).

Then X and Y are Bézout factors corresponding to theb
coprime factorizationghz(s)/r(s), hi(s)/r(s)) of G over A. y

To prove this result we need a lemma of [18] which we Argpd (n(k))
recall here U k) = 1= (s)hy (s)
: ) ] alpo, -5 pm—1)(k) = (1),
Lemma 3.1 [18]: Let § be a holomorphic function on u(s)
C? such thatsg(s) is bounded onCY. Then for any (k=1,---,m)
¢ > 0 there exists amh such thatg = h on (13;3rf and '
J&° e p(t)| dt < . wherepu(s) = E}”:_Ol w;s?, (o1, -, om) denotes the unstable

Proof: Clearly, X(s) = (—u(s)/u(s)) € A_(0). Let Z€roes of hyi(s) Faken with multiplicity, andn(k) is the
(0:)i=1...; be the unstable zeroes &f of multiplicity m,; Ath term of the finite sequenc@®,---,m; — 1,0, -, m; —
(2!_, m; = m), and ;2 is an interpolation polynomial of 1,---,m;— 1), wherel is the total number of distinct zeroes.

degreem — 1 defined by the followingn equations. The mappingW¥ is continuous, linear, and one—one and
Fori — 1..--.1 depends continuously ofd. Thus, it has a continuous inverse.
T The polynomial® which performs the interpolation is given
<, u(s)hxs))(’“) _ by
r(s) — ——~* =0,
ws) A gt L
for k=0,---,m; —lats=o. =R (o), T 0m)
Note that asr is not a zero ofi,, for each: them,; equations and this also depends continuously An
are solvable and have a unique solution. It is now easy to see that the correspondir&gg&8ut factors
Finally, each unstable zero &f; of given multiplicity isa Xa = —p®/u and Ya = (r — p2(h3')/u)/h2 depend

zero of the function(r(s) — (u(s)ha2(s)/u(s))) with the same continuously onA.
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Remark 3.2:1f h; has zeroes on the imaginary axis, they (so)e=*"" so that®(&_,r) = c¢=*"! and so®(f) =
may become stable zeroes fof for A arbitrarily small. To f(s) for all f € L' @ ¢*.
obtain Bezout factors converging in this case, it is necessarylf ® vanishes onL! then it acts as a character éh and
to modify the construction of Theorem 3.1, interpolating ahus takes the forn®(6;_, 1) = w™ for somew with |w| < 1.
the corresponding stable zeroeshgf, as well as the unstable  So finally, A = {6.,w € {R(s) > 0} U {|z| < 1}} where

ones. .
. . f R(s) 2 0} bu,(g) =
Example 3.2: ConsiderGr(s) = hi(s)/hT (s) with hI(s) orw & {R(s) 2 0} dulg) g(w.) .
— ¢ Thy(s) and hT(s) = ha(s) where ho(s) and Ay (s) forwe{lsl <1} bulga) =0ifgeL
are polynomials as in Remark 3.1 such tiiat(s) is strictly 0u(bt—rn) = w™ for n > 0.

proper. As a variation in the delay is a variation in the BIBQ, |\« have
gap topology, we can deduce from the above proposition that . T R
the Bézout factorsX andYr of G depend in a continuous gs invertible inL" & ¢

fashion on the delay’. g(s) #0on{R(s) > 0}
V. SOME L!-OPTIMIZATION PROBLEMS - and
The problem of optimal tracking is set as an optimization i 4
problem of the type Z gzt Z0on{|z| < 1}.
1=0
,?2}} 1 = grll.4, where f,g € A. (1) Remark 4.1:In the case of the simpler algebid + C§
We have we haveg, + go6 is invertible in L* + C§ if and only if

Ga(8) + 90 # 0 on {R(s) > 0} and g # 0 that isg(s) # 0
inf ||f— g7 4 = d(f, (9)) on the extended right half plane.
reA Remark 4.2:1n the case whereg is not invertible inL! ¢!,
R 1 the necessary and sufficient condition of Theorem 4.1 being
where(g) denotes the principal idedlyr: » € A}. e .
Moreover, d(f, (g)) = 0 for all £ if and only if (g) = A, not satisfied, we can be able to give a lower bound for

since otherwisdg) is contained in a proper maximal ideal, infcq IIf = g7l 4. If there is a characte® such that

which is necessarily closed. (We refer to [22] for gener (9) = 0, then&(gr) = 0 also and sob(f — gr) = &(f).
background on Banach algebras.) Now, cledgy = A if encel|f —grll4 2 |2(f —gr)| = |2(N)]. 1€ |If —grlli 2
and only if g is invertible in A. SUP (o a(g)=0) |2(S)]- . .

Hille and Phillips [14] give the following invertibility con- V& consider now the resolution of equations of the type
dition for elements inA. (1) firstly in the case which motivated our study, the delay

a L . s integrator, and so consider in the next paragraph delay systems
illf:et( )f} |€f($)“|4'> ghen Jis invertible in- A of the type G(s) = ¢=*T /(s — o). We will consider more
R(s)>0 .

In the particular case of commensurate time delays, thatg’se,neral systems in Section IV-B.
g is of the formg = g, + X2, ¢:6;—1; with g, € L' (and

— ,—sT _
we write g € L' @ ¢1), we can give a more explicit conditionA' The Case Whe6(s) = e™*" /(s - o)

of invertibility. Let G(s) = e /(s —0),T > 0,0 € R.
Theorem 4.1:Let g = g, + X2, ¢:6:—7i With g, € L, A normalized coprime factorization @¥ is given by
=0 |gl| < 00. G—ST S
Then g is invertible in (s) S+ (s) s+
g(s) #0 on {R(s) 2 0} wherey = 1+ o2
and The optimal tracking problem is
L'et < inf |[I—NU| 4= inf [|§—unlla=d(6, (e *6_g)).
s ‘ ved ucA
Z gi#" #0on{le < 1} By a convenient abuse of notation, we will write
=0 d(I,e=*T /(s + ~)) instead of d(5, (e~  &_r)). This
Proof: We have that can be easily solved using the finite-dimensional results of
is invertible inL! & /' < & 0 VdeA Vidyasagar. We recall here two useful Iem'mas of [26].
g @ (9) # Lemma 4.1 [26]: Supposek > 1 is an integer, and let
where A is the set of all characters ot g ¢*. a(s) = (1/(s + 1)~

Recall that a characte® is a complex homomorphism Thenﬂ = L.
O: [t — Cwith®(1) =1, &(f + g9) = ¢(f) + ®(9), Lemma 4.2 [26]: Supposeg € A, that g is rational, and
O(f xg) = () O(g). construct a rational functioh € A as follows:g is a multiple

It is well known (cf. [22]) that any character oh! that of h, every zero ofg in the open right half-plane is also a zero
does not vanish there takes the fofmf) = f(so) for some of i with the same multiplicity, and every zero gfon the
s0 € {R(s) > 0}. Then®(f % 8,_nr) = (f * 61—n1) " (50) = extendedjw axis is a simple zero ok. Then(g) = (h).
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_ Proposition 4.1: Let N(s) = ¢~*" /(s + ). Then we have ~ Theorem 4.3 [9]: Let f € L'. Then(f) = L if and only
(N) = L'[T,00) andinf,,. ; |[I — NU|| ; = 1, the infimum if a(f) = 0 and f(s) # 0 in {R(s) > 0}.

being attained fol/°r* = 0. Now, we want to consider the more general case where
Proof: By Lemmas 4.1 and 4.2, we hayg/(s +~)) = f has a finite number of zeroes if#(s) > 0} to be able
L' and obviously (¢=*T /(s ++)) = LY T,o). Now, to cover for example the case of delay systems of the type

d(6, L*T,o0)) = 1andl/ =0 gives|[I — NU| ; =1. O G(s) = ¢~ R(s) where R(s) is a rational function having
Those results on the infimum and optimal function are naeroes in{(s) > 0}. The next theorem shows that the
surprising as tracking i.>° is very demanding. So the idea isresult of Nymen extends naturally to the case of zeroes in

to consider here a weighted optimization problem of the forgit(s) > 0}.
inf,, . i [[W(I—-NU)| ; whereWV is a weight which willhelp  Theorem 4.4:Suppose € L, a(g) = T, andg has a finite
minimize the tracking error particularly at low frequenciesumber of zeroes;, ¢ = 1,---,1, in {R(s) > 0} and no zero

rather than high frequencies. We can consider for examme the imaginary axis. Thety) = {k € L[0, 00), k(a;) =
Wi(s) = 1/(s+ 1), Wa(s) = (s+a)/(s+b) witha >0, 0,i=1,---,Lalk) > T}

b > 0, 0or Ws(s) = 1/(ps + 1). Proof: We prove this result in the case whefe= 0
Theorem 4.2:For weightsW,, W, and W3, the optimal and there is only one zero i{fR(s) > 0}; the extension to
tracking error of the weighted problem is given by the case of several zeroes is straightforward by induction. The

casel > 0 is immediately deduced.

: 1 _ T
Luéit WA = NU)| g =1~ Letg € L', a(g) = 0, andg(ao) = 0 for aq in {R(s) > 0};

inf Wl — NOO + =14+ |a — bl(1 — =T otherwiseg(s) # 0 on {R(s) > 0}. .
z}vrel,zi 12 N fa = b1 =) Now, let g1(s) = §(s)/(s — ap), and we show first that
inf (|[Ws(I — NU)|| 4 =1— ¢ /7. g € L'0,00).
Ued For we can writeg; = g * ¢ where
Proof: For i = 1,3, we have inf,, . ; [[Wi(I — c9t on (o0, 0]
NU)|| 4 = d(W;, (W;N)). Applying Lemma 4.2 we get “®=190on (0, )

1 .t o—sT 1 — 71
(W) =2t and (W™ () =PI Cleany, ¢ € L) as ol o
o -

IN

Now Now, we have

d(Wy,(WiN)) =d(c™", L'[T, 50)) - w

= /T e tdt—1—eT g(t) = /_Oo e(t —s)g(s) ds = /0 e(t — s)g(s) ds.
0

d(Wa,(W2N)) = d(8 + (a = b)e™", L'[T, o0)) For
=1+a—b|(1-c"T) o A

d(Wa, (W) =d(6 + (a — be ™", LT} 0)) t<0,0:(t) = /0 e g(5) ds = G(ag) =
=1 — efT//"

S0 g1 is in L]0, 00).
O Now, let us prove tha{k € L', k(ao) = 0,a(k) > 0} C
Remark 4.3:As the infinimum is not attained, we cannof ) (the other inclusion is obvious).
define U°P*, however it is possible to construct a sequence et 1 ¢ L' with k(ao) = 0 and ky(s) = k(s)/(s — ao).

(U:). such that We have
W7 = NUDlL s b W27 = NU)I . e (0 2a \ _, 2apk
s — ag S — ag s—ag
For example, the sequence
Uls) = o=T 5F7 So k(s + ao)/(s — ap) € L'[0,00) and has no zero in
«(s)=c es 41 {R(s) > 0}. From Theorem 4.3 we know there exists a
will achieve that. sequenced ¢,,)52, in A such that
s+ ag . s+ ap
B. A More General Case k = lim g Pn

S — Qo n—oo S — Qg
In this section, we determine the ideal jh generated by .
L* functions whose transforms are not necessarily rationalshat isk = lim,, ..., g¢, andk € (g). O
The case of.! functions whose Laplace transform does not The case off.! functions which have zeroes on the imag-
vanish on{3(s) > 0} has been considered by Nymen [19] (@nary axis is difficult unless those functions are of the type
simpler and more accessible proof of this result can be found®? R(s) with R rational in which case we can determine
in [9]). (g) using the finite-dimensional results of Vidyasagar.
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Fig. 4. Simplified two-parameter compensator scheme.

VI. ALGORITHM AND EXAMPLE

For delay systems which have a coprime factorization
(N, D) over A with N € L! and N has only a finite number
of zeroes in{(s) > 0}, the robust control problem set in
Section 1l can be solved using the following algorithm.

Step 1: Find  {U.}e>0 such  that ||W(I
NUNa— infyeca WU = NU)| 4

Step 2: Find (G,).>0 a sequence of finite-dimensional
transfer function such thatz,, — G in the BIBO gap
topology. S

Step 3: Find Q°P* such that

|G2)+ () ]
i)+ ()

Choose: small, defineCt = U¢/(Y + NQ°P'), and construct
the controllers

= inf
Qn€EH

oo

and
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Step 1:Find {U.}.>o such that
—sT
! <I _ U€>
s+1 s+ A
—sT
1 <I e U)
s+1 s+

This is done in Remark 4.3 which givés(s) = e~ (s+

v)/(es + 1).
Step 2:Find (G..)»>0 a sequence of finite-dimensional

transfer functions such tha&, — (e¢°7/(s — o)) in
the BIBO gap topology.

— inf
e—o0 UCA

A

Note that such a system as*?' /(s + ) is badly approxi-
mated by rational functions (in many other examples one can
achieve faster convergence) and the best rate for approximation
in .A-norm known so far isD(log n/n) (see [12]).

From [12] and the recent work of Partington andakila
[21] on approximation of such systems it we get that

sT\"
No(s) = | —2n !
¥ sT
1+ (8+7)(1+—)
D,(s) = D(s)

are approximations ofV and D in A with error of order
O(n=2/3). These approximations are suboptimal, but easy to

calculate.
U'e Xn Dn opt . . .
Cf — — and Cg — + Q:)t . Step 3W|th
T Y NQT T Y NaQR ST\ "
1—-=
C9 is a finite-dimensional controller, an@; can be an N.(s) = 2% -
infinite-dimensional controller. 1+ st (s+) (1 + —)
Proposition 5.1: If the greatest singular value d*X + 2n
N*Y is of multiplicity one, then:
Dy(s) = D(s)

1) bopt(Gn) N bOpt(G);
2) Cf — C5 in the BIBO gap topology;
3) CY — C5*" in the BIBO gap topology.

For systems of the typ€(s) = ¢=*T R(s) we might have a
more direct implementation. If fog € IN, 7 big, Qgpt is such

that Y, + N, Q<" is invertible in A, thenCY is stable and

we can use the two-parameter compensator scheme of Fig. 4

where forCs** we can take the closed form formula of the
optimal robust controller determined by Dyat al. [10] so [l
that we get in this scheme an optimal robust controller angz]
suboptimal tracking controller.

We illustrate this by continuing our analysis of Example 3.1.

Example 5.1:Let G(s) = ¢ *T/(s — o) with ¢ € R, 3l
vy=+vV1+oZandW(s) = 1/(s + 1). (4

As pointed out before, a normalized coprime factorization
(N, D) of G is given by 5]

e=*T s— 0

and D(s) = o
s+

(6]

the Bézout factorsX,, and Y, satisfying —N,X, +
D,Y, =1 can be determined using standard algorithms
(available in Matlab or Scilab).

The finite-dimensionalH ,-optimization which follows is
also standard (see [27], available in Matlab or Scilab).
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